Journal articles on the topic 'Bézier triangles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 34 journal articles for your research on the topic 'Bézier triangles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Goldman, Ronald N., and Daniel J. Filip. "Conversion from Bézier rectangles to Bézier triangles." Computer-Aided Design 19, no. 1 (January 1987): 25–27. http://dx.doi.org/10.1016/0010-4485(87)90149-7.
Full textPrautzsch, H. "On convex Bézier triangles." ESAIM: Mathematical Modelling and Numerical Analysis 26, no. 1 (1992): 23–36. http://dx.doi.org/10.1051/m2an/1992260100231.
Full textLee, Chang-Ki, Hae-Do Hwang, and Seung-Hyun Yoon. "Bézier Triangles with G2 Continuity across Boundaries." Symmetry 8, no. 3 (March 15, 2016): 13. http://dx.doi.org/10.3390/sym8030013.
Full textYan, Lanlan. "Construction Method of Shape Adjustable Bézier Triangles." Chinese Journal of Electronics 28, no. 3 (May 1, 2019): 610–17. http://dx.doi.org/10.1049/cje.2019.03.016.
Full textGregory, John A., and Jianwei Zhou. "Convexity of Bézier nets on sub-triangles." Computer Aided Geometric Design 8, no. 3 (August 1991): 207–11. http://dx.doi.org/10.1016/0167-8396(91)90003-t.
Full textFeng, Yu-Yu. "Rates of convergence of Bézier net over triangles." Computer Aided Geometric Design 4, no. 3 (November 1987): 245–49. http://dx.doi.org/10.1016/0167-8396(87)90016-1.
Full textBelbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." International Journal of Computer Vision and Image Processing 1, no. 2 (April 2011): 42–57. http://dx.doi.org/10.4018/ijcvip.2011040104.
Full textWalz, Guido. "Trigonometric Bézier and Stancu polynomials over intervals and triangles." Computer Aided Geometric Design 14, no. 4 (May 1997): 393–97. http://dx.doi.org/10.1016/s0167-8396(96)00061-1.
Full textFilip, Daniel J. "Adaptive subdivision algorithms for a set of Bézier triangles." Computer-Aided Design 18, no. 2 (March 1986): 74–78. http://dx.doi.org/10.1016/0010-4485(86)90153-3.
Full textHermes, Danny. "Helper for Bézier Curves, Triangles, and Higher Order Objects." Journal of Open Source Software 2, no. 16 (August 2, 2017): 267. http://dx.doi.org/10.21105/joss.00267.
Full textLiu, Zhi, Jie-qing Tan, Xiao-yan Chen, and Li Zhang. "The conditions of convexity for Bernstein–Bézier surfaces over triangles." Computer Aided Geometric Design 27, no. 6 (August 2010): 421–27. http://dx.doi.org/10.1016/j.cagd.2010.05.004.
Full textChang, Hanjiang, Cheng Liu, Qiang Tian, Haiyan Hu, and Aki Mikkola. "Three new triangular shell elements of ANCF represented by Bézier triangles." Multibody System Dynamics 35, no. 4 (June 17, 2015): 321–51. http://dx.doi.org/10.1007/s11044-015-9462-y.
Full textChan, E. S., and B. H. Ong. "Range restricted scattered data interpolation using convex combination of cubic Bézier triangles." Journal of Computational and Applied Mathematics 136, no. 1-2 (November 2001): 135–47. http://dx.doi.org/10.1016/s0377-0427(00)00580-x.
Full textLorente-Pardo, J., P. Sablonnière, and M. C. Serrano-Pérez. "Subharmonicity and convexity properties of Bernstein polynomials and Bézier nets on triangles." Computer Aided Geometric Design 16, no. 4 (May 1999): 287–300. http://dx.doi.org/10.1016/s0167-8396(98)00050-8.
Full textLópez, Jorge, Cosmin Anitescu, Navid Valizadeh, Timon Rabczuk, and Naif Alajlan. "Structural shape optimization using Bézier triangles and a CAD-compatible boundary representation." Engineering with Computers 36, no. 4 (May 31, 2019): 1657–72. http://dx.doi.org/10.1007/s00366-019-00788-z.
Full textBez, H. E. "The invariant functions and invariant-image conditions of the rational Bézier triangles." Applicable Algebra in Engineering, Communication and Computing 23, no. 3-4 (September 21, 2012): 195–205. http://dx.doi.org/10.1007/s00200-012-0174-8.
Full textBastl, Bohumír, Bert Jüttler, Miroslav Lávička, Josef Schicho, and Zbyněk Šír. "Spherical quadratic Bézier triangles with chord length parameterization and tripolar coordinates in space." Computer Aided Geometric Design 28, no. 2 (February 2011): 127–34. http://dx.doi.org/10.1016/j.cagd.2010.11.001.
Full textAbdul Karim, Samsul Ariffin Abdul, Azizan Saaban, and Van Thien Nguyen. "Scattered Data Interpolation Using Quartic Triangular Patch for Shape-Preserving Interpolation and Comparison with Mesh-Free Methods." Symmetry 12, no. 7 (June 30, 2020): 1071. http://dx.doi.org/10.3390/sym12071071.
Full textLiu, Ning, and Ann E. Jeffers. "Feature-preserving rational Bézier triangles for isogeometric analysis of higher-order gradient damage models." Computer Methods in Applied Mechanics and Engineering 357 (December 2019): 112585. http://dx.doi.org/10.1016/j.cma.2019.112585.
Full textWang, Zheng-bin, and Qi-ming Liu. "An improved condition for the convexity and positivity of Bernstein-Bézier surfaces over triangles." Computer Aided Geometric Design 5, no. 4 (November 1988): 269–75. http://dx.doi.org/10.1016/0167-8396(88)90008-8.
Full textYu, Kai-Ming, Yu Wang, and Charlie C. L. Wang. "Smooth geometry generation in additive manufacturing file format: problem study and new formulation." Rapid Prototyping Journal 23, no. 1 (January 16, 2017): 34–43. http://dx.doi.org/10.1108/rpj-06-2015-0067.
Full textChau, Hau Hing, Alison McKay, Christopher F. Earl, Amar Kumar Behera, and Alan de Pennington. "Exploiting lattice structures in shape grammar implementations." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 32, no. 2 (May 2018): 147–61. http://dx.doi.org/10.1017/s0890060417000282.
Full textRiso, Marzia, Giacomo Nazzaro, Enrico Puppo, Alec Jacobson, Qingnan Zhou, and Fabio Pellacini. "BoolSurf." ACM Transactions on Graphics 41, no. 6 (November 30, 2022): 1–13. http://dx.doi.org/10.1145/3550454.3555466.
Full textAlbrecht, Gudrun, and Wendelin L. F. Degen. "Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion." Computer Aided Geometric Design 14, no. 4 (May 1997): 349–75. http://dx.doi.org/10.1016/s0167-8396(97)00002-2.
Full textŠimák, Jan. "A software tool for blade design." EPJ Web of Conferences 269 (2022): 01055. http://dx.doi.org/10.1051/epjconf/202226901055.
Full textLasser, Dieter. "Tensor product Bézier surfaces on triangle Bézier surfaces." Computer Aided Geometric Design 19, no. 8 (October 2002): 625–43. http://dx.doi.org/10.1016/s0167-8396(02)00145-0.
Full textGarnier, Lionel, Lucie Druoton, Jean-Paul Bécar, Laurent Fuchs, and Géraldine Morin. "Subdivisions of Horned or Spindle Dupin Cyclides Using Bézier Curves with Mass Points." WSEAS TRANSACTIONS ON MATHEMATICS 20 (December 31, 2021): 756–76. http://dx.doi.org/10.37394/23206.2021.20.80.
Full textRazdan, Anshuman, and MyungSoo Bae. "Curvature estimation scheme for triangle meshes using biquadratic Bézier patches." Computer-Aided Design 37, no. 14 (December 2005): 1481–91. http://dx.doi.org/10.1016/j.cad.2005.03.003.
Full textKobayashi, Ken, Naoki Hamada, Akiyoshi Sannai, Akinori Tanaka, Kenichi Bannai, and Masashi Sugiyama. "Bézier Simplex Fitting: Describing Pareto Fronts of´ Simplicial Problems with Small Samples in Multi-Objective Optimization." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 2304–13. http://dx.doi.org/10.1609/aaai.v33i01.33012304.
Full textHongyi, Wu. "Dual functionals of said-bézier type generalized ball bases over triangle domain and their application." Applied Mathematics-A Journal of Chinese Universities 21, no. 1 (March 2006): 96–106. http://dx.doi.org/10.1007/s11766-996-0028-x.
Full textShafieipour, Mohammad, Jonatan Aronsson, Ian Jeffrey, Chen Nui, and Vladimir I. Okhmatovski. "On New Triangle Quadrature Rules for the Locally Corrected Nyström Method Formulated on NURBS-Generated Bézier Surfaces in 3-D." IEEE Transactions on Antennas and Propagation 64, no. 7 (July 2016): 3027–38. http://dx.doi.org/10.1109/tap.2016.2560958.
Full textBarroso, Elias Saraiva, John Andrew Evans, Joaquim Bento Cavalcante-Neto, Creto Augusto Vidal, and Evandro Parente. "An efficient automatic mesh generation algorithm for planar isogeometric analysis using high-order rational Bézier triangles." Engineering with Computers, February 9, 2022. http://dx.doi.org/10.1007/s00366-022-01613-w.
Full textPeters, Jörg, Kyle Shih-Huang Lo, and Kȩstutis Karčiauskas. "Algorithm ⋆: Bi-cubic splines for polyhedral control nets." ACM Transactions on Mathematical Software, October 31, 2022. http://dx.doi.org/10.1145/3570158.
Full textKapl, Mario, Giancarlo Sangalli, and Thomas Takacs. "A family of C1 quadrilateral finite elements." Advances in Computational Mathematics 47, no. 6 (November 3, 2021). http://dx.doi.org/10.1007/s10444-021-09878-3.
Full text