Academic literature on the topic 'Bézier triangles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bézier triangles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bézier triangles"

1

Goldman, Ronald N., and Daniel J. Filip. "Conversion from Bézier rectangles to Bézier triangles." Computer-Aided Design 19, no. 1 (January 1987): 25–27. http://dx.doi.org/10.1016/0010-4485(87)90149-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prautzsch, H. "On convex Bézier triangles." ESAIM: Mathematical Modelling and Numerical Analysis 26, no. 1 (1992): 23–36. http://dx.doi.org/10.1051/m2an/1992260100231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Chang-Ki, Hae-Do Hwang, and Seung-Hyun Yoon. "Bézier Triangles with G2 Continuity across Boundaries." Symmetry 8, no. 3 (March 15, 2016): 13. http://dx.doi.org/10.3390/sym8030013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yan, Lanlan. "Construction Method of Shape Adjustable Bézier Triangles." Chinese Journal of Electronics 28, no. 3 (May 1, 2019): 610–17. http://dx.doi.org/10.1049/cje.2019.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gregory, John A., and Jianwei Zhou. "Convexity of Bézier nets on sub-triangles." Computer Aided Geometric Design 8, no. 3 (August 1991): 207–11. http://dx.doi.org/10.1016/0167-8396(91)90003-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feng, Yu-Yu. "Rates of convergence of Bézier net over triangles." Computer Aided Geometric Design 4, no. 3 (November 1987): 245–49. http://dx.doi.org/10.1016/0167-8396(87)90016-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Belbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." International Journal of Computer Vision and Image Processing 1, no. 2 (April 2011): 42–57. http://dx.doi.org/10.4018/ijcvip.2011040104.

Full text
Abstract:
This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has one parametric equation, two implicit equations, and a set of circular lines of curvature. The authors use the properties of these surfaces to prove that three families of circles (meridian arcs, parallel arcs, and Villarceau circles) can be computed on every Dupin cyclide. A geometric algorithm to compute these circles so that they define the edges of a 3D triangle on the Dupin cyclide is presented. Examples of conversions and 3D triangles are also presented to illustrate the proposed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
8

Walz, Guido. "Trigonometric Bézier and Stancu polynomials over intervals and triangles." Computer Aided Geometric Design 14, no. 4 (May 1997): 393–97. http://dx.doi.org/10.1016/s0167-8396(96)00061-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Filip, Daniel J. "Adaptive subdivision algorithms for a set of Bézier triangles." Computer-Aided Design 18, no. 2 (March 1986): 74–78. http://dx.doi.org/10.1016/0010-4485(86)90153-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hermes, Danny. "Helper for Bézier Curves, Triangles, and Higher Order Objects." Journal of Open Source Software 2, no. 16 (August 2, 2017): 267. http://dx.doi.org/10.21105/joss.00267.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bézier triangles"

1

BOSCHIROLI, MARIA ALESSANDRA. "Local parametric bézier interpolants for triangular meshes: from polynomial to rational schemes." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/27853.

Full text
Abstract:
Problems of "Reverse Engineering" type are recurrent in Computer Aided (Geometric) Design (CA(G)D) and in computer graphics, in general. They consist in the reconstruction of objects from point clouds. In computer graphics, for visualisation purposes, for example, the existing solutions consist in triangulating the point data and then fitting them with planar triangles. The object is thus approximated by a piecewise linear surface, which is only C0 continuous. In order to obtain a smooth aspect a huge amount of triangles is necessary. Triangular meshes are widely used because they are sufficiently general to represent surfaces of arbitrary genus. The goal of this thesis, after having acquired an overview of the existing literature, was to present a scattered data interpolation method by means of polynomial and rational parametric surfaces in Bézier form of the lowest possible degree. Every method that tries to solve a data fitting problem encounters the same main difficulty: dealing with the smoothness of the surface. To be useful for surface design, a data fitting scheme must produce a smooth surface. After a brief introduction, in chapter 2 we analyse the existing continuous interpolatory curved shape surface schemes. They recently emerged to address specific requirements of the resource-limited hardware environments and to provide smooth surfaces by visually enhancing the resulting C0 surface by using as little information as possible. The bibliographic study allowed us also to analyse what is called vertex consistency problem. This problem is about the limitations involved when constructing G1-continuous surfaces by means of triangular Bézier patches. The G1 methods proposed until now in the literature either bypass the problem or find the way to construct the surface in such a way that it is solvable. In chapter 3, we briefly describe the interesting recently published solutions and we focus our attention on quadratic patches by analysing some particular G1-conditions and describing our first attempts to solve them. Then, in chapter 4 we treat G1 rational blend interpolatory schemes, i.e., those methods that use rational blends to construct the surface avoiding the vertex consistency problem. The study of the existing schemes allowed us to develop a new cubic polynomial Gregory patch. Its generalisation to a rational patch is currently a work in progress. The first results to improve the surface shape of our schemes on arbitrary meshes, preserving its good approximation behaviour and, possibly, keeping its computational cost as low as possible, are shown in chapter 5. Finally, in chapter 6 we conclude summarising and commenting the work presented in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Ubach, de Fuentes Pere-Andreu. "BEST : Bézier-Enhanced Shell Triangle : a new rotation-free thin shell finite element." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670369.

Full text
Abstract:
A new thin shell finite element is presented. This new element doesn’ t have rotational degrees of freedom. Instead, in order to overcome the C1 continuity requirement across elements, the author resorts to enhance the geometric description of the flat triangles of a mesh made out of linear triangles, by means of Bernstein polynomials and triangular Bernstein-Bézier patches. The author estimates the surface normals at the nodes of a mesh of triangles, in order to use them to define the Bernstein-Bézier patches. Ubach, Estruch and García-Espinosa performed a comprehensive statistical comparison of different weighting factors. The conclusion of that work is that the inverse of the area of the circumscribed circle to the triangle and the internal angle of the triangle at the node considered, should be used as weighting factor. Using this new weighting factor, we reduce by about 10% the root mean square error in the estimation of normals of randomly generated surfaces with respect to the previous best weighting factor found in the literature. The author uses the information of the normal vectors at the nodes and the triangular Bernstein-Bézier patches to build cubic Bézier triangles. These cubic Bézier triangles are surface interpolants; C1 continuous at the nodes and C0 continuous across the edges. Owing to this approach, the new element is called Bézier-enhanced shell triangle (BEST). The BEST element takes advantage of all the nodes’ connectivities in each triangle of the mesh. The computation of the normal vectors at the nodes doesn’ t depend on the number of triangles surrounding each node of the mesh. The BEST element is independent from the mesh topology. A new paradigm is presented consisting on the reconstruction of the geometry of a cubic triangular element. This geometric reconstruction exploits the properties of cubic B-spline functions (cubic Bézier triangle). This way, the author builds a conforming continuum-based shell finite element. A cubic Bézier triangle has 30 parameters (3 coordinates for each of the 10 control points). Therefore it needs to apply 30 independent conditions. 15 of these conditions are given directly by the positions of the 3 vertices of the triangle and the orientations of the normal vectors at the 3 vertices. 8 of the remaining conditions are imposed introducing energy minimization considerations. These energy minimization considerations serve also to define a well-posed element. The author defines 3 different reduced problems for the 3 different shell deformation modes: bending deformation, membrane (in-plane extension) deformation and in-plane shear (drilling rotation) deformation. The only degrees of freedom of the BEST element are the vertices’ coordinates (9 variables). The remaining 21 parameters are solved internally. In order to fix the values of these 21 internal parameters, each BEST element solves 9 systems of linear equations of rank 3. The BEST element is successfully applied to the analysis of thin shells in linear and geometrically non-linear regimes using an implicit method. The non-linearity is solved using a Total Lagrangian formulation. The author succeeds at pre-integrating through-the-thickness efficiently and accurately. The through-the-thickness integrals are evaluated just once: at the reference configuration. There are just 14 through-the-thickness scalar integrals to perform for each Gauss point. The numerical examples results show that the BEST element has the potential to achieve cubic convergence. Although they also cast doubts on the possibility of reproducing this result for a wide range of problems. For in-plane shear dominated problems, the formulation used in this thesis only achieves linear convergence. For membrane oriented tests with curvature, the convergence is quadratic. The BEST element exhibits membrane locking behavior. The author suggests exploiting further the drilling rotations kinematics in order to solve membrane locking.
Se presenta un nuevo elemento finito de lámina delgada. Este nuevo elemento no usa rotaciones como grados de libertad. En su lugar, para sortear el requisito de mantener continuidad C1 entre elementos, el autor mejora la descripción geométrica de los triángulos planos de una malla de triángulos lineales, por medio de polinomios de Bernstein y particiones triangulares de Bernstein-Bézier. Para definir las particiones de Bernstein-Bézier, el autor estima las normales a la superficie en los nodos de una malla de triángulos. Ubach, Estruch y García-Espinosa hicieron una comparación estadística exhaustiva entre distintos factores de ponderación. La conclusión de dicho trabajo conduce a usar como factor de ponderación: el inverso del área de la circunferencia circunscrita al triángulo y el ángulo interno del triángulo en el nodo considerado. Con este nuevo factor de ponderación, se reduce en aproximadamente un 10% el error medio cuadrático cometido en la estimación de las normales de superficies generadas aleatoriamente, respecto del mejor factor usado previamente en la literatura. Con la información de los vectores normales en los nodos, el autor construye triángulos cúbicos de Bézier. Estos triángulos cúbicos de Bézier interpolan la superficie; con continuidad C1 en los nodos y C0 en las aristas. En virtud a este planteamiento, el nuevo elemento recibe el nombre de BEST. El elemento BEST aprovecha todas las conectividades nodales de cada triángulo de la malla. El número de triángulos que rodean cada nodo de la malla no afecta al cálculo de los vectores normales. El elemento BEST es independiente de la topología de la malla. Se propone un nuevo paradigma que consiste en reconstruir la geometría de un elemento triangular cúbico. Esta reconstrucción geométrica aprovecha las propiedades de las funciones cúbicas B-spline (triángulo cúbico de Bézier). Así, el autor crea un elemento de lámina conforme basado en el continuo. Un triángulo cúbico de Bézier tiene 30 parámetros (3 coordenadas para cada uno de los 10 puntos de control). Es necesario aplicar 30 condiciones independientes. 15 de estas condiciones se deducen de la posición de los 3 vértices del triángulo y de los vectores normales en los 3 vértices. De las otras 15 condiciones, 8 se obtienen a partir de criterios de minimización de la energía. Estos criterios de minimización de la energía sirven para definir un elemento bien planteado. El autor desarrolla 3 problemas reducidos para los 3 modos de deformación de la lámina: deformación de flexión, de membrana (extensión en el plano) y de cortante en el plano (rotación de taladro). Los únicos grados de libertad del elemento BEST son las posiciones de los vértices (9 variables). Los otros 21 parámetros se resuelven internamente. Para obtener estos 21 parámetros internos, hay que resolver 9 sistemas de ecuaciones lineales de rango 3 para cada elemento BEST. Se ha aplicado el elemento BEST con éxito al cálculo de láminas delgadas en régimen lineal y geométricamente no-lineal con un método implícito. La no-linealidad se plantea con una formulación Lagrangiana total. Se demuestra cómo pre-integrar en el espesor de manera eficiente y precisa. Solo es preciso evaluar las integrales en el espesor una vez: en la configuración de referencia. Solo hay 14 integrales escalares en el espesor para cada punto de Gauss. Los ejemplos numéricos muestran que el elemento BEST tiene potencial para converger cúbicamente. Pero también existen dudas sobre la capacidad de reproducir de manera consistente este resultado en un amplio rango de problemas. En problemas dominados por la deformación de cortante en el plano, la formulación utilizada en esta tesis solo alcanza convergencia lineal. En ejemplos orientados a la deformación de membrana que incluyen curvatura, la convergencia es cuadrática. El elemento BEST sufre de bloqueo por membrana. El autor sugiere desarrollar más profundamente la cinemática de las rotaciones de taladro para resolver el bloqueo por membrana.
Es presenta un nou element finit de làmina prima. Aquest nou element no fa servir rotacions com a graus de llibertat. Enlloc d'això, per esquivar el requisit de mantenir continuïtat C1 entre els elements, l'autor millora la descripció geomètrica dels triangles plans d'una malla de triangles lineals, mitjançant polinomis de Bernstein i particions triangulars de Bernstein-Bézier.Per definir les particions de Bernstein-Bézier, l'autor estima les normals a la superfície en els nodes d'una malla de triangles. Ubach, Estruch i García-Espinosa varen fer una comparació estadística exhaustiva entre diferents factors de ponderació. La conclusió d'aquest treball condueix a fer servir com a factor de ponderació: l'invers de l'àrea de la circumferència circumscrita al triangle i l'angle intern del triangle en el node considerat. Amb aquest nou factor de ponderació, es redueix aproximadament en un 10% l'error quadràtic mig comès en l'estimació de les normals de superfícies generades aleatòriament, respecte del millor factor usat prèviament a la literatura.Amb la informació dels vectors normals en els nodes, l'autor construeix triangles cúbics de Bézier. Aquests triangles cúbics de Bézier interpolen la superfície; amb continuïtat C1 als nodes i C0 a les arestes. En virtut d'aquest plantejament, el nou element rep el nom de BEST (Bézier-enhanced shell triangle).L'element BEST aprofita totes les connectivitats nodals de cada triangle de la malla. El nombre de triangles que envolten cada node de la malla no afecta al càlcul dels vectors normals. L'element BEST és independent de la topologia de la malla.Es proposa un nou paradigma que consisteix en reconstruir la geometria d'un element triangular cúbic. Aquesta reconstrucció geomètrica aprofita les propietats de les funcions cúbiques B-spline (triangle cúbic de Bézier). D'aquesta manera l'autor crea un element de làmina que és conforme i basat en el continu.Un triangle cúbic de Bézier té 30 paràmetres (3 coordenades per cadascun dels 10 punts de control). Cal aplicar 30 condicions independents. 15 d'aquestes condicions es dedueixen de la posició dels 3 vèrtexs del triangle i dels vectors normals en els 3 vèrtexs.De les 15 condicions restants, 8 s'obtenen a partir de criteris de minimització de l'energia. Aquests criteris de minimització de l'energia serveixen per definir un element ben plantejat. L'autor desenvolupa 3 problemes reduïts per als 3 modes de deformació de la làmina: deformació de flexió, de membrana (extensió en el pla) i de tallant en el pla (rotació de barrina).Els únics graus de llibertat de l'element BEST són les posicions dels vèrtexs (9 variables). Els altres 21 paràmetres es resolen internament. Per obtenir aquests 21 paràmetres interns, cal resoldre 9 sistemes d'equacions lineals de rang 3 per cada element BEST.S'ha aplicat l'element BEST amb èxit al càlcul de làmines primes en règim lineal i geomètricament no-lineal fent servir un mètode implícit. La no-linealitat es planteja amb una formulació Lagrangiana total. Es demostra com es pot pre-integrar a través del gruix de manera eficient i precisa. Només cal avaluar les integrals a través del gruix un cop: a la configuració de referència. Només hi ha 14 integrals escalars a través del gruix per a cada punt de Gauss. Els exemples numèrics mostren que l'element BEST té potencial per convergir cúbicament. Però també hi ha dubtes de que aquest resultat es pugui reproduir de manera consistent per un ventall ampli de problemes. En problemes dominats per la deformació de tallant en el pla, la formulació emprada en aquesta tesi només assoleix convergència lineal. En exemples orientats a la deformació de membrana que incloguin curvatura, la convergència és quadràtica. L'element BEST pateix de bloqueig per membrana. L'autor suggereix desenvolupar en més profunditat la cinemàtica de les rotacions de barrina per resoldre el bloqueig per membrana.
APA, Harvard, Vancouver, ISO, and other styles
3

Morávek, Andrej. "Geomorfologická interpolace vrstevnic nad nepravidelnou trojúhelníkovou sítí." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-306708.

Full text
Abstract:
The aim of this master thesis is to create an application to generate smooth contours with the method of non-linear, so-called geomorphological interpolation over triangulated irregular network using patch technique. The introductory part consists of the state of art in the field of patch modelling and description of georelief in the form of digital terrain models. The core of the work comprises the mathematical background of Bézier triangle patches using barycentric coordinates and interpolation techniques with definition of continuity. The main contribution is a proper algorithm of balanced patch smoothing in order to generate smooth contours as form of georelief representation. Description of linear contour interpolation over triangulated irregular network as a method of indirect geomorphological interpolation is also part of the core. Finally, the last part describes the implementation of algorithms that forms the application, presents and evaluates the results on synthetic and real data.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bézier triangles"

1

Reiter, Jesse Chain. Textured surface modeling using Bézier triangles. Ottawa: National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bézier triangles"

1

Farin, Gerald. "Bézier Triangles." In Curves and Surfaces for CAGD, 309–33. Elsevier, 2002. http://dx.doi.org/10.1016/b978-155860737-8/50017-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Farin, Gerald. "Bézier Triangles." In Curves and Surfaces for Computer-Aided Geometric Design, 321–51. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-249052-1.50023-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Farin, Gerald. "Practical Aspects of Bézier Triangles." In Curves and Surfaces for CAGD, 335–47. Elsevier, 2002. http://dx.doi.org/10.1016/b978-155860737-8/50018-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lischinski, Dani. "Converting Rectangular Patches into Bézier Triangles." In Graphics Gems, 278–85. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-12-336156-1.50037-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lischinski, Dani. "CONVERTING BÉZIER TRIANGLES INTO RECTANGULAR PATCHES." In Graphics Gems III (IBM Version), 256–61. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-050755-2.50058-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belbis, Bertrand, Lionel Garnier, and Sebti Foufou. "Construction of 3D Triangles on Dupin Cyclides." In Intelligent Computer Vision and Image Processing, 113–27. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-3906-5.ch009.

Full text
Abstract:
This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has one parametric equation, two implicit equations, and a set of circular lines of curvature. The authors use the properties of these surfaces to prove that three families of circles (meridian arcs, parallel arcs, and Villarceau circles) can be computed on every Dupin cyclide. A geometric algorithm to compute these circles so that they define the edges of a 3D triangle on the Dupin cyclide is presented. Examples of conversions and 3D triangles are also presented to illustrate the proposed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
7

Seidel, H. P. "A General Subdivision Theorem for Bézier Triangles." In Mathematical Methods in Computer Aided Geometric Design, 573–81. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-460515-2.50046-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lischinski, Dani. "CONVERTING BÉZIER TRIANGLES INTO RECTANGULAR PATCHES: (page 256)." In Graphics Gems III (IBM Version), 536–37. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-08-050755-2.50117-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Foley, Thomas A., and Karsten Opitz. "Hybrid Cubic Bézier Triangle Patches." In Mathematical Methods in Computer Aided Geometric Design II, 275–86. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-12-460510-7.50024-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bézier triangles"

1

Wang, Cunfu, Songtao Xia, Xilu Wang, and Xiaoping Qian. "Isogeometric Shape Optimization on Triangulations." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59611.

Full text
Abstract:
The paper presents an isogeometric shape optimization method that is based on Bézier triangles. Bézier triangles are used to represent both the geometry and physical fields. For a given physical domain defined by B-spline boundary, triangular Bézier parameterization can be automatically generated. This shape optimization method is thus applicable to structures of complex topology. Due to the use of B-spline parameterization of the boundary, the optimized shape can be compactly represented with a relatively small number of optimization variables. In order to ensure mesh validity during shape optimization, we adopt a bi-level mesh representation, where the coarse mesh is used to maintain mesh quality through positivity of Jacobian ordinates of the Bézier triangles. The fine mesh is used in isogeometric analysis for numerical accuracy. Numerical examples are presented to demonstrate the efficacy of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
2

Morera, Dimas Martínez, Paulo Cezar Carvalho, and Luiz Velho. "Geodesic Bézier curves on triangle meshes." In ACM SIGGRAPH 2006 Research posters. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1179622.1179723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Yang, and Elaine Cohen. "Making Trimmed B-Spline B-Reps Watertight With a Hybrid Representation." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97485.

Full text
Abstract:
Abstract Watertightness is an important property for CAD models, yet it is not generally available in commercial systems. This paper introduces watertight hybrid B-spline based B-reps that maintain the original parameterization and representation except in narrow regions around trimming curves, where Bézier triangle type regions seal the model. The new representation matches the model space trimming curve exactly. It can be discretized for analysis and fabrication in a straightforward manner without requiring any post modeling repair operations. We apply this representation to mechanical models and more sculptured models to demonstrate small parametric distortion and arbitrarily small geometric error.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography