Dissertations / Theses on the topic 'Bernoulli number'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Bernoulli number.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chellali, Mustapha. "Congruences, nombres de Bernoulli et polynômes de Bessel." Université Joseph Fourier (Grenoble ; 1971-2015), 1989. http://www.theses.fr/1989GRE10091.
Full textWhitaker, Linda M. "The Bernoulli salesman." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/24935.
Full textSmith, Michael J. "Ranking and selection : open sequential procedures for Bernoulli populations." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25103.
Full textMartin, Bruno. "Contribution à la théorie des entiers friables." Phd thesis, Université de Lorraine, 2005. http://tel.archives-ouvertes.fr/tel-00795666.
Full textMirkoski, Maikon Luiz. "Números e polinômios de Bernoulli." Universidade Estadual de Ponta Grossa, 2018. http://tede2.uepg.br/jspui/handle/prefix/2699.
Full textMade available in DSpace on 2018-11-29T18:07:06Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Maikon Luiz.pdf: 959643 bytes, checksum: aaf472f5b8a9a29532793d01234788a9 (MD5) Previous issue date: 2018-10-19
Neste trabalho,estudamos os números e os polinomios de Bernoulli,bem como algumas de suas aplicações mais importantes em Teoria dos Números. Com base em uma caracterização ao simples, os polinômios de Bernoulli são introduzidos e, posteriormente, os números de Bernoulli. As séries de Fourier dos polinomios de Bernoulli são utilizadas na demonstração da equação funcional da função teta. Esta equação, por sua vez, é utilizada na demonstração da celebre equação funcional da função zeta, que tem importância central na teoria da distribuição dos números primos. Além das conexões com a funções especiais zeta e teta, discutimos também, em detalhe,conexões entre os números e os polinomios de Bernoulli com a função gama. Essas relações são então exploradas para produzir belas fórmulas para certos valores da função zeta, entre outras aplicações.
In this work we study Bernoulli numbers and Bernoulli polynomials, as well as some of its most important applications in Number Theory. Based on a simple characterization, the Bernoulli polynomials are introduced and, later, the Bernoulli numbers. The Fourier series of the Bernoulli polynomials are used to demonstrate the functional equation of the theta function. This equation, in turn, is used in the proof of the famous functional equation of the zeta function, which is central to the theory of prime number distribution. In addition to the connections with the special functions zeta and theta, we also discuss, in detail, connections between the Bernoulli numbers and Bernoulli polynomials with the gamma function. These relations are then explored to produce beautiful formulas for certain values of the zeta function,among other applications.
Stacey, Andrew W. "An Adaptive Bayesian Approach to Bernoulli-Response Clinical Trials." CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2065.pdf.
Full textKondo, Pedro Kiochi. "CÁLCULO FINITO: DEMONSTRAÇÕES E APLICAÇÕES." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2014. http://tede2.uepg.br/jspui/handle/prefix/1528.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work some topics of the Discrete or Finite Calculus are developed. In particular, we study difference operators, factorial powers, Stirling numbers of the first and second type, the Newton’s formula of differences, the fundamental theorem of the Finite Calculus, the summation process, and the Bernoulli numbers and Bernoulli polynomials. Then we show the effectiveness of the theory for the calculation of closed formulas for the value of many finite sums. We also study the classical problem of obtaining the polynomials which express the value of the sums of powers of natural numbers.
Neste trabalho desenvolvemos alguns tópicos do Cálculo Discreto ou Finito. Em particular, estudamos operadores de diferenças, potências fatoriais, números de Stirling do primeiro e do segundo tipo, a fórmula de diferenças de Newton, o teorema fundamental do Cálculo Finito, o processo de somação e os números e polinômios de Bernoulli. Mostramos então a eficácia da teoria no cálculo de fórmulas fechadas para o valor de diversas somas finitas. Também estudamos o problema clássico de obter os polinômios que expressam o valor de somas de potências de números naturais.
Perkins, Rudolph Bronson. "On Special Values of Pellarin’s L-series." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1383827548.
Full textChung, Yi-Shiu, and 鍾逸修. "The Calculation and Application of Bernoulli number." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/84502958840518031848.
Full text國立臺中教育大學
數學教育學系
96
Up to the present, it is an important study for calculating Bernoulli number. There are many different methods to claculate Bernoulli number. But for these methods, we must take lots of steps to calaulate Bernoulli number. Based on this, our research applies Riemann--zeta function and the extended function of the sums of powers of consecutive integers to get an easier method. Then, we will calculate Bernoulli number by using Matlab 7.1, and investigate the relationship between Bernoulli nmuber and Stirling number of second kind. Our results are as follows. 1. The formula of Bernoulli number is B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1}S_{1}^{\prime}(-1) + \sum_{i=1}^{k}C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \}, k\in N . 2. When $k$ is bigger, Bernoulli number will become bigger and be alternated between plus and minus. 3. The relationship between Bernoulli number and Stirling number of second kind is B_{m+1}=\sum_{k=1}^{m+1}\frac{(-1)^k}{k+1}\cdot k!\cdot S_2(m+1,k).
Liu, Chih Shiuan, and 劉志璿. "The connection between the functions of Riemann zeta and Bernoulli Number." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/17154599310613619902.
Full text國立臺中教育大學
數學教育學系
96
This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$.
Ji, Shuixin. "Limit theorems for the number of occurences of consecutive k successes in n Markov Bernoulli trials." Thesis, 1994. http://spectrum.library.concordia.ca/6165/1/MM01338.pdf.
Full textCHIEN, CHIN YUNG, and 錢智勇. "Identities among Bernoulli numbers and Euler numbers." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/57340733276197992564.
Full text國立中正大學
數學研究所
89
In this paper, we will first introduce some basic properties in Bernoulli numbers (resp. polynomials) and Euler numbers (resp. polynomials), and then prove that the special values of certain zeta functions at non-positive integers can be expressed by Euler polynomials. However, there are usually more than one way to express the special values at non-positive integers. This leads to classical identities as well as new identities among Euler numbers and Euler polynomials. And, we can also derive some new identities among Bernoulli numbers (resp. polynomials) and Euler numbers (resp. polynomials).
"Bernoulli convolutions associated with some algebraic numbers." 2010. http://library.cuhk.edu.hk/record=b5894437.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2010.
Includes bibliographical references (leaves 43-45).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.6
Chapter 1.1 --- Historical remarks and main results --- p.6
Chapter 1.2 --- Structure of the thesis --- p.8
Chapter 2 --- Basic properties --- p.10
Chapter 2.1 --- Existence of infinite convolution --- p.10
Chapter 2.2 --- Properties --- p.16
Chapter 2.3 --- Law of pure type --- p.17
Chapter 3 --- Some results related to pure singularity --- p.20
Chapter 3.1 --- The Pisot-Vijayaraghavan numbers --- p.20
Chapter 3.2 --- The Salem numbers --- p.22
Chapter 3.3 --- The weak separation condition --- p.23
Chapter 4 --- A proof of almost everywhere absolute continuity --- p.30
Chapter 5 --- Other results and problems --- p.37
Chapter 5.1 --- Entropy of Bernoulli convolutions --- p.37
Chapter 5.2 --- Dimensions --- p.40
Chapter 5.3 --- Non PV numbers with bad behavior --- p.41
Chapter 5.4 --- Open problems --- p.41
Bibliography --- p.43
Franzosa, Marie M. "Densities and dependence for point processes." Thesis, 1988. http://hdl.handle.net/1957/16230.
Full textXu, Lu. "Small sample inference for collections of Bernoulli trials." 2010. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000052166.
Full text