Academic literature on the topic 'Bernoulli number'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bernoulli number.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bernoulli number"
Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion." Mathematics 10, no. 12 (June 12, 2022): 2033. http://dx.doi.org/10.3390/math10122033.
Full textJakimczuk, Rafael. "Sequences related to the e number and Bernoulli numbers." Gulf Journal of Mathematics 11, no. 1 (August 9, 2021): 38–42. http://dx.doi.org/10.56947/gjom.v11i1.666.
Full textRawlings, Don. "Bernoulli Trials and Number Theory." American Mathematical Monthly 101, no. 10 (December 1994): 948. http://dx.doi.org/10.2307/2975160.
Full textRawlings, Don. "Bernoulli Trials and Number Theory." American Mathematical Monthly 101, no. 10 (December 1994): 948–52. http://dx.doi.org/10.1080/00029890.1994.12004573.
Full textKaneko, Masanobu. "Poly-Bernoulli numbers." Journal de Théorie des Nombres de Bordeaux 9, no. 1 (1997): 221–28. http://dx.doi.org/10.5802/jtnb.197.
Full textGradl, Hans, and Sebastian Walcher. "Bernoulli algebras." Communications in Algebra 21, no. 10 (January 1993): 3503–20. http://dx.doi.org/10.1080/00927879308824745.
Full textCaratelli, Diego, Pierpaolo Natalini, and Paolo Emilio Ricci. "Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory." Symmetry 15, no. 10 (October 10, 2023): 1900. http://dx.doi.org/10.3390/sym15101900.
Full textCRABB, M. C. "THE MIKI-GESSEL BERNOULLI NUMBER IDENTITY." Glasgow Mathematical Journal 47, no. 2 (July 27, 2005): 327–28. http://dx.doi.org/10.1017/s0017089505002545.
Full textXu, Aimin. "Ramanujan’s Harmonic Number Expansion and Two Identities for Bernoulli Numbers." Results in Mathematics 72, no. 4 (September 18, 2017): 1857–64. http://dx.doi.org/10.1007/s00025-017-0748-7.
Full textKargın, Levent. "p-Bernoulli and geometric polynomials." International Journal of Number Theory 14, no. 02 (February 8, 2018): 595–613. http://dx.doi.org/10.1142/s1793042118500665.
Full textDissertations / Theses on the topic "Bernoulli number"
Chellali, Mustapha. "Congruences, nombres de Bernoulli et polynômes de Bessel." Université Joseph Fourier (Grenoble ; 1971-2015), 1989. http://www.theses.fr/1989GRE10091.
Full textWhitaker, Linda M. "The Bernoulli salesman." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/24935.
Full textSmith, Michael J. "Ranking and selection : open sequential procedures for Bernoulli populations." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25103.
Full textMartin, Bruno. "Contribution à la théorie des entiers friables." Phd thesis, Université de Lorraine, 2005. http://tel.archives-ouvertes.fr/tel-00795666.
Full textMirkoski, Maikon Luiz. "Números e polinômios de Bernoulli." Universidade Estadual de Ponta Grossa, 2018. http://tede2.uepg.br/jspui/handle/prefix/2699.
Full textMade available in DSpace on 2018-11-29T18:07:06Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Maikon Luiz.pdf: 959643 bytes, checksum: aaf472f5b8a9a29532793d01234788a9 (MD5) Previous issue date: 2018-10-19
Neste trabalho,estudamos os números e os polinomios de Bernoulli,bem como algumas de suas aplicações mais importantes em Teoria dos Números. Com base em uma caracterização ao simples, os polinômios de Bernoulli são introduzidos e, posteriormente, os números de Bernoulli. As séries de Fourier dos polinomios de Bernoulli são utilizadas na demonstração da equação funcional da função teta. Esta equação, por sua vez, é utilizada na demonstração da celebre equação funcional da função zeta, que tem importância central na teoria da distribuição dos números primos. Além das conexões com a funções especiais zeta e teta, discutimos também, em detalhe,conexões entre os números e os polinomios de Bernoulli com a função gama. Essas relações são então exploradas para produzir belas fórmulas para certos valores da função zeta, entre outras aplicações.
In this work we study Bernoulli numbers and Bernoulli polynomials, as well as some of its most important applications in Number Theory. Based on a simple characterization, the Bernoulli polynomials are introduced and, later, the Bernoulli numbers. The Fourier series of the Bernoulli polynomials are used to demonstrate the functional equation of the theta function. This equation, in turn, is used in the proof of the famous functional equation of the zeta function, which is central to the theory of prime number distribution. In addition to the connections with the special functions zeta and theta, we also discuss, in detail, connections between the Bernoulli numbers and Bernoulli polynomials with the gamma function. These relations are then explored to produce beautiful formulas for certain values of the zeta function,among other applications.
Stacey, Andrew W. "An Adaptive Bayesian Approach to Bernoulli-Response Clinical Trials." CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2065.pdf.
Full textKondo, Pedro Kiochi. "CÁLCULO FINITO: DEMONSTRAÇÕES E APLICAÇÕES." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2014. http://tede2.uepg.br/jspui/handle/prefix/1528.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work some topics of the Discrete or Finite Calculus are developed. In particular, we study difference operators, factorial powers, Stirling numbers of the first and second type, the Newton’s formula of differences, the fundamental theorem of the Finite Calculus, the summation process, and the Bernoulli numbers and Bernoulli polynomials. Then we show the effectiveness of the theory for the calculation of closed formulas for the value of many finite sums. We also study the classical problem of obtaining the polynomials which express the value of the sums of powers of natural numbers.
Neste trabalho desenvolvemos alguns tópicos do Cálculo Discreto ou Finito. Em particular, estudamos operadores de diferenças, potências fatoriais, números de Stirling do primeiro e do segundo tipo, a fórmula de diferenças de Newton, o teorema fundamental do Cálculo Finito, o processo de somação e os números e polinômios de Bernoulli. Mostramos então a eficácia da teoria no cálculo de fórmulas fechadas para o valor de diversas somas finitas. Também estudamos o problema clássico de obter os polinômios que expressam o valor de somas de potências de números naturais.
Perkins, Rudolph Bronson. "On Special Values of Pellarin’s L-series." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1383827548.
Full textChung, Yi-Shiu, and 鍾逸修. "The Calculation and Application of Bernoulli number." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/84502958840518031848.
Full text國立臺中教育大學
數學教育學系
96
Up to the present, it is an important study for calculating Bernoulli number. There are many different methods to claculate Bernoulli number. But for these methods, we must take lots of steps to calaulate Bernoulli number. Based on this, our research applies Riemann--zeta function and the extended function of the sums of powers of consecutive integers to get an easier method. Then, we will calculate Bernoulli number by using Matlab 7.1, and investigate the relationship between Bernoulli nmuber and Stirling number of second kind. Our results are as follows. 1. The formula of Bernoulli number is B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1}S_{1}^{\prime}(-1) + \sum_{i=1}^{k}C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \}, k\in N . 2. When $k$ is bigger, Bernoulli number will become bigger and be alternated between plus and minus. 3. The relationship between Bernoulli number and Stirling number of second kind is B_{m+1}=\sum_{k=1}^{m+1}\frac{(-1)^k}{k+1}\cdot k!\cdot S_2(m+1,k).
Liu, Chih Shiuan, and 劉志璿. "The connection between the functions of Riemann zeta and Bernoulli Number." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/17154599310613619902.
Full text國立臺中教育大學
數學教育學系
96
This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$.
Books on the topic "Bernoulli number"
1954-, Dilcher Karl, Skula Ladislav, and Slavutskiĭ Ilja Sh, eds. Bernoulli numbers: Bibliography (1713-1990). Kingston, Ont: Queen's University, 1991.
Find full textArakawa, Tsuneo, Tomoyoshi Ibukiyama, and Masanobu Kaneko. Bernoulli Numbers and Zeta Functions. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2.
Full textauthor, Ibukiyama Tomoyoshi, Kaneko Masanobu author, and Zagier, Don, 1951- writer of supplementary textual content, eds. Bernoulli numbers and Zeta functions. Tokyo: Springer, 2014.
Find full textKanemitsu, Shigeru. Vistas of special functions. Singapore: World Scientific, 2007.
Find full textInvitation to classical analysis. Providence, R.I: American Mathematical Society, 2012.
Find full textVistas of Special Functions. World Scientific Publishing Company, 2007.
Find full textVorlesungen über die Bernoullischen zahlen: Ihren zusammenhang mit den secanten-coefficienten und ihre wichtigeren anwendungen. Berlin: J. Springer, 1991.
Find full textIbukiyama, Tomoyoshi, Masanobu Kaneko, Tsuneo Arakawa, and Don B. Zagier. Bernoulli Numbers and Zeta Functions. Springer, 2016.
Find full textIbukiyama, Tomoyoshi, Masanobu Kaneko, and Tsuneo Arakawa. Bernoulli Numbers and Zeta Functions. Springer, 2014.
Find full textFranzosa, Marie M. Densities and dependence for point processes. 1988.
Find full textBook chapters on the topic "Bernoulli number"
Ireland, Kenneth, and Michael Rosen. "Bernoulli Numbers." In A Classical Introduction to Modern Number Theory, 228–48. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_15.
Full textSimsek, Yilmaz. "Families of Twisted Bernoulli Numbers, Twisted Bernoulli Polynomials, and Their Applications." In Analytic Number Theory, Approximation Theory, and Special Functions, 149–214. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0258-3_6.
Full textSándor, J., and B. Crstici. "Stirling, bell, bernoulli, euler and eulerian numbers." In Handbook of Number Theory II, 459–618. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2547-5_5.
Full textIbukiyama, Tomoyoshi, and Masanobu Kaneko. "Class Number Formula and an Easy Zeta Function of the Space of Quadratic Forms." In Bernoulli Numbers and Zeta Functions, 155–82. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2_10.
Full textWagstaff, Samuel S. "Prime Divisors of the Bernoulli and Euler Numbers." In Number Theory for the Millennium III, 357–74. London: A K Peters/CRC Press, 2023. http://dx.doi.org/10.1201/9780138747022-21.
Full textIsaacson, Brad. "Generalized Bernoulli Numbers, Cotangent Power Sums, and Higher-Order Arctangent Numbers." In Combinatorial and Additive Number Theory V, 253–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10796-2_12.
Full textAdam, David, and Jean-Luc Chabert. "Bhargava’s Exponential Functions and Bernoulli Numbers Associated to the Set of Prime Numbers." In Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 9–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28847-0_2.
Full textChryssaphinou, O., S. Papastavridis, and T. Tsapelas. "On the Number of Overlapping Success Runs in a Sequence of Independent Bernoulli Trials." In Applications of Fibonacci Numbers, 103–12. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2058-6_10.
Full textIbukiyama, Tomoyoshi, and Masanobu Kaneko. "Bernoulli Numbers." In Bernoulli Numbers and Zeta Functions, 1–24. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2_1.
Full textRibenboim, Paulo. "Bernoulli Numbers." In Classical Theory of Algebraic Numbers, 367–97. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21690-4_18.
Full textConference papers on the topic "Bernoulli number"
Campos, Richard A., Malvin C. Teich, and B. E. A. Saleh. "Homodyne photon-number statistics for nonclassical states of light at a lossless beam splitter." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thii6.
Full textDelande, E. D., D. E. Clark, and J. Houssineau. "Regional variance in target number: Analysis and application for multi-Bernoulli point processes." In IET Conference on Data Fusion & Target Tracking 2014: Algorithms and Applications. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.0531.
Full textKuo, Y. L., and W. L. Cleghorn. "Curvature-Based Finite Element Method for Euler-Bernoulli Beams." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34213.
Full textChih-Wei Yi, Peng-Jun Wan, Xiang-Yang Li, and O. Frieder. "Asymptotic distribution of the number of isolated nodes in wireless ad hoc networks with Bernoulli nodes." In WCNC 2003 - IEEE Wireless Communications and Networking Conference. IEEE, 2003. http://dx.doi.org/10.1109/wcnc.2003.1200623.
Full textKatariya, Sumeet, Branislav Kveton, Csaba Szepesvári, Claire Vernade, and Zheng Wen. "Bernoulli Rank-1 Bandits for Click Feedback." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/278.
Full textIshihata, Masakazu, and Takanori Maehara. "Exact Bernoulli Scan Statistics using Binary Decision Diagrams." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/795.
Full textTeng, Shen, Wang Jiong, Sun Dong, Liu Yafeng, and Tian Zhouyu. "Modeling and Numerical Simulation of Flow Resistance Characteristics in Slowly-Varying Rectangular Cross-Section Microchannel." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65257.
Full textCaddemi, Salvatore, and Ivo Calio`. "Closed Form Buckling Solutions of Euler-Bernoulli Columns With Multiple Singularities." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11168.
Full textYong, Yan. "Vibration of Euler-Bernoulli Beams With Arbitrary Boundaries and Intermediate Constraints." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0284.
Full textNaguleswaran, S. "Vibration of an Euler-Bernoulli Uniform Beam Carrying Several Thin Disks." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48361.
Full textReports on the topic "Bernoulli number"
Pengelley, David. Figurate Numbers and Sums of Numerical Powers: Fermat, Pascal, Bernoulli. Washington, DC: The MAA Mathematical Sciences Digital Library, June 2013. http://dx.doi.org/10.4169/loci003987.
Full textKlammler, Harald. Introduction to the Mechanics of Flow and Transport for Groundwater Scientists. The Groundwater Project, 2023. http://dx.doi.org/10.21083/gxat7083.
Full text