Journal articles on the topic 'Bessel–Gauss beams'

To see the other types of publications on this topic, follow the link: Bessel–Gauss beams.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Bessel–Gauss beams.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gori, F., G. Guattari, and C. Padovani. "Bessel-Gauss beams." Optics Communications 64, no. 6 (December 1987): 491–95. http://dx.doi.org/10.1016/0030-4018(87)90276-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bagini, V., F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo. "Generalized Bessel-Gauss beams." Journal of Modern Optics 43, no. 6 (June 1996): 1155–66. http://dx.doi.org/10.1080/09500349608232794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bagini, V. "Generalized Bessel - Gauss beams." Journal of Modern Optics 43, no. 6 (January 1, 1996): 1155–66. http://dx.doi.org/10.1080/095003496155472.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borghi, Riccardo, Massimo Santarsiero, and Miguel A. Porras. "Nonparaxial Bessel–Gauss beams." Journal of the Optical Society of America A 18, no. 7 (July 1, 2001): 1618. http://dx.doi.org/10.1364/josaa.18.001618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kotlyar, V. V., A. A. Kovalev, R. V. Skidanov, and V. A. Soifer. "Asymmetric Bessel–Gauss beams." Journal of the Optical Society of America A 31, no. 9 (August 11, 2014): 1977. http://dx.doi.org/10.1364/josaa.31.001977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Chaohong, Yishu Zheng, and Hanqing Li. "Noncoaxial Bessel–Gauss beams." Journal of the Optical Society of America A 33, no. 4 (March 9, 2016): 508. http://dx.doi.org/10.1364/josaa.33.000508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herman, R. M., and T. A. Wiggins. "Propagation and focusing of Bessel–Gauss, generalized Bessel–Gauss, and modified Bessel–Gauss beams." Journal of the Optical Society of America A 18, no. 1 (January 1, 2001): 170. http://dx.doi.org/10.1364/josaa.18.000170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Madhi, Daena, Marco Ornigotti, and Andrea Aiello. "Cylindrically polarized Bessel–Gauss beams." Journal of Optics 17, no. 2 (January 9, 2015): 025603. http://dx.doi.org/10.1088/2040-8978/17/2/025603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Myun-Sik, Toralf Scharf, Alberto da Costa Assafrao, Carsten Rockstuhl, Silvania F. Pereira, H. Paul Urbach, and Hans Peter Herzig. "Phase anomalies in Bessel-Gauss beams." Optics Express 20, no. 27 (December 12, 2012): 28929. http://dx.doi.org/10.1364/oe.20.028929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Palma, C., G. Cincotti, G. Guattari, and M. Santarsiero. "Imaging of generalized Bessel-Gauss beams." Journal of Modern Optics 43, no. 11 (November 1996): 2269–77. http://dx.doi.org/10.1080/09500349608232885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nairat, Mazen. "Axial Angular Momentum of Bessel Light." Photonics Letters of Poland 10, no. 1 (March 31, 2018): 23. http://dx.doi.org/10.4302/plp.v10i1.787.

Full text
Abstract:
Both linear and angular momentum densities of Bessel, Gaussian-Bessel, and Hankel-Bessel lasers are determined. Angular momentum of the three Bessel beams is illustrated at linear and circular polarization. Axial Angular momentum is resolved in particular interpretation: the harmonic order of the physical light momentum. Full Text: PDF ReferencesG. Molina-Terriza, J. Torres, and L. Torner, "Twisted photons", Nature Physics 3, 305 - 310 (2007). CrossRef J Arlt, V Garces-Chavez, W Sibbett, and K Dholakia "Optical micromanipulation using a Bessel light beam", Opt. Commun., 197, 4-6, (2001). CrossRef L. Ambrosio and H. Hernández-Figueroa, "Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime", Opt Exp, 18, 23 (2010). CrossRef I. Litvin, A. Dudley and A. Forbes, "Poynting vector and orbital angular momentum density of superpositions of Bessel beams", Opt Exp, 19, 18 (2011). CrossRef K Volke-Sepulveda, V Garcés-Chávez, S Chávez-Cerda, J Arlt and K Dholakia "Orbital angular momentum of a high-order Bessel light beam" , JOP B 4 (2). 2002. CrossRef M. Verma, S. Pal, S. Joshi, P. Senthilkumaran, J. Joseph, and H Kandpal, "Singularities in cylindrical vector beams", Jou. of Mod. Opt., 62 (13), 2015. CrossRef R. Borghi, M. Santarsiero, and M. Porras, "Nonparaxial Bessel?Gauss beams", J. Opt. Soc. Am. A, 18 (7) (2011). CrossRef L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes", Phys Rev A, 45 (11): 8185-8189 (1992). CrossRef D. Mcglion and K. Dholakia, "Bessel beams: diffraction in a new light", Cont. Phys, 46(1) 15 ? 28. (2005). CrossRef F. Gori, G. Guattari and C. Padovani," Bessel-Gauss Beams", Opt. Commun., 64, 491, (1987). CrossRef V. Kotlyar, A. Kovalev, and A. Soifer, "Hankel?Bessel laser beams" J. Opt. Soc. Am. A, 29 (5) (2012). CrossRef L. Allen and M. Babiker "Spin-orbit coupling in free-space Laguerre-Gaussian light beams", Phys. Rev. A 53, R2937. CrossRef
APA, Harvard, Vancouver, ISO, and other styles
12

Porras, Miguel A., Riccardo Borghi, and Massimo Santarsiero. "Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams." Journal of the Optical Society of America A 18, no. 1 (January 1, 2001): 177. http://dx.doi.org/10.1364/josaa.18.000177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cincotti, Gabriella, Alessandro Ciattoni, and Claudio Palma. "Laguerre–Gauss and Bessel–Gauss beams in uniaxial crystals." Journal of the Optical Society of America A 19, no. 8 (August 1, 2002): 1680. http://dx.doi.org/10.1364/josaa.19.001680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Alkelly, Abdu A., and Labiba F. Hassan. "Coherence Properties and Intensity Distribution of a Partially Coherent Lorentz–Gauss Beam Emerging from the Axicon." International Journal of Optics 2021 (December 31, 2021): 1–11. http://dx.doi.org/10.1155/2021/3310047.

Full text
Abstract:
The propagation of a partially Lorentz–Gauss beam in a uniform-intensity diffractive axicon is studied according to the Huygens–Fresnel principle, the Hermite–Gaussian expansion of a Lorentz function, and using the stationary phase method. We have derived the intensity equation of a partially coherent Lorentz-Gauss beams propagating through uniform-intensity diffractive axicon, and we proved mathematically that it is the superposition of Bessel beams of various orders after emerging from axicon, using Hermite’s function series and the Bessel function integral formulas. The results show that the intensity distribution of the diffracted beam is the intensity pattern evolved from a Lorentz–Gauss shaped spot into a Gaussian-shaped spot at any position on the focal length of the axicon, and the intensity distribution of a partially Lorentz–Gauss beam generated by an axicon becomes uniform by increasing the beam width and more uniform and constant with the larger coherence width.
APA, Harvard, Vancouver, ISO, and other styles
15

Fuscaldo, Walter, Alessio Benedetti, Davide Comite, Paolo Burghignoli, Paolo Baccarelli, and Alessandro Galli. "Microwave synthesis of Bessel, Bessel–Gauss, and Gaussian beams: a fully vectorial electromagnetic approach." International Journal of Microwave and Wireless Technologies 13, no. 6 (February 17, 2021): 509–16. http://dx.doi.org/10.1017/s1759078720001798.

Full text
Abstract:
AbstractBessel, Bessel-Gauss, and Gaussian beams have widely been investigated in optics in the paraxial approximation, under the frame of a scalar wave theory. Such approximations can hardly be applied in the microwave/millimeter-wave range, where the vectorial nature of the electromagnetic fields cannot be neglected, and experimental realizations for some of these beams appeared only recently. In this work, we discuss the generation of Bessel, Bessel-Gauss, and Gaussian beams through a fully vectorial electromagnetic approach. The field derivation of all these beams is first illustrated and numerical evaluations are then reported to compare their different propagation and diffractive behaviors. Finally, an innovative approach for realizing such solutions with planar microwave devices exploiting leaky waves is demonstrated through accurate numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
16

Palma, Claudio. "Decentered Gaussian beams, ray bundles, and Bessel–Gauss beams." Applied Optics 36, no. 6 (February 20, 1997): 1116. http://dx.doi.org/10.1364/ao.36.001116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mendoza-Hernández, Job, Maximino Luis Arroyo-Carrasco, Marcelo David Iturbe-Castillo, and Sabino Chávez-Cerda. "Laguerre–Gauss beams versus Bessel beams showdown: peer comparison." Optics Letters 40, no. 16 (August 5, 2015): 3739. http://dx.doi.org/10.1364/ol.40.003739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zeng-Hui, Gao, and Lü Bai-Da. "Partially coherent nonparaxial modified Bessel–Gauss beams." Chinese Physics 15, no. 2 (January 16, 2006): 334–39. http://dx.doi.org/10.1088/1009-1963/15/2/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ding, Desheng, Shanjin Wang, and Yaojun Wang. "Nonlinear propagation of Bessel–Gauss ultrasonic beams." Journal of Applied Physics 86, no. 3 (August 1999): 1716–23. http://dx.doi.org/10.1063/1.370952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Seshadri, S. R. "Scalar modified Bessel-Gauss beams and waves." Journal of the Optical Society of America A 24, no. 9 (2007): 2837. http://dx.doi.org/10.1364/josaa.24.002837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Seshadri, S. R. "Electromagnetic modified Bessel-Gauss beams and waves." Journal of the Optical Society of America A 25, no. 1 (December 3, 2007): 1. http://dx.doi.org/10.1364/josaa.25.000001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nesrallah, M., G. Bart, and T. Brabec. "Kerr instability amplification of Bessel–Gauss beams." Journal of the Optical Society of America B 36, no. 9 (August 22, 2019): 2552. http://dx.doi.org/10.1364/josab.36.002552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Bin, and Baida Lü. "Coherent-mode decomposition of Bessel–Gauss beams." Journal of the Optical Society of America A 16, no. 6 (June 1, 1999): 1413. http://dx.doi.org/10.1364/josaa.16.001413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Borghi, R., and M. Santarsiero. "M^2 factor of Bessel–Gauss beams." Optics Letters 22, no. 5 (March 1, 1997): 262. http://dx.doi.org/10.1364/ol.22.000262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Xie, Chen, Remo Giust, Vytautas Jukna, Luca Furfaro, Maxime Jacquot, Pierre-Ambroise Lacourt, Luc Froehly, John Dudley, Arnaud Couairon, and Francois Courvoisier. "Light trajectory in Bessel–Gauss vortex beams." Journal of the Optical Society of America A 32, no. 7 (June 18, 2015): 1313. http://dx.doi.org/10.1364/josaa.32.001313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ling, Dongxiong, and Junchang Li. "Phase-conjugating resonator for Bessel-Gauss beams." Journal of the Optical Society of America B 23, no. 8 (August 1, 2006): 1574. http://dx.doi.org/10.1364/josab.23.001574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Grunwald, R., M. Bock, V. Kebbel, S. Huferath, U. Neumann, G. Steinmeyer, G. Stibenz, J. L. Néron, and M. Piché. "Ultrashort-pulsed truncated polychromatic Bessel-Gauss beams." Optics Express 16, no. 2 (2008): 1077. http://dx.doi.org/10.1364/oe.16.001077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zahid, M., and M. S. Zubairy. "Directionality of partially coherent Bessel-Gauss beams." Optics Communications 70, no. 5 (April 1989): 361–64. http://dx.doi.org/10.1016/0030-4018(89)90131-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lü, Baida, and Wenlong Huang. "Focal shift in unapertured Bessel-Gauss beams." Optics Communications 109, no. 1-2 (June 1994): 43–46. http://dx.doi.org/10.1016/0030-4018(94)90735-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lina Guo, Lina Guo, and Zhilie Tang Zhilie Tang. "Vectorial structure and beam quality of vector-vortex Bessel–Gauss beams in the farfield." Chinese Optics Letters 10, s1 (2012): S12601–312604. http://dx.doi.org/10.3788/col201210.s12601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kotlyar, V. V., A. A. Kovalev, D. S. Kalinkina, and E. S. Kozlova. "Fourier-Bessel beams of finite energy." Computer Optics 45, no. 4 (July 2021): 506–11. http://dx.doi.org/10.18287/2412-6179-co-864.

Full text
Abstract:
In this paper, we consider a new type of Bessel beams having Fourier-invariance property and, therefore, called Fourier-Bessel beams. In contrast to the known Bessel beams, these beams have weak side lobes. Analytical expressions for the complex amplitude of the proposed field in the initial plane of the source and in the far field region have been obtained. It is shown that the proposed Fourier-Bessel beams have a finite energy, although they do not have a Gaussian envelope. Their complex amplitude is proportional to a fractional-order Bessel function (an odd integer divided by 6) in the initial plane and in the Fraunhofer zone. The Fourier-Bessel modes have a smaller internal dark spot compared to the Laguerre-Gauss modes with a zero radial index. The proposed beams can be generated with a spatial light modulator and may find uses in telecommunications, interferometry, and the capture of metal microparticles.
APA, Harvard, Vancouver, ISO, and other styles
32

Bao-Suan, Chen, and Pu Ji-Xiong. "Propagation of Gauss–Bessel beams in turbulent atmosphere." Chinese Physics B 18, no. 3 (March 2009): 1033–39. http://dx.doi.org/10.1088/1674-1056/18/3/032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

El Gawhary, Omar, and Sergio Severini. "On the nonparaxial corrections of Bessel-Gauss beams." Journal of the Optical Society of America A 27, no. 3 (February 23, 2010): 458. http://dx.doi.org/10.1364/josaa.27.000458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Greene, Pamela L., and Dennis G. Hall. "Properties and diffraction of vector Bessel–Gauss beams." Journal of the Optical Society of America A 15, no. 12 (December 1, 1998): 3020. http://dx.doi.org/10.1364/josaa.15.003020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ding, Desheng, and Xiaojun Liu. "Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture." Journal of the Optical Society of America A 16, no. 6 (June 1, 1999): 1286. http://dx.doi.org/10.1364/josaa.16.001286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Acevedo, Cristian Hernando, Carlos Fernando Díaz, and Yezid Torres-Moreno. "Determination of the topological charge of a bessel-gauss beam using the diffraction pattern through of an equilateral aperture." DYNA 82, no. 190 (May 11, 2015): 214–20. http://dx.doi.org/10.15446/dyna.v82n190.43965.

Full text
Abstract:
The topological charge TC of an electromagnetic wave is relate with their wavefront spatial distribution. Electromagnetic waves with factor azimuthal exp(ilθ) in its phase, have TC integer (l=m) or non-integer (l=M). These electromagnetic waves with a well-defined of TC can be produced in the visible regime by computer generated holographic masks with fork shaped. In this paper, we study the formed triangle lattice distribution in the intensity Fraunhofer regime using numerical simulations of the Bessel-Gauss beams with integer and non-integer TC. The beam is diffracted by equilateral triangular aperture to measure both their sign and magnitude. In addition, we showed the experimental results of the intensity in far field regime product of diffraction of Bessel-Gauss beams with integer and noninteger TC by the equilateral triangular aperture. Partial and qualitative explanations have been proposed for the diffraction of electromagnetic beams with topological charge. This paper presents a complete analysis for qualitative and quantitative explanation of diffraction of a beam with topological charge by a triangular aperture. The results of such diffraction are obtained by numerical simulation or experimentally.
APA, Harvard, Vancouver, ISO, and other styles
37

Ma Xiubo, 马秀波, and 李恩邦 Li Enbang. "Scattering of Unpolarized Bessel-Gauss Beams by a Sphere." Acta Optica Sinica 32, no. 8 (2012): 0829002. http://dx.doi.org/10.3788/aos201232.0829002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jiang Yuesong, 江月松, 张新岗 Zhang Xingang, 欧军 Ou Jun, and 闻东海 Wen Donghai. "Poincaré Sphere Representation for Vector Vortex Bessel-Gauss Beams." Acta Optica Sinica 33, no. 12 (2013): 1226001. http://dx.doi.org/10.3788/aos201333.1226001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lü, Baida, and Wenlong Huang. "Three-dimensional intensity distribution of focused Bessel-Gauss beams." Journal of Modern Optics 43, no. 3 (March 1996): 509–15. http://dx.doi.org/10.1080/09500349608232760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Merx, Sebastian, Johannes Stock, and Herbert Gross. "Fast computation and characterization of perturbed Bessel–Gauss beams." Journal of the Optical Society of America A 36, no. 11 (October 29, 2019): 1892. http://dx.doi.org/10.1364/josaa.36.001892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zahedian, Maryam, Eun Sohl Koh, and Bogdan Dragnea. "Photothermal microspectroscopy with Bessel–Gauss beams and reflective objectives." Applied Optics 58, no. 27 (September 12, 2019): 7352. http://dx.doi.org/10.1364/ao.58.007352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Caron, C. F. R., and R. M. Potvliege. "Phase matching and harmonic generation in Bessel Gauss–beams." Journal of the Optical Society of America B 15, no. 3 (March 1, 1998): 1096. http://dx.doi.org/10.1364/josab.15.001096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Thibon, Louis, Louis E. Lorenzo, Michel Piché, and Yves De Koninck. "Resolution enhancement in confocal microscopy using Bessel-Gauss beams." Optics Express 25, no. 3 (January 26, 2017): 2162. http://dx.doi.org/10.1364/oe.25.002162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Palma, C., and G. Cincotti. "Imaging of J/sub 0/-correlated Bessel-Gauss beams." IEEE Journal of Quantum Electronics 33, no. 6 (June 1997): 1032–40. http://dx.doi.org/10.1109/3.585492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wang, Li, Xiqing Wang, and Baida Lü. "Propagation properties of partially coherent modified Bessel–Gauss beams." Optik 116, no. 2 (March 2005): 65–70. http://dx.doi.org/10.1016/j.ijleo.2004.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Song, Lvbin, Zhijun Ren, Changjiang Fan, and Yixian Qian. "Virtual source for the fractional-order Bessel–Gauss beams." Optics Communications 499 (November 2021): 127307. http://dx.doi.org/10.1016/j.optcom.2021.127307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Doster, Timothy, and Abbie T. Watnik. "Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: analysis of channel efficiency." Applied Optics 55, no. 36 (December 13, 2016): 10239. http://dx.doi.org/10.1364/ao.55.010239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schimpf, Damian N., Jan Schulte, William P. Putnam, and Franz X. Kärtner. "Generalizing higher-order Bessel-Gauss beams: analytical description and demonstration." Optics Express 20, no. 24 (November 14, 2012): 26852. http://dx.doi.org/10.1364/oe.20.026852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sabaeian, M., and H. Nadgaran. "Bessel–Gauss beams: Investigations of thermal effects on their generation." Optics Communications 281, no. 4 (February 2008): 672–78. http://dx.doi.org/10.1016/j.optcom.2007.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Porras, M. A., R. Borghi, and M. Santarsiero. "Few-optical-cycle Bessel-Gauss pulsed beams in free space." Physical Review E 62, no. 4 (October 1, 2000): 5729–37. http://dx.doi.org/10.1103/physreve.62.5729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography