Academic literature on the topic 'Bernstein'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bernstein.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bernstein"
Rodman, Howard A. "Remembering Walter Bernstein." Film Quarterly 74, no. 4 (2021): 43–47. http://dx.doi.org/10.1525/fq.2021.74.4.43.
Full textBielak, Jan. "Testament Leonarda Bernsteina – The Unanswered Question w świetle zagadnień dyrygenckich." Kwartalnik Młodych Muzykologów UJ, no. 52 (1) (2022): 23–40. http://dx.doi.org/10.4467/23537094kmmuj.22.002.15646.
Full textMASSEY, DREW. "Leonard Bernstein and the Harvard Student Union: In Search of Political Origins." Journal of the Society for American Music 3, no. 1 (January 15, 2009): 67–84. http://dx.doi.org/10.1017/s1752196309090051.
Full textFeng, Yi. "The Epiphany of Language: The Connotation of Zen-Taoism in Charles Bernstein's Echopoetics." boundary 2 48, no. 4 (November 1, 2021): 163–83. http://dx.doi.org/10.1215/01903659-9382243.
Full textBernstein, Charles. "Interview with Alí Calderón." boundary 2 48, no. 4 (November 1, 2021): 79–82. http://dx.doi.org/10.1215/01903659-9382074.
Full textResnikoff, Ariel. "A Source Which Is Also a Translation: Toward an Expanded- Yiddish Poetics, with Special Reference to Charles Bernstein." boundary 2 48, no. 4 (November 1, 2021): 184–214. http://dx.doi.org/10.1215/01903659-9382257.
Full textLang, Abigail. "Bail Out Poetry." boundary 2 48, no. 4 (November 1, 2021): 129–37. http://dx.doi.org/10.1215/01903659-9382187.
Full textProbstein, Ian. "Charles Bernstein: Avant-Garde Is a Constant Renewal." boundary 2 48, no. 4 (November 1, 2021): 215–30. http://dx.doi.org/10.1215/01903659-9382271.
Full textSirotkina, I. E. "Futurist in Physiology: In Celebration of the 120th Birthday of Nikolai Aleksandrovich Bernstein." Cultural-Historical Psychology 12, no. 4 (2016): 39–47. http://dx.doi.org/10.17759/chp.2016120404.
Full textPerloff, Marjorie. "Introduction to Charles Bernstein's Distinguished Wenqin Yao Lectures at Zhejiang University, Hangzhou, Fall 2019." boundary 2 48, no. 4 (November 1, 2021): 85–89. http://dx.doi.org/10.1215/01903659-9382102.
Full textDissertations / Theses on the topic "Bernstein"
Ruviaro, Ricardo. "Teorema de Bernstein." reponame:Repositório Institucional da UnB, 2007. http://repositorio.unb.br/handle/10482/5527.
Full textTexto parcialmente liberado pelo autor.
Submitted by Mariana Fonseca Xavier Nunes (nanarteira@hotmail.com) on 2010-09-18T03:56:10Z No. of bitstreams: 1 2007-Ricardo Ruviaro.pdf: 158511 bytes, checksum: bd0f3b6d460ab681279b4ad86ee131c8 (MD5)
Approved for entry into archive by Carolina Campos(carolinacamposmaia@gmail.com) on 2010-09-29T16:17:47Z (GMT) No. of bitstreams: 1 2007-Ricardo Ruviaro.pdf: 158511 bytes, checksum: bd0f3b6d460ab681279b4ad86ee131c8 (MD5)
Made available in DSpace on 2010-09-29T16:17:47Z (GMT). No. of bitstreams: 1 2007-Ricardo Ruviaro.pdf: 158511 bytes, checksum: bd0f3b6d460ab681279b4ad86ee131c8 (MD5) Previous issue date: 2007
O presente trabalho de investigação tem como tema o Teorema de Bernstein. Buscou-se como objetivo demonstrar de formas diferentes o Teorema de Bernstein, já que este teorema é um resultado muito extraordinário, pois levando em conta a multiplicidade de soluções que possui a equação de Lagrange, é realmente instigante que o mero fato da solução estar definida para todo (x, y) exclua todas as soluções menos a solução trivial. Far-se-á também a demonstração para o Teorema de do Carmo-Peng e Fischer Colbrie-Schoen. _____________________________________________________________________________ ABSTRACT
In this dissertation. We give three different proofs of the Bernstein theorem and a proof of the theorem of do Carmo-Peng and Fischer Colbrie-Schoen.
Růžičková, Michaela. "Leonard Bernstein: MASS." Master's thesis, Akademie múzických umění v Praze.Hudební a taneční fakulta. Knihovna, 2016. http://www.nusl.cz/ntk/nusl-253942.
Full textVarro, Richard. "Algèbres de Bernstein périodiques." Montpellier 2, 1992. http://www.theses.fr/1992MON20256.
Full textLandis, Johannes. "Le théâtre d'Henry Bernstein /." Paris : l'Harmattan, 2009. http://catalogue.bnf.fr/ark:/12148/cb41467448b.
Full textGomes, Marlon de Oliveira. "O problema de Bernstein." reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/7213.
Full textSubmitted by Erivan Almeida (eneiro@bol.com.br) on 2014-02-06T14:14:48Z No. of bitstreams: 1 2013_dis_mogomes.pdf: 3591854 bytes, checksum: 7436eff84b83e17422b3a917b66a2067 (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2014-02-06T14:55:20Z (GMT) No. of bitstreams: 1 2013_dis_mogomes.pdf: 3591854 bytes, checksum: 7436eff84b83e17422b3a917b66a2067 (MD5)
Made available in DSpace on 2014-02-06T14:55:20Z (GMT). No. of bitstreams: 1 2013_dis_mogomes.pdf: 3591854 bytes, checksum: 7436eff84b83e17422b3a917b66a2067 (MD5) Previous issue date: 2013
The classical Bernstein problem, solved by S. Bernstein in 1915-1917 in his article [12], asks if there is a complete minimal graph in R3 besides the plane. Bernstein showed that the answer to this question is no using analytical methods for study of equations of prescribed curvature. We will see here how this problem is related to the Gauss map of the graph, and as consequence of this relationship we generalize this theorem to a larger class of surfaces (not necessarily graphs), following the proof given by R. Osserman in [51]. We will see next generalizations of this theorem in higher dimensions, following essentially the methods introduced by W. Fleming in [31], and later refined by E. De Giorgi in [20], F. Almgren in [6] and J. Simons in [62]. In fact, they solve the problem for graphs in Rn, n < 9, namely they prove that the only complete minimal graph in these espaces is the hyperplane. Following the proof given by E. Bombieri, E. De Giorgi and E. Giusti in [14], we also show that, in dimension n ≥ 9, it is possible to construct complete minimal graphs in Rn. At last, we conclude with an extension of Bernstein’s theorem to the class of submanifolds stable with respect to the second variation of volume, under certain conditions of curvature and volume growth, and yet we investigate the case in which the ambient manifold is not the Euclidean space.
O problema de Bernstein clássico, resolvido por S. Bernstein em 1915-1917 em seu artigo [12], pergunta se existe um gráfico mínimo completo em R3 além do plano. Bernstein mostrou que a resposta para este problema é não, utilizando métodos analíticos para o estudo de equações de curvatura prescrita. Veremos aqui como este problema está relacionado com a aplicação de Gauss deste gráfico, e como conseqüência desta relação iremos generalizar este teorema para uma classe de superfícies maior (não necessariamente gráficos), seguindo a prova dada por R. Osserman em [51]. Veremos a seguir generalizações deste teorema em dimensões maiores, seguindo essencialmente os métodos introduzidos Por W. Fleming em [31], e refinados posteriormente por E. De Giorgi, em [20], F. Almgren, em [6], e J. Simons, em [62], que resolvem o problema para gráficos em Rn, n < 9 mostrando que o único gráfico mínimo completo nesses espaços é o hiperplano. Mostraremos também que em dimensão n ≥ 9, é possível construir gráficos mínimos completos em Rn, seguindo a prova apresentada por E. Bombieri, E. Di Giorgi e E. Giusti em [14]. Por fim, concluímos com uma extensão do teorema de Bernstein para a classe das subvariedades estáveis com respeito à segunda variação de volume, sob certas condições de crescimento de curvatura ou volume, e investigaremos ainda o caso que a variedade ambiente não é o espaço euclidiano.
Jeberien, Alexandra. "Archäologischer Bernstein Untersuchung verschiedener Festigungsmöglichkeiten /." [Berlin] : [S.n.], 2000. https://sisis.rz.fhtw-berlin.de/inhalt/0122027.pdf.
Full textZitan, Fouad. "Sur les algèbres de Bernstein." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376109529.
Full textPiazzon, Federico. "Bernstein Markov Properties and Applications." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424517.
Full textLa proprietà di Bernstein Markov per un compatto E ed una misura positiva finita μ avente supporto in E è un’ assunzione di comparabilità asintotica tra le norme uniformi ed L μ 2 dei polinomi di grado al più k (o altre famiglie innestate di funzioni) al tendere all’ infinito di k. Le Admissible Meshes sono sequenze di sottoinsiemi finiti A k del compatto E la cui cardinalità cresce in modo subesponenziale rispetto a k e per i quali esiste una costante positiva C tale che max E |p| ≤ C max A k |p| per ogni polinomi di grado al più k. Questi due oggetti matematici hanno molte appliicazioni e motivazioni prove- nienti dalla Teoria dell’ Approssimazione e dalla Teoria del Pluripotenziale, lo stu- dio delle funzioni plurisubarmoniche in più variabili complesse. Le proprietà delle misure di Bernstein Markov e delle admissible meshes per un dato compatto E sono molto simili, infatti le due definizioni possono essere viste come gli approcci rispettivamente continuo e discreto dello stesso problema. Questo lavoro si concentra nel fornire condizioni sufficienti per la proprietà di Bernstein Markov in diverse situazioni e nella costruzione esplicita di admissible meshes. Come primo problema vengono studiate condizioni sufficienti per una versione della proprietà di Bernstein Markov per successioni di funzioni razionali nel piano complesso in relazione alla stessa proprietà per i polinomi. Nel Capitolo 5 viene considerato il caso di un compatto E sottoinsieme di una varietà algebrica A ⊂ C n di dimensione pura m < n ed irriducibile e quindi provata una condizione sufficiente per la proprietà di Bernstein Markov per le tracce dei polinomi su E. A questo scopo vengono provati due risultati nuovi in Teoria del Pluripoten- ziale riguardanti la convergenza e la comparabilità della capacità relativa (di Monge Ampère), delle funzioni plurisubarmoniche estremali globali e relative e delle co- stanti di Chebyshev per sottoinsiemi E j di un dato compatto E della varietà alge- brica A, anche nel caso A sia singolare. Tali risultati sono di interesse indipendente. Nell’ultima parte della tesi vengono provate ed illustrate alcune procedure per la costruzione di admissible meshes per alcune classi di compatti reali. In ultimo vengono presentati alcuni nuovi algoritmi, basati sulle admissible meshes, per l’ approssimazione numerica delle più rilevanti grandezze in Teoria del Pluripotenziale: il diametro transfinito, la funzione estremale di Siciak-Zaharjuta e la misura di equilibrio pluripotenziale.
Sadik, Mohamed. "Inégalités de Markov-Bernstein en L2 : les outils mathématiques d'encadrement de la constante de Markov-Bernstein." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557914.
Full textOruç, Halil. "Generalized Bernstein polynomials and total positivity." Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/11183.
Full textBooks on the topic "Bernstein"
1938-, Davies Brian, Muller Johan, and Morais Ana 1939-, eds. Reading Bernstein, researching Bernstein. London: RoutledgeFalmer, 2004.
Find full textJuhász, Előd. Bernstein és Budapest: Bernstein story II. [Budapest]: Szabad Tér, 1988.
Find full textClark, Neil D. L. Mythos Bernstein. Darmstadt: Wiss. Buchges., 2012.
Find full textVenezia, Mike. Leonard Bernstein. New York: Children's Press, 1997.
Find full textBurton, Humphrey. Leonard Bernstein. London: Faber and Faber, 1995.
Find full textVenezia, Mike. Leonard Bernstein. New York: Children's Press, 1997.
Find full textJane, Fluegel, ed. Bernstein remembered. New York: Carroll & Graf, 1991.
Find full textB, Haws Barbara, ed. Leonard Bernstein. New York: Collins, 2008.
Find full textFreedland, Michael. Leonard Bernstein. London: Harrap, 1987.
Find full textBurton, Humphrey. Leonard Bernstein. London: Faber, 1994.
Find full textBook chapters on the topic "Bernstein"
Lubinsky, Doron S., and Edward B. Saff. "Bernstein's formula and bernstein extremal polynomials." In Strong Asymptotics for Extremal Polynomials Associated with Weights on ℝ, 111–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082426.
Full textYang, Jingping, Fang Wang, and Zongkai Xie. "Bernstein Copulas and Composite Bernstein Copulas." In Mathematical Lectures from Peking University, 183–217. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1576-7_4.
Full textBernad, J., A. Iltyakov, and C. Martinez. "Bernstein Representations." In Non-Associative Algebra and Its Applications, 39–45. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0990-1_7.
Full textKurth, Ulrich. "Bernstein, Leonard." In Metzler Komponisten Lexikon, 68–69. Stuttgart: J.B. Metzler, 1992. http://dx.doi.org/10.1007/978-3-476-03421-2_21.
Full textFülberth, Georg. "Bernstein, Eduard." In Metzler Philosophen Lexikon, 114–15. Stuttgart: J.B. Metzler, 1995. http://dx.doi.org/10.1007/978-3-476-03642-1_42.
Full textKurth, Ulrich. "Bernstein, Leonard." In Komponisten Lexikon, 53–54. Stuttgart: J.B. Metzler, 2003. http://dx.doi.org/10.1007/978-3-476-05274-2_21.
Full textOstrowski, Marius S. "Bernstein, Eduard." In Encyclopedia of the Philosophy of Law and Social Philosophy, 268–72. Dordrecht: Springer Netherlands, 2023. http://dx.doi.org/10.1007/978-94-007-6519-1_902.
Full textPhillips, George M. "Bernstein Polynomials." In CMS Books in Mathematics, 247–90. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/0-387-21682-0_7.
Full textDeVore, Ronald A., and George G. Lorentz. "Bernstein Polynomials." In Grundlehren der mathematischen Wissenschaften, 303–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02888-9_10.
Full textBottomore, Tom. "Eduard Bernstein." In Marxian Economics, 55–58. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20572-1_7.
Full textConference papers on the topic "Bernstein"
Номати, М. "Эволюция взглядов С. Б. Бернштейна на кашубский вопрос." In Межкультурное и межъязыковое взаимодействие в пространстве Славии (к 110-летию со дня рождения С. Б. Бернштейна). Институт славяноведения РАН, 2021. http://dx.doi.org/10.31168/0459-6.22.
Full textMnih, Volodymyr, Csaba Szepesvári, and Jean-Yves Audibert. "Empirical Bernstein stopping." In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390241.
Full textZhang, Chun-Gou, and Chun-Juan Yang. "Fuzzy Bernstein Type Inequalities." In 2016 International Conference on Computer Engineering and Information Systems. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ceis-16.2016.63.
Full textWu, Xuezhi, and Wenjuan Zhong. "Fuzzy q-Bernstein polynomials." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6233924.
Full textValasek, Gábor. "Rootfinding in Bernstein Basis." In CAD'24. U-turn Press LLC, 2024. http://dx.doi.org/10.14733/cadconfp.2024.334-338.
Full textRam, A. K. "Emission of electron Bernstein waves." In RADIO FREQUENCY POWER IN PLASMAS:14th Topical Conference. AIP, 2001. http://dx.doi.org/10.1063/1.1424226.
Full textSchmeisser, Gerhard. "Real zeros of Bernstein polynomials." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0038.
Full textShevchenko, V., G. Cunningham, A. Gurchenko, E. Gusakov, B. Lloyd, M. O'Brien, A. Saveliev, et al. "Electron Bernstein Wave Studies in MAST." In RADIO FREQUENCY POWER IN PLASMAS: 17th Topical Conference on Radio Frequency Power in Plasmas. AIP, 2007. http://dx.doi.org/10.1063/1.2800503.
Full textSeltzman, Andrew H., Jay K. Anderson, Paul D. Nonn, Jason X. Kauffold, Stephanie J. Diem, Cary B. Forest, Cynthia K. Phillips, and James R. Wilson. "Electron Bernstein Wave Studies in MST." In RADIO FREQUENCY POWER IN PLASMAS: Proceedings of the 19th Topical Conference. AIP, 2011. http://dx.doi.org/10.1063/1.3665020.
Full textGRANGER, MICHEL. "BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS." In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0006.
Full textReports on the topic "Bernstein"
Chen, K. R. Fast ion-driven Bernstein instabilities. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/7182388.
Full textOno, Masayuki. Ion Bernstein wave heating research. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5522759.
Full textOno, Masayuki. Ion Bernstein wave heating research. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10132056.
Full textChen, K. R. Fast ion-driven Bernstein instabilities. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/10172495.
Full textG. Taylor, P. Efthimion, B. Jones, T. Munsat, J. Spaleta, J. Hosea, R. Kaita, R. Majeski, and J. Menard. Electron Bernstein wave electron temperature profile diagnostic. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/758660.
Full textQuan, Michael, and Steven Walton. Arbitrary-order Bernstein basis functions for Lagrangian Hydrodynamics. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1883100.
Full textTaylor, G., P. C. Efthimion, B. Jones, J. C. Hosea, R. Kaita, B. P. LeBlanc, R. Majeski, et al. Electron Bernstein Wave Research on CDX-U and NSTX. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/784554.
Full textG. Taylor, P.C. Efthimion, B. Jones, G.L. Bell, A. Bers, T.S. Bigelow, M.D. Carter, et al. Electron Bernstein Wave Research on NSTX and CDX-U. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/814023.
Full textIgnat, D. W., and M. Ono. Hot-ion Bernstein wave with large k{sub parallel}. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/10110815.
Full textG. Taylor, A. Bers, T.S. Bigelow, M.D. Carter, J.B. Caughman, J. Decker, S. Diem, et al. Electron Bernstein Wave Research on the National Spherical Torus Experiment. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/839173.
Full text