Academic literature on the topic 'BERNSTEIN OPERATOR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BERNSTEIN OPERATOR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "BERNSTEIN OPERATOR"
Ong, Seng Huat, Choung Min Ng, Hong Keat Yap, and Hari Mohan Srivastava. "Some Probabilistic Generalizations of the Cheney–Sharma and Bernstein Approximation Operators." Axioms 11, no. 10 (October 8, 2022): 537. http://dx.doi.org/10.3390/axioms11100537.
Full textOstrovska, Sofiya. "A Survey of Results on the Limit -Bernstein Operator." Journal of Applied Mathematics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/159720.
Full textKajla, Arun, and Dan Miclǎuş. "Modified Bernstein–Durrmeyer Type Operators." Mathematics 10, no. 11 (May 30, 2022): 1876. http://dx.doi.org/10.3390/math10111876.
Full textGonska, Heiner, Ioan Raşa, and Elena-Dorina Stănilă. "Lagrange-type operators associated with Uan." Publications de l'Institut Math?matique (Belgrade) 96, no. 110 (2014): 159–68. http://dx.doi.org/10.2298/pim1410159g.
Full textFinta, Zoltán. "Approximation properties of (p, q)-Bernstein type operators." Acta Universitatis Sapientiae, Mathematica 8, no. 2 (December 1, 2016): 222–32. http://dx.doi.org/10.1515/ausm-2016-0014.
Full textACU, ANA MARIA, and P. N. AGRAWAL. "Better approximation of functions by genuine Bernstein-Durrmeyer type operators." Carpathian Journal of Mathematics 35, no. 2 (2019): 125–36. http://dx.doi.org/10.37193/cjm.2019.02.01.
Full textFinta, Zoltan. "A generalization of the Lupaș \(q\)-analogue of the Bernstein operator." Journal of Numerical Analysis and Approximation Theory 45, no. 2 (December 9, 2016): 147–62. http://dx.doi.org/10.33993/jnaat452-1090.
Full textÖzger, Faruk, Ekrem Aljimi, and Merve Temizer Ersoy. "Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators." Mathematics 10, no. 12 (June 11, 2022): 2027. http://dx.doi.org/10.3390/math10122027.
Full textÖzalp Güller, Özge, Ecem Acar, and Sevilay Kırcı Serenbay. "Nonlinear Bivariate Bernstein–Chlodowsky Operators of Maximum Product Type." Journal of Mathematics 2022 (August 8, 2022): 1–11. http://dx.doi.org/10.1155/2022/4742433.
Full textUsta, Fuat, Mohammad Mursaleen, and İbrahim Çakır. "Approximation properties of Bernstein-Stancu operators preserving e−2x." Filomat 37, no. 5 (2023): 1523–34. http://dx.doi.org/10.2298/fil2305523u.
Full textDissertations / Theses on the topic "BERNSTEIN OPERATOR"
Cripps, Robert J. "Trend identification and the Bézier-Bernstein Operator." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/26973.
Full textStanila, Elena Dorina [Verfasser], Heinz H. [Akademischer Betreuer] Gonska, and Margareta [Akademischer Betreuer] Heilmann. "On Bernstein-Euler-Jacobi Operators / Elena Dorina Stanila. Gutachter: Margareta Heilmann. Betreuer: Heinz H. Gonska." Duisburg, 2014. http://d-nb.info/1058323482/34.
Full textWu, Hsi-Chun, and 吳希淳. "Asymptotic Behavior of Dual Functionals to the Bernstein Operator." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/89238281996655972817.
Full text輔仁大學
數學系研究所
98
The Bernstein operator Bn has an eigenstructure with positive eigenvalues and corresponding monic eigenfunctions of polynomials. The dual functionals μ^(n)_k acting on C[0, 1] associated with Bn can be represented explicitly. An observation of a symmetric property of dual functionals can be verified easily. In this research, we mainly prove that the boundedness of the sequence {||μ^(n)_k||}^∞_{n=0} is a necessary and sufficient condition for μ^(n)_k (f) being convergent to some μ^∗_k(f) for every f in C[0, 1].
Books on the topic "BERNSTEIN OPERATOR"
Approximation by complex Bernstein and convolution type operators. Singapore: World Scientific, 2009.
Find full textBustamante, Jorge. Bernstein Operators and Their Properties. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0.
Full textBustamante, Jorge. Bernstein Operators and Their Properties. Birkhäuser, 2018.
Find full textBustamante, Jorge. Bernstein Operators and Their Properties. Birkhäuser, 2017.
Find full textCripps, R. J. Trend identification and the Bezier-Bernstein operator. 1986.
Find full textGal, Sorin G. Approximation by Complex Bernstein and Convolution Type Operators. World Scientific Publishing Co Pte Ltd, 2009.
Find full textRhomari, Noureddine. On Bernstein Type and Maximal Inequalities for Dependent Banach-Valued Random Vectors and Applications. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.14.
Full textBook chapters on the topic "BERNSTEIN OPERATOR"
Aral, Ali, Vijay Gupta, and Ravi P. Agarwal. "q-Bernstein-Type Integral Operators." In Applications of q-Calculus in Operator Theory, 113–44. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6946-9_4.
Full textCavaretta, A. S., and A. Sharma. "Variation diminishing properties and convexity for the tensor product Bernstein operator." In Functional Analysis and Operator Theory, 18–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0093794.
Full textHernández, F. L., Y. Raynaud, and E. M. Semenov. "Bernstein Widths and Super Strictly Singular Inclusions." In A Panorama of Modern Operator Theory and Related Topics, 359–76. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0221-5_15.
Full textFranz, Uwe, and René Schott. "Gauss laws in the sense of Bernstein on quantum groups." In Stochastic Processes and Operator Calculus on Quantum Groups, 161–81. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9277-2_8.
Full textJayasri, C., and Y. Sitaraman. "On a Bernstein-Type Operator of Bleimann, Butzer and Hahn III." In Approximation, Probability, and Related Fields, 297–301. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2494-6_22.
Full textBustamante, Jorge. "Bernstein-Type Inequalities." In Bernstein Operators and Their Properties, 273–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_5.
Full textBustamante, Jorge. "Iterates of Bernstein Polynomials." In Bernstein Operators and Their Properties, 359–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_8.
Full textBustamante, Jorge. "Basic Properties of Bernstein Operators." In Bernstein Operators and Their Properties, 75–160. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_2.
Full textBustamante, Jorge. "Bernstein Polynomials as Linear Operators." In Bernstein Operators and Their Properties, 161–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_3.
Full textBustamante, Jorge. "Linear Combinations of Bernstein Polynomials." In Bernstein Operators and Their Properties, 371–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55402-0_9.
Full textConference papers on the topic "BERNSTEIN OPERATOR"
Zapryanova, Teodora, and Gancho Tachev. "Approximation by the iterates of Bernstein operator." In APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12): Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics. AIP, 2012. http://dx.doi.org/10.1063/1.4766784.
Full textEsi, Ayhan, Nagarajan Subramanian, and M. Kemal Ozdemir. "Triple sequence spaces of intuitionistic rough I-convergence defined by compact Bernstein operator." In THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5136144.
Full textChutchavong, V., P. Tharaphimaan, T. Anuwongpinit, B. Purahong, and K. Janchitrapongvej. "Low pass filters based on bernstein-balazs operators." In the 3rd International Conference. New York, New York, USA: ACM Press, 2017. http://dx.doi.org/10.1145/3162957.3163021.
Full textWang, Peng-Hui, and Qing-Bo Cai. "Statistical approximation properties of Stancu type λ-Bernstein operators." In 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2019. http://dx.doi.org/10.1109/iceict.2019.8846309.
Full textLian, Bo-yong, and Qing-bo Cai. "The Bézier variant of a new type λ–Bernstein operators." In 2019 6th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2019. http://dx.doi.org/10.1109/icisce48695.2019.00126.
Full textPandey, Rajesh K., and Om P. Agrawal. "Numerical Scheme for Generalized Isoparametric Constraint Variational Problems With A-Operator." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12388.
Full textZhao, Yi, and Long Chen. "Weighted approximation of functions by Bernstein operators on the semi axis." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002673.
Full textCai, Qing-Bo. "Convergence of Modification of the Kantorovich-Type q-Bernstein-Stancu-Schurer Operators." In 2016 6th International Conference on Digital Home (ICDH). IEEE, 2016. http://dx.doi.org/10.1109/icdh.2016.064.
Full textCoroianu, Lucian, Sorin G. Gal, and Barnabas Bede. "Approximation of fuzzy numbers by nonlinear Bernstein operators of max-product kind." In 7th conference of the European Society for Fuzzy Logic and Technology. Paris, France: Atlantis Press, 2011. http://dx.doi.org/10.2991/eusflat.2011.61.
Full textZhao, Yi. "A converse theorem on weighted approximation of functions with singularities by Bernstein operators." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5768405.
Full text