Academic literature on the topic 'Bessel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bessel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bessel"
Novelli, Jean-Christophe, and Jean-Yves Thibon. "Noncommutative Symmetric Bessel Functions." Canadian Mathematical Bulletin 51, no. 3 (September 1, 2008): 424–38. http://dx.doi.org/10.4153/cmb-2008-043-3.
Full textDaher, Radouan, and Mohamed El Hamma. "Bessel Transform of -Bessel Lipschitz Functions." Journal of Mathematics 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/418546.
Full textLenyuk, M. P. "Hybrid integral transformations (Bessel, Legendre, Bessel)." Ukrainian Mathematical Journal 43, no. 6 (June 1991): 719–28. http://dx.doi.org/10.1007/bf01058939.
Full textJoshi, C. M., and S. K. Bissu. "Some inequalities of Bessel and modified Bessel functions." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 50, no. 2 (April 1991): 333–42. http://dx.doi.org/10.1017/s1446788700032791.
Full textIfantis, E. K., and P. D. Siafarikas. "Inequalities involving Bessel and modified Bessel functions." Journal of Mathematical Analysis and Applications 147, no. 1 (March 1990): 214–27. http://dx.doi.org/10.1016/0022-247x(90)90394-u.
Full textNahid, Tabinda, and Mahvish Ali. "Several characterizations of Bessel functions and their applications." Georgian Mathematical Journal 29, no. 1 (October 10, 2021): 83–93. http://dx.doi.org/10.1515/gmj-2021-2108.
Full textSatsanit. "On the Bessel Operator Related to Bessel Wave Equation and Laplace Bessel Equation." Journal of Advanced Research in Applied Mathematics 6, no. 2 (March 1, 2014): 82–98. http://dx.doi.org/10.5373/jaram.1730.041513.
Full textDixit, M. M., C. P. Pandey, and Deepanjan Das. "The continuous generalized wavelet transform associated with q-Bessel operator." Boletim da Sociedade Paranaense de Matemática 41 (December 21, 2022): 1–10. http://dx.doi.org/10.5269/bspm.52810.
Full textHu, X., H. Wang, and D. S. Guo. "Phased Bessel functions." Canadian Journal of Physics 86, no. 7 (July 1, 2008): 863–70. http://dx.doi.org/10.1139/p08-009.
Full textUpadhyay, S. K., Reshma Singh, and Alok Tripathi. "The relation between Bessel wavelet convolution product and Hankel convolution product involving Hankel transform." International Journal of Wavelets, Multiresolution and Information Processing 15, no. 04 (March 21, 2017): 1750030. http://dx.doi.org/10.1142/s0219691317500308.
Full textDissertations / Theses on the topic "Bessel"
Elad, Altman Henri. "Integration by parts formulae for the laws of Bessel bridges, and Bessel stochastic PDEs." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS441.
Full textIn this thesis, we derive integration by parts formulae (IbPF) for the laws of Bessel bridges of dimension δ > 0, thus extending previous formulae obtained by Zambotti in the case δ ≥ 3. This allows us to identify the structure of some stochastic PDEs (SPDEs) having the law of a Bessel bridge of dimension δ < 3 as invariant measure, and which extend in a natural way the family of SPDEs previously considered by Zambotti for δ ≥ 3. We call these equations Bessel SPDEs, and write them using renormalized local times. In the particular cases δ = 1, 2, using Dirichlet forms, we construct a solution to a weak version of these SPDEs. We also provide several partial results suggesting that the SPDEs associated with δ < 3 should have several important properties: strong Feller property, existence of local times. Finally, we consider dynamical critical wetting models, in the discrete and in the continuum, and prove a tightness result. We conjecture that these models have a common limit in law which should be described by the Bessel SPDE associated with δ = 1
Maahs, Ilse [Verfasser], and Hans Rudolf [Akademischer Betreuer] Lerche. "Curved boundary crossing of bessel processes." Freiburg : Universität, 2016. http://d-nb.info/1119717701/34.
Full textDallaire, Michael. "Faisceaux Bessel spatiotemporels : théorie et expérimentation." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29894/29894.pdf.
Full textNoshirvani, Allahabadi Golchehr, and Allahabadi Golchehr Noshirvani. "Bessel Light Sheet Structured Illumination Microscopy." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621810.
Full textDallaire, Michaël. "Faisceaux Bessel spatiotemporels : théorie et expérimentation." Doctoral thesis, Université Laval, 2013. http://hdl.handle.net/20.500.11794/24630.
Full textFay, TH, and PH Kloppers. "The Gibbs’ phenomenon for Fourier–Bessel series." International Journal of Mathematical Education in Science and Technology, 2003. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001984.
Full textOmoefe, Idisi David, and Andrew Forbes. "Creation and detection of Vector Bessel Beams." Thesis, University of Fort Hare, 2016. http://hdl.handle.net/10353/1785.
Full textQi, Zhi. "Theory of Bessel Functions of High Rank." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1428530485.
Full textOuadghiri, Idrissi Ismail. "Nonlinear instabilities and filamentation of Bessel beams." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD071/document.
Full textBessel beams are solutions of Helmholtz equation. They can propagate while conserving their transverse intensity profile in space even in filamentation regime. This feature is very advantageous in high power laser applications such as plasma waveguide generation and laser ablation because they can generate homogeneous plasma channels in dielectrics. However, for moderate to low focusing conditions, Bessel pulses can sustain nonlinear instabilities, which consist in the modulation of the central core intensity along the propagation. Such a feature can prevent efficient energy deposition which hampers the applicability of Bessel pulses. The aim of this thesis is to investigate the possibility to control laser-generated plasma channels using spatially-reshaped Bessel pulses. In a first part, we have developed an experimental method based on a spatial light modulator to modify the evolution of the on-axis intensity of Bessel beams in the linear propagation regime. To study and control Kerr-induced instabilities, we developed, in a second part, a novel model based on four wave mixing interactions in Bessel beams. We have then demonstrated a novel approach to control these instabilities via on-axis intensity shaping. Bessel filamentation models in transparent media were then studied. Most models used in literature are based on nonlinear Schrödinger equation for light propagation and Drude model for laser-matter coupling. Experimental results on Bessel filamentation in glass showed propagation-invariant features in contrast with numerical simulations. Several corrections to this model were discussed. Our results show that such models are insufficient to explain our experimental results and thus the need to develop a more suitable one
Fortin, Pierre-Yves. "Figure d'interférence par faisceaux Bessel, étude et applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq33637.pdf.
Full textBooks on the topic "Bessel"
Bessel functions and their applications. Boca Raton: Chapman & Hall/CRC, 2002.
Find full textWatson, G. N. A treatise on the theory of Bessel functions. 2nd ed. Cambridge [England]: Cambridge University Press, 1995.
Find full textGeneralized Bessel functions of the first kind. Heidelberg: Springer, 2010.
Find full textLawrynowicz, Kasimir. Friedrich Wilhelm Bessel 1784–1846. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9069-4.
Full textCenter, Lewis Research, ed. Review of nondiffracting Bessel beams. Brook Park, Ohio: Sverdrup Technology Lewis Research Center Group, 1991.
Find full textLavrinovich, K. K. Friedrich Wilhelm Bessel, 1784-1846. Basel: Boston, 1995.
Find full textCholewinski, Frank M. The finite calculus associated with Bessel functions. Providence, R.I: American Mathematical Society, 1988.
Find full textRappoport, I︠U︡ M. Metody vychislenii︠a︡ i tablit︠s︡y modifit︠s︡irovannykh funkt︠s︡iĭ Besseli︠a︡: Uchebnoe posobie. Moskva: MATI, 2008.
Find full textRappoport, I︠U︡ M. Metody vychislenii︠a︡ i tablit︠s︡y modifit︠s︡irovannykh funkt︠s︡iĭ Besseli︠a︡: Uchebnoe posobie. Moskva: MATI, 2008.
Find full textBessel, ou, Le rêve brisé: Nouvelle. Dakar, Senegal: abis éditions, 2013.
Find full textBook chapters on the topic "Bessel"
Mitschke, Fedor. "Bessel Functions." In Fiber Optics, 319–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52764-1_15.
Full textAkhmedova, Valeriya, and Emil T. Akhmedov. "Bessel Functions." In SpringerBriefs in Physics, 41–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-35089-5_5.
Full textKatori, Makoto. "Bessel Processes." In Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model, 1–39. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0275-5_1.
Full textZambotti, Lorenzo. "Bessel Processes." In Lecture Notes in Mathematics, 31–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52096-4_3.
Full textMitschke, Fedor. "Bessel Functions." In Fiber Optics, 265–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03703-0_15.
Full textBeebe, Nelson H. F. "Bessel functions." In The Mathematical-Function Computation Handbook, 693–762. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64110-2_21.
Full textKoranga, Bipin Singh, Sanjay Kumar Padaliya, and Vivek Kumar Nautiyal. "Bessel Function." In Special Functions and their Application, 49–63. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339595-4.
Full textZhu, Yichao. "Bessel Functions." In Equations and Analytical Tools in Mathematical Physics, 165–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5441-1_5.
Full textZhu, Yichao. "Bessel Functions." In Equations and Analytical Tools in Mathematical Physics, 165–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5441-1_5.
Full textNikiforov, Arnold F., and Vasilii B. Uvarov. "Bessel Functions." In Special Functions of Mathematical Physics, 201–51. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4757-1595-8_3.
Full textConference papers on the topic "Bessel"
Masirevic, Dragana Jankov, Tibor K. Pogany, Arpad Bariez, and Aurel Galantai. "Sampling bessel functions and bessel sampling." In 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2013. http://dx.doi.org/10.1109/saci.2013.6608942.
Full textSalamin, Yousef I. "Bessel-Bessel Laser Bullets: Fields and Propagation Characteristics." In Advanced Solid State Lasers. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/assl.2019.jw2a.46.
Full textLitvin, Igor A., Melanie G. McLaren, and Andrew Forbes. "Propagation of obstructed Bessel and Bessel-Gauss beams." In Optical Engineering + Applications, edited by Andrew Forbes and Todd E. Lizotte. SPIE, 2008. http://dx.doi.org/10.1117/12.793695.
Full textSakah, Mahmud, and Brahim Chebbi. "Laser Bessel velocimtery." In 2015 Photonics North. IEEE, 2015. http://dx.doi.org/10.1109/pn.2015.7292500.
Full textTrichili, Abderrahmen, Thandeka Mhlanga, Yaseera Ismail, Filippus S. Roux, Melanie McLaren, Mourad Zghal, and Andrew Forbes. "Detecting Bessel beams." In SPIE Optical Engineering + Applications, edited by Andrew Forbes and Todd E. Lizotte. SPIE, 2014. http://dx.doi.org/10.1117/12.2061372.
Full textKhonina, Svetlana N., and Victor V. Kotlyar. "Bessel-mode formers." In Digital Image Processing and Computer Graphics: Fifth International Workshop, edited by Nikolai A. Kuznetsov and Victor A. Soifer. SPIE, 1995. http://dx.doi.org/10.1117/12.199633.
Full textMcLaren, Melanie, Thandeka Mhlanga, Miles J. Padgett, Filippus S. Roux, and Andrew Forbes. "Entangled Bessel beams." In SPIE Optical Engineering + Applications, edited by Andrew Forbes and Todd E. Lizotte. SPIE, 2014. http://dx.doi.org/10.1117/12.2066369.
Full textYu, Yanzhong, and Wenbin Dou. "Bessel-Gauss resonator." In 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5524925.
Full textDallaire, Michael, Nathalie McCarthy, and Michel Piché. "Spatiotemporal Bessel beams." In Photonics North 2007, edited by John Armitage. SPIE, 2007. http://dx.doi.org/10.1117/12.779074.
Full textProkudin, Alexei, Leonard Gamberg, Harut Avakian, and Patrizia Rossi. "Bessel Weighted Asymmetries." In QCD Evolution 2015. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.249.0042.
Full textReports on the topic "Bessel"
Boisvert, Ronald F., and Bonita V. Saunders. Portable vectorized software for Bessel function evaluation. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4615.
Full textMajor, J. R. Automated measurement of frequency response of frequency-modulated generators using the Bessel null method. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.tn.1093.
Full textQin, Hong, Cynthia K. Phillips, and Ronald C. Davidson. Response to "Comment on ' A New Derivation of the Plasma Susceptibility Tensor for a Hot Magnetized Plasma Without Infinite Sums of Products of Bessel Functions'. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/960232.
Full textGeyer, Anton, Simon Pohn-Weidinger, and Karin Grasenick. Evaluation der Forschungspreis-Programme der Alexander von Humboldt-Stiftung. Endbericht. Alexander von Humboldt-Stiftung, October 2019. http://dx.doi.org/10.22163/fteval.2019.585.
Full textDavis, C. Davis-Besse uncertainty study. Office of Scientific and Technical Information (OSTI), August 1987. http://dx.doi.org/10.2172/6243997.
Full textLeitner, Karl-Heinz, Georg Zahradnik, Bernhard Dachs, and Robert Hawlik. Ex-post-Evaluierung der Pilotförderungaktion für Inkubatoren JumpStart Phase 1 und Phase 2. AIT - Austrian Institute of Technology, October 2021. http://dx.doi.org/10.22163/fteval.2021.586.
Full textAuthor, Not Given. Report of the independent Ad Hoc Group for the Davis-Besse incident. Office of Scientific and Technical Information (OSTI), June 1986. http://dx.doi.org/10.2172/5607389.
Full textBäumler, Maximilian, Susanne Arndt, Matthias Fuchs, Matthias Lehmann, Regine Gerike, Martin Bärwolff, and Günther Prokop. Videodaten in der Verkehrsforschung – besser auffind- und nachnutzbar dank der neuen Ontologie ListDB Onto. TU Dresden, Fakultät Verkehrswissenschaften 'Friedrich List', 2023. http://dx.doi.org/10.26128/2023.40.
Full textWesley, D. A., D. K. Nakaki, H. Hadidi-Tamjed, and T. R. Kipp. Pressure-dependent fragilities for piping components: Pilot study on Davis-Besse Nuclear Power Station. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6387566.
Full textAuer, Daniel, Denise Efionayi-Mäder, Joëlle Fehlmann, Mirjam Suri, Dina Bader, Giuliano Bonoli, Michael Morlok, and Johanna Probst. Monitoring und Evaluation des Pilotprogramms «Frühzeitige Sprachförderung». Université de Neuchâtel – Swiss Forum for Migration and Population Studies (SFM), June 2023. http://dx.doi.org/10.35662/unine-sfmstudies-84d.
Full text