Academic literature on the topic 'Bi-metallic nanoparticles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bi-metallic nanoparticles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bi-metallic nanoparticles"

1

Mohan, Santhanam, and Manickam Vishnu Devan. "Photocatalytic activity of Ag/Ni bi-metallic nanoparticles on textile dye removal." Green Processing and Synthesis 8, no. 1 (January 28, 2019): 895–900. http://dx.doi.org/10.1515/gps-2019-0060.

Full text
Abstract:
Abstract The photocatalysis of Ag/Ni bi-metallic nano-particles on safranin O dye degradation was evaluated by UV light irradiations. Ag/Ni bi-metallic nanoparticles were synthesized by the green approach using Zingiber officinale root (Zinger) extract. The average particles size of Ag/Ni bi-metallic nanoparticles was found to be 70-88 nm from SEM image and from XRD patterns it was confirmed that the existence of Ag/Ni bi-metallic nano-particles. 8 mg of Ag/Ni bi-metallic nanoparticles present in 40 mL of 10 ppm dye, degraded completely in presence of UV light irradiations within 30 min time durations. The effect of dye degradation within a short period of time (30 min) was due to wide band gap energy and photochemical redox reactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Stasyuk, Natalia Ye, Galina Z. Gayda, Roman Ja Serkiz, and Mykhailo V. Gonchar. "Cell Imaging with Fluorescent Bi-Metallic Nanoparticles." JOURNAL OF ADVANCES IN CHEMISTRY 11, no. 4 (March 9, 2015): 3499–511. http://dx.doi.org/10.24297/jac.v11i4.6694.

Full text
Abstract:
Last decades various imaging techniques have been applied in biological and biomedical research, such as magnetic resonance imaging, different types of tomography, fluorescence/bioluminescence, ultrasound, as well as multimodality approaches. Fluorescence imaging, especially in combination with nanoscale materials, is a very prospective tool for experiments in vivo and clinical applications due to its high temporal and spatial resolutions. Fluorescent nanoparticles (NPs), having ability to interact with biomolecules both on the surface of and inside the cells, may revolutionize the cell imaging approaches for diagnostics and therapy. In our investigation we report about new method of cell imaging with fluorescent bi-metallic NPs synthesized by chemical reduction of the relevant ions. As the model of living organism, the cells of yeast Hansenula polymorpha were used. All NPs in minimal concentration (up to 0.05 mM) was proved to be non-toxic for yeast cells. The NPs and NPs-modified cells were characterized with the methods of UV-VIS spectroscopy, scanning electron microscopy, atom force microscopy, transmission electron microscopy and fluorescence microscopy. The bimetallic NPs, possessing the stable fluorescence in solution and inside the cells, allow to observe the phenomenon of NPs transferring from parental to daughter cells through at least three generations followed by releasing from the modified cells. The fluorescent NPs synthesized being small, non-toxic and fluorescent was shown to be perspective tool for cell imaging.
APA, Harvard, Vancouver, ISO, and other styles
3

Jia, Wen, Dong Peng, Zijuan Feng, Xue Wu, Yi Liu, Xuxu Zheng, and Xiaoya Yuan. "UV-light-assisted green preparation of Bi/BiOBr/RGO composites with oxygen vacancies toward enhanced photocatalytic removal of organic dye." New Journal of Chemistry 44, no. 19 (2020): 7749–57. http://dx.doi.org/10.1039/d0nj01296c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arčon, Iztok, Stefano Paganelli, Oreste Piccolo, Michele Gallo, Katarina Vogel-Mikuš, and Franco Baldi. "XAS analysis of iron and palladium bonded to a polysaccharide produced anaerobically by a strain ofKlebsiella oxytoca." Journal of Synchrotron Radiation 22, no. 5 (July 16, 2015): 1215–26. http://dx.doi.org/10.1107/s1600577515010371.

Full text
Abstract:
Klebsiella oxytocaBAS-10 ferments citrate to acetic acid and CO2, and secretes a specific exopolysaccharide (EPS), which is able to bind different metallic species. These biomaterials may be used for different biotechnological purposes, including applications as innovative green biogenerated catalysts. In production of biogenerated Pd species, the Fe(III) as ferric citrate is added to anaerobic culture ofK. oxytocaBAS-10, in the presence of palladium species, to increase the EPS secretion and improve Pd-EPS yield. In this process, bi-metallic (FePd-EPS) biomaterials were produced for the first time. The morphology of bi-metallic EPS, and the chemical state of the two metals in the FePd-EPS, are investigated by transmission electron microscopy, Fourier transform infra-red spectroscopy, micro-X-ray fluorescence, and X-ray absorption spectroscopy methods (XANES and EXAFS), and compared with mono-metallic Pd-EPS and Fe-EPS complexes. Iron in FePd-EPS is in the mineralized form of iron oxides/hydroxides, predominantly in the form of Fe3+, with a small amount of Fe2+in the structure, most probably a mixture of different nano-crystalline iron oxides and hydroxides, as in mono-metallic Fe-EPS. Palladium is found as Pd(0) in the form of metallic nanoparticles with face-centred cubic structure in both bi-metallic (FePd-EPS) and mono-metallic (Pd-EPS) species. In bi-metallic species, Pd and Fe nanoparticles agglomerate in larger clusters, but they remain spatially separated. The catalytic ability of bi-metallic species (FePd-EPS) in a hydrodechlorination reaction is improved in comparison with mono-metallic Pd-EPS.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Dong, and Peter Schaaf. "Ni–Au bi-metallic nanoparticles formed via dewetting." Materials Letters 70 (March 2012): 30–33. http://dx.doi.org/10.1016/j.matlet.2011.11.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mukherji, D. "A Novel Method for the Synthesis of Core-shell Magnetic Nanoparticle." Defence Science Journal 66, no. 4 (June 28, 2016): 291. http://dx.doi.org/10.14429/dsj.66.10203.

Full text
Abstract:
<p>Core-shell type magnetic nanoparticles are finding attractive applications in biomedicine, from diagnostic to cancer therapy. Both for targeted drug delivery and hyperthermia, as well as a contrast agent used for external biomedical imaging systems, small (&lt; 20 nm) superparamagnetic nanoparticles are desired. Some iron oxide nanoparticle formulations are already approved for human administration as contrast agent for magnetic resonance imaging. However, search continues for nanoparticles with higher saturation magnetisation. Metallic, bi-metallic and intermetallic magnetic nanoparticles are finding attention. Biocompatibility and optimal clearance are important criteria for the medical applications and therefore core-shell type particles are favored, where a biocompatible shell (e.g. polymer, Silica) can prevent inadvertent host reaction with the magnetic core. A recently developed novel synthesis method (electrochemical selective phase dissolution - ESPD), which can produce core-shell magnetic nanoparticles, is reviewed in this paper. ESPD, as the name suggests, uses electro-chemical separation of a phase from metallic alloys to synthesize nanoparticles. It is a versatile method and can be adopted to produce a wide range of nanostructures in addition to the core-shell magnetic nanoparticles.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Ameen, Fuad. "Optimization of the Synthesis of Fungus-Mediated Bi-Metallic Ag-Cu Nanoparticles." Applied Sciences 12, no. 3 (January 27, 2022): 1384. http://dx.doi.org/10.3390/app12031384.

Full text
Abstract:
Bi-metallic nanoparticles (NPs) have appeared to be more efficient as antimicrobials than mono-metallic NPs. The fungus Aspergillus terreus-mediated synthesis of bi-metallic Ag-Cu NPs was optimized using response surface methodology (RSM) to reach the maximum yield of NPs. The optimal conditions were validated using ANOVA. The optimal conditions were 1.5 mM total metal (Ag + Cu) concentration, 1.25 mg fungal biomass, 350 W microwave power, and 15 min reaction time. The structure and shape of the synthesized NPs (mostly 20–30 nm) were characterized using several analytical tools. The biological activities of the synthesized NPs were assessed by studying their antioxidant, antibacterial, and cytotoxic activity in different NP concentrations. A dose-dependent response was observed in each test. Bi-metallic Ag-Cu NPs inhibited three clinically relevant human pathogens: Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus were inhibited less. The DPPH and hydrogen peroxide scavenging activities of the NPs were high, reaching 90% scavenging. Ag-Cu NPs could be studied as antimicrobials in different applications. The optimization procedure using statistical analyses was successful in improving the yield of nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
8

Ilker, Efe, Melihat Madran, Mine Konuk, and Sondan Durukanoğlu. "Growth and shape stability of Cu–Ni core–shell nanoparticles: an atomistic perspective." Chemical Communications 54, no. 96 (2018): 13583–86. http://dx.doi.org/10.1039/c8cc05966g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Assis, Marcelo, Eloísa Cordoncillo, Rafael Torres-Mendieta, Héctor Beltrán-Mir, Gladys Mínguez-Vega, Amanda Fernandes Gouveia, Edson Leite, Juan Andrés, and Elson Longo. "Laser-induced formation of bismuth nanoparticles." Physical Chemistry Chemical Physics 20, no. 20 (2018): 13693–96. http://dx.doi.org/10.1039/c8cp01225c.

Full text
Abstract:
In the current communication, the synthesis of metallic Bi nanoparticles with coexisting crystallographic structures (rhombohedral, monoclinic, and cubic) obtained via direct femtosecond laser irradiation of NaBiO3 is demonstrated for the first time.
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Hyejun, Sri Harini Rajendran, and Jae Pil Jung. "Low Melting Temperature Sn-Bi Solder: Effect of Alloying and Nanoparticle Addition on the Microstructural, Thermal, Interfacial Bonding, and Mechanical Characteristics." Metals 11, no. 2 (February 22, 2021): 364. http://dx.doi.org/10.3390/met11020364.

Full text
Abstract:
Sn-based lead-free solders such as Sn-Ag-Cu, Sn-Cu, and Sn-Bi have been used extensively for a long time in the electronic packaging field. Recently, low-temperature Sn-Bi solder alloys attract much attention from industries for flexible printed circuit board (FPCB) applications. Low melting temperatures of Sn-Bi solders avoid warpage wherein printed circuit board and electronic parts deform or deviate from the initial state due to their thermal mismatch during soldering. However, the addition of alloying elements and nanoparticles Sn-Bi solders improves the melting temperature, wettability, microstructure, and mechanical properties. Improving the brittleness of the eutectic Sn-58wt%Bi solder alloy by grain refinement of the Bi-phase becomes a hot topic. In this paper, literature studies about melting temperature, microstructure, inter-metallic thickness, and mechanical properties of Sn-Bi solder alloys upon alloying and nanoparticle addition are reviewed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bi-metallic nanoparticles"

1

Ibrahim, Mahmoud. "Rhodium based mono-and bi-metallic nanoparticles : synthesis, characterization and application in catalysis." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30063/document.

Full text
Abstract:
Dans cette thèse, la synthèse, la caractérisation et les applications en catalyse de nanoparticules mono- et bimétalliques à base de rhodium sont décrites. Le rhodium a été choisi comme métal central de cette étude en raison de son intérêt reconnu en catalyse, principalement pour les réactions d'hydrogénation et d'hydroformylation. La synthèse de nanoparticules de rhodium monométalliques constitue le coeur de ce travail. Elle a été réalisée par décomposition du complexe organométallique [Rh(C3H5)3] en solution, sous pression de dihydrogène et en présence de différents stabilisants tels que des ligands et des polymères pour contrôler la croissance des particules. Certaines nanoparticules ont été déposées sur la surface d'une silice magnétique fonctionnalisée par des groupements amines utilisée comme support, dans un objectif de récupération plus aisée pour le recyclage des catalyseurs. Diverses nanoparticules bimétalliques ont également été préparées par co-décomposition du complexe [Rh(C3H5)3] avec d'autres précurseurs organométalliques, incluant [Ni(cod)2], [Ru(cod)(cot)], [Pt(nor)3] et [Pd(dba)2]2. En modulant les ratios de métaux entre [Rh] et le second métal [M], ainsi que la nature et la quantité de stabilisant utilisé pour la synthèse, des nanoparticules de tailles et de compositions chimiques différentes ont pu être obtenues. La caractérisation des nanoparticules ainsi préparées a été menée en utilisant une combinaison de techniques de l'état de l'art (TEM, HRTEM, STEM-EDX, ICP, WAXS, EXAFS, XANES, XPS, RMN ...). Pour certaines nanoparticules de rhodium, des études de surface ont été réalisées, par adsorption du CO sur la surface des particules et un suivi par des techniques spectroscopiques (FT-IR, RMN) pour sonder leur état de surface. Un autre aspect de ce travail a concerné l'évaluation des nanoparticules synthétisées dans des réactions catalytiques, en particulier réactions d'hydrogénation avec des particules monométalliques de Rh et réaction d'hydrogénolyse avec des nanoparticules bimétalliques RhNiOx. Dans le cas de la catalyse d'hydrogénation, des études en conditions colloïdales et supportées ont été réalisées. L'originalité de ce travail réside dans le développement d'outils de synthèse simples inspirés de la chimie organométallique pour obtenir des nanoparticules à base de rhodium bien contrôlées en termes de taille, distribution en taille, composition et état de surface, tous ces paramètres étant importants quelle que soit l'application visée. L'intérêt des nanoparticules obtenues en catalyse a également été mis en évidence dans différentes réactions. Ce travail de thèse offre de nouvelles opportunités de recherche, tant en nanochimie qu'en catalyse
In this thesis, synthesis, characterization and catalytic applications of mono- and bi-metallic rhodium-based nanoparticles are reported. Rhodium has been chosen as a primary metal given its high interest in catalysis, mainly in hydrogenation and hydroformylation reactions. The synthesis of mono-metallic rhodium nanoparticles (NPs) is the core of this work. It was performed by decomposition of the organometallic complex [Rh(C3H5)3] in solution under dihydrogen pressure and in the presence of different stabilizers including ligands and polymers to control the growth of the particles. Selected nanoparticles were deposited on the surface of amino-functionalized magnetic silica as a support for recovery and recycling concerns in catalysis. Diverse bi-metallic nanoparticles have been also prepared in one-pot conditions by co-decomposition of the [Rh(C3H5)3] with other organometallic precursors including [Ni(cod)2], [Ru(cod)(cot)], [Pt(nor)3] and [Pd(dba)2]2. Tuning of the metal ratios between [Rh] and the second metal [M], or of the nature and the amount of the stabilizer used for the synthesis allowed to obtain nanoparticles of different sizes and chemical compositions. The characterization of the obtained nanoparticles was performed by using a combination of state-of-art techniques (TEM, HRTEM, STEM-EDX, ICP, WAXS, EXAFS, Xanes, XPS, NMR...). Surface studies were carried out in some cases, by adsorbing CO on the surface of the particles which was followed by spectroscopic techniques (FT-IR, NMR) to probe their surface state. Some of these nanoparticles were investigated in catalytic reactions, mainly hydrogenation with Rh NPs and hydrogenolysis for RhNiOx NPs. Both colloidal and supported catalytic studies were carried out in the case of hydrogenation catalysis. The originality of this work lies in the development of simple synthesis tools inspired from organometallic chemistry to get well-controlled rhodium-based nanoparticles in terms of size, size distribution, composition and surface state, all these parameters being important whatever the target application. The interest of the obtained nanoparticles in catalysis has been also evidenced in different reactions. This PhD work may open new opportunities of research both in nanochemistry and catalysis
APA, Harvard, Vancouver, ISO, and other styles
2

Ayvali, Tugçe. "Rhenium based mono- and bi-metallic nanoparticles : synthesis, characterization and application in catalysis." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30269/document.

Full text
Abstract:
Dans cette thèse, la synthèse, la caractérisation et les applications catalytiques préliminaires des nanoparticules mono- et bi-métalliques à base de rhénium sont présentées. Le Rhénium a été choisi compte tenu de la connaissance de sa contribution positive en termes d'activité catalytique et la sélectivité lors de l'hydrogénation des groupes fonctionnels difficiles. Les nanoparticules mono-métalliques de rhénium ont été préparées par décomposition du précurseur [Re2(C3H5)4]. Les nanoparticules bimétalliques ont été synthétisés par les co-décompositions ou deux étapes décomposition de deux complexes différents de rhénium, à savoir [Re2(CO)10] et [Re2(C3H5)4] avec d'autres complexes organométalliques tels que [Ru(COD)(COT)], [Ru(Me-allyl)2(COD)], [Pt(CH3)2(COD)] et [Pt(C7H10)3]. En choisissant la nature des complexes organométalliques et les conditions de réaction, des nanoparticules bi-métalliques à base de rhénium présentant des morphologies différentes peuvent être préparées quantitativement. La synthèse a été effectuée en solution sous pression de dihydrogène (3 bars) et en présence soit d'une polymère (polyvinylpyrrolidone), ou un ligand faiblement coordinant (hexadécylamine) comme des agents stabilisant. La caractérisation précise des nanoparticules ainsi obtenues a été réalisée en utilisant une combinaison de l'état de l'art des techniques de (WAXS, EXAFS, MET, HR-MET, METS-EDX, METS-HAADF, AE). Les études de réactivité de surface (réactions hydrogénation de norbornène, oxydation et adsorption CO) ont également été réalisées et suivies par des techniques spectroscopiques (RMN, FT-IR) pour déterminer leur état de surface et appréhender leur intérêt pour la catalyse. Par ce moyen, des informations utiles ont été obtenues sur leur chimie de surface, comme suit: 1) hydrures sont présents sur la surface métallique et sont très fortement coordonnés à la surface de rhénium en accord avec la chimie moléculaire de rhénium; 2) CO peut remplacer les hydrures et est également fortement coordonné à la surface, mais peut être substitué, oxydée ou dissocié. Ces réactions sont plus faciles sur des nanoparticules bi-métalliques à base de Re de type alliage. 3) Les NPs de rhénium pur et les alliages bimétalliques nanoparticules de ruthénium et rhénium affiche un état de base zéro et une coquille d'oxyde alors que les nanoparticules bimétalliques de type cœur-coquille ont une structure amorphe. L'originalité de ce travail réside sur le développement d'une approche systématique pour la préparation de nanoparticules à base de rhénium pour la première fois dans l'équipe et dans la littérature, en appliquant l'approche organométallique largement connu dans le groupe pour d'autres systèmes métalliques. Cette méthode est bien connu comme un moyen efficace d'obtenir des nanostructures bien contrôlées avec des surfaces propres ce qui est important principalement en catalyse
In this PhD thesis, the synthesis, characterization and preliminary catalytic application of rhenium based mono- and bi-metallic nanoparticles are reported. Rhenium has been chosen as a primary metal given the knowledge of its positive contribution in terms of catalytic activity and selectivity in the hydrogenation of difficult functional groups. Mono-metallic rhenium nanoparticles were prepared by decomposition of [Re2(C3H5)4]. Rhenium-based bimetallic nanoparticles were synthesized by co-decompositions or two-step decomposition of two different rhenium complexes, namely [Re2(CO)10] and [Re2(C3H5)4], with other organometallic complexes such as [Ru(COD)(COT)], [Ru(Me-Allyl)2(COD)], [Pt(CH3)2(COD)] and [Pt(C7H10)3]. By tuning the nature of organometallic complexes and the reaction conditions, rhenium-based bimetallic nanoparticles displaying different morphologies could be quantitatively prepared. The synthesis was carried out in solution under mild pressure of dihydrogen (3 bar) and in the presence of either a polymer (polyvinylpyrolidone) or a weakly coordinating ligand (hexadecylamine) as stabilizing agents. The precise characterization of the so-obtained nanoparticles was performed by using a combination of state-of-the art techniques (WAXS, EXAFS, TEM, HRTEM, STEM-EDX, STEM-HAADF, EA). Surface reactivity studies (norbornene hydrogenation, oxidation and CO adsorption reactions) were also carried out and followed by spectroscopic techniques (NMR, FT-IR) to determine their surface state and apprehend better their interest in catalysis. By this way, useful information could be obtained on their surface chemistry, as following: 1) Hydrides are present on the metallic surface and are very strongly coordinated to rhenium in agreement with rhenium molecular chemistry; 2) CO can substitute hydrides and is also strongly coordinated to the surface of Re but can react further to be substituted, oxidized or dissociated, where the latter is easier on alloy type Re-based bimetallic nanoparticles. 3) Oxidation of pure rhenium and alloy bimetallic ruthenium-rhenium nanoparticles display a zero state core and an oxide shell while core-shell type bimetallic nanoparticles result in amorphous structure. The originality of this work lies on the development of a systematic approach for the preparation of rhenium-based nanoparticles for the first time in the team and in the literature, by applying the organometallic approach largely experienced in the group for other metal systems. This method is well-known as an efficient way to obtain well-controlled nanostructures with clean surfaces, important mainly in catalysis
APA, Harvard, Vancouver, ISO, and other styles
3

Murch, Graeme E., Alexander V. Evteev, Elena V. Levchenko, and Irina V. Belova. "Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189826.

Full text
Abstract:
In this paper, we review the recent understanding gained by kinetic Monte Carlo and molecular dynamics simulation and related theory of the diffusion processes involved in 1) the formation and later shrinkage of hollow nanoparticles and 2) the formation of segregated bi-metallic nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
4

Murch, Graeme E., Alexander V. Evteev, Elena V. Levchenko, and Irina V. Belova. "Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles." Diffusion fundamentals 11 (2009) 42, S. 1-22, 2009. https://ul.qucosa.de/id/qucosa%3A13998.

Full text
Abstract:
In this paper, we review the recent understanding gained by kinetic Monte Carlo and molecular dynamics simulation and related theory of the diffusion processes involved in 1) the formation and later shrinkage of hollow nanoparticles and 2) the formation of segregated bi-metallic nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Shareef, Reem A. "Design of supported bi-metallic nanoparticles based on Platinum and Palladium using Surface Organometallic Chemistry (SOMC)." Diss., 2017. http://hdl.handle.net/10754/626268.

Full text
Abstract:
Well-defined silica supported bimetallic catalysts Pt100-x Pdx (where x is the molar ratio of Pd) are prepared by Surface Organometallic Chemistry (SOMC) via controlled decomposition of Pd2(allyl)2Cl2 on Pt/SiO2. For comparison purposes, Pt100-x Pdx bimetallic catalysts is also prepared by ion-exchange (IE). According to the results of STEM, XAS and H2 chemisorption, all bimetallic nanoparticles, prepared using neither SOMC nor IE, produce discrete formation of monometallic species (either Pt or Pd). Most catalysts exhibit a narrow particle size distribution with an average diameter ranging from 1 to 3 nm for samples prepared by IE and from 2 to 5 nm for the ones synthesized by SOMC. For all catalysts investigated in the present work, iso-butane reaction with hydrogen under differential conditions (conversions below 5%) leads to the formation of methane and propane (hydrogenolysis), n-butane (isomerization), and traces of iso-butylene (dehydrogenation). The total rate of reaction decreases with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate (expressed as moles converted per total surface metal per second) of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the results suggest a selective coverage of Pt (100) surface by a Pd layer, followed by a buildup of Pd overcoat onto a Pd layer assuming that each metal keeps its intrinsic catalytic properties. There is no mutual electronic charge transfer between the two metals (DFT). For the PtPd catalysts prepared by IE, the catalytic behavior cannot simply be explained by a surface coverage of highly active Pt metal by less active Pd (not observed), suggesting there is formation of a surface alloy between Pt and Pd collaborated by EXAFS and DFT. The catalytic results are explained by a simple structure activity relationship based on the previously proposed mechanism of C-H bond and C-C Bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bi-metallic nanoparticles"

1

Steinbrück, Andrea, Andrea Csáki, Grit Festag, Thomas Schüler, and Wolfgang Fritzsche. "Preparation and optical characterization of core-shell bi-metallic nanoparticles." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ecbo.2007.6633_90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steinbrück, Andrea, Andrea Csáki, Grit Festag, Thomas Schüler, and Wolfgang Fritzsche. "Preparation and optical characterization of core-shell bi-metallic nanoparticles." In European Conference on Biomedical Optics, edited by Jürgen Popp and Gert von Bally. SPIE, 2007. http://dx.doi.org/10.1117/12.728625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Subhan, Abdul, Abdel-Hamid I. Mourad, and Subhra Das. "Pulsed Laser Synthesis of Bi-Metallic Nanoparticles for Biomedical Applications: A Review." In 2022 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, 2022. http://dx.doi.org/10.1109/aset53988.2022.9735057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Avşar, Dilan, Hakan Erturk, and M. Pinar Menguc. "ABSORPTION AND PLASMON RESONANCE OF BI-METALLIC CORE-SHELL NANOPARTICLES ON A DIELECTRIC SUBSTRATE." In Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19. Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/rad-19.440.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bi-metallic nanoparticles"

1

Der Garabedian, Nicholas, Kiyo Fujimoto, and Kennalee Orme. Bi-metallic Nanoparticle Synthesis for Advanced Manufactured Melt Wires. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1880069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography