Journal articles on the topic 'Beam shaping'

To see the other types of publications on this topic, follow the link: Beam shaping.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Beam shaping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Dickey, Fred M. "Laser Beam Shaping." Optical Engineering 42, no. 11 (November 1, 2003): 3077. http://dx.doi.org/10.1117/1.1624611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dickey, Fred M. "Laser Beam Shaping." Optics and Photonics News 14, no. 4 (April 1, 2003): 30. http://dx.doi.org/10.1364/opn.14.4.000030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hao, Bing, and James Leger. "Polarization beam shaping." Applied Optics 46, no. 33 (November 19, 2007): 8211. http://dx.doi.org/10.1364/ao.46.008211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shiloh, Roy, Roei Remez, and Ady Arie. "Electron-Beam Shaping." Microscopy and Microanalysis 21, S3 (August 2015): 2305–6. http://dx.doi.org/10.1017/s1431927615012301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jabbour, Toufic G., and Stephen M. Kuebler. "Vectorial beam shaping." Optics Express 16, no. 10 (May 2, 2008): 7203. http://dx.doi.org/10.1364/oe.16.007203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leavitt, Dennis D. "Dynamic Beam Shaping." Medical Dosimetry 15, no. 2 (1990): 47–50. http://dx.doi.org/10.1016/0958-3947(90)90033-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lavelle, John, and Créidhe O'Sullivan. "Beam shaping using Gaussian beam modes." Journal of the Optical Society of America A 27, no. 2 (January 29, 2010): 350. http://dx.doi.org/10.1364/josaa.27.000350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salik, Boaz, Joseph Rosen, and Ammon Yariv. "One-dimensional beam shaping." Journal of the Optical Society of America A 12, no. 8 (August 1, 1995): 1702. http://dx.doi.org/10.1364/josaa.12.001702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romero, L. A., and F. M. Dickey. "Lossless laser beam shaping." Journal of the Optical Society of America A 13, no. 4 (April 1, 1996): 751. http://dx.doi.org/10.1364/josaa.13.000751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Jia, Changhe Zhou, Xiaohui Sun, and Liren Liu. "Superresolution laser beam shaping." Applied Optics 43, no. 10 (April 1, 2004): 2112. http://dx.doi.org/10.1364/ao.43.002112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Laskin, Alexander. "Solutions for Beam Shaping." Laser Technik Journal 10, no. 1 (January 2013): 37–40. http://dx.doi.org/10.1002/latj.201390007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ma Xue, 马. 学., 李. 琦. Li Qi, and 鲁建业 Lu Jianye. "Caussian beam shaping terahertz Gaussian beam to ring beam." Infrared and Laser Engineering 46, no. 5 (2017): 525002. http://dx.doi.org/10.3788/irla201746.0525002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Koga, Yosuke, Yuki Misaki, and Shiyuan Yang. "Beam Shaping of Multiple Laser Diodes Using a Kinoform." Journal of the Institute of Industrial Applications Engineers 2, no. 2 (April 25, 2014): 80–84. http://dx.doi.org/10.12792/jiiae.2.80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Jun, Xinquan Tang, and Jun Xia. "Simultaneous Generation of Complex Structured Curve Beam." Nanomaterials 9, no. 1 (January 11, 2019): 87. http://dx.doi.org/10.3390/nano9010087.

Full text
Abstract:
At present, people are using holographic technologies to shape complex optical beams for both fundamental research and practical applications. However, most of the reported works are focusing on the generation of a single beam pattern based on the computer-generated hologram (CGH). In this paper, we present a method for simultaneously shaping the multiple beam lattice where the intensity and phase of each individual beam can be prescribed along an arbitrary geometric curve. The CGH that is responsible for each individual beam is calculated by using the holographic beam shaping technique, afterwards all the CGHs are multiplexed and encoded into one phase-only hologram by adding respective linear phase grating such that different curves are appeared in different positions of the focal regions. We experimentally prove that the simultaneous generation of multiple beams can be readily achieved. The generated beams are especially useful for applications such as multitasking micro-machining and optical trapping.
APA, Harvard, Vancouver, ISO, and other styles
15

Braat, Joseph. "Design of beam-shaping optics." Applied Optics 34, no. 15 (May 20, 1995): 2665. http://dx.doi.org/10.1364/ao.34.002665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nanfang Yu, R. Blanchard, J. Fan, Qi Jie Wang, C. Pflugl, L. Diehl, T. Edamura, et al. "Plasmonics for Laser Beam Shaping." IEEE Transactions on Nanotechnology 9, no. 1 (January 2010): 11–29. http://dx.doi.org/10.1109/tnano.2009.2029099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Roberts, Nicholas C. "Beam shaping by holographic filters." Applied Optics 28, no. 1 (January 1, 1989): 31. http://dx.doi.org/10.1364/ao.28.000031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dickey, Fred M. "Gaussian laser beam profile shaping." Optical Engineering 35, no. 11 (November 1, 1996): 3285. http://dx.doi.org/10.1117/1.601069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Leavitt, DennisD. "Beam shaping for srt/srs." Medical Dosimetry 23, no. 3 (September 1998): 229–36. http://dx.doi.org/10.1016/s0958-3947(98)00018-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Shuyan, Yuhang Ren, and Gunter Lüpke. "Ultrashort laser pulse beam shaping." Applied Optics 42, no. 4 (February 1, 2003): 715. http://dx.doi.org/10.1364/ao.42.000715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Forbes, Andrew, Fred Dickey, Mapule DeGama, and Anton du Plessis. "Wavelength tunable laser beam shaping." Optics Letters 37, no. 1 (December 22, 2011): 49. http://dx.doi.org/10.1364/ol.37.000049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shapira, Asia, Roy Shiloh, Irit Juwiler, and Ady Arie. "Two-dimensional nonlinear beam shaping." Optics Letters 37, no. 11 (June 1, 2012): 2136. http://dx.doi.org/10.1364/ol.37.002136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Brodsky, Alexander, Natan Kaplan, Stefan Liebl, and Rainer Franke. "Adjustable-Function Beam Shaping Methods." PhotonicsViews 16, no. 2 (March 12, 2019): 37–41. http://dx.doi.org/10.1002/phvs.201900015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Adams, Daniel. "Cylinder Lenses for Beam Shaping." Laser Technik Journal 15, no. 1 (January 2018): 26–28. http://dx.doi.org/10.1002/latj.201800002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Skupsky, S., T. J. Kessler, S. A. Letzring, and Y. ‐H Chuang. "Laser‐beam pulse shaping using spectral beam deflection." Journal of Applied Physics 73, no. 6 (March 15, 1993): 2678–85. http://dx.doi.org/10.1063/1.353038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ramírez-Sánchez, V., and G. Piquero. "Global beam shaping with nonuniformly polarized beams: a proposal." Applied Optics 45, no. 35 (December 10, 2006): 8902. http://dx.doi.org/10.1364/ao.45.008902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zheng, Guoxing, Chunlei Du, Chongxi Zhou, and Chunyan Zheng. "Micrograting-array beam-shaping technique for asymmetrical laser beams." Applied Optics 44, no. 17 (June 10, 2005): 3540. http://dx.doi.org/10.1364/ao.44.003540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lukishova, S. G., P. P. Pashinin, S. Kh Batygov, V. A. Arkhangelskaya, A. E. Poletimov, A. S. Scheulin, and B. M. Terentiev. "High-power laser beam shaping using apodized apertures." Laser and Particle Beams 8, no. 1-2 (January 1990): 349–60. http://dx.doi.org/10.1017/s0263034600008107.

Full text
Abstract:
This paper gives the results of the investigations of four types of apodized (soft) apertures for beam shaping of UV, visible and IR high-power lasers with near-Gaussian and flat-top transmittance. The apodized apertures (AA) are ≈3–45 mm in diameter, but the principles of fabrication of such apertures lends the possibility of apodizing beams with diameter <1 mm and >200 mm. The examples of studies of the AA in high-power lasers are presented. The possibility of avoiding the Fresnel diffraction ripples is proved experimentally.
APA, Harvard, Vancouver, ISO, and other styles
29

Jun, Young Chul, and Igal Brener. "Optical Manipulation with Plasmonic Beam Shaping Antenna Structures." Advances in OptoElectronics 2012 (August 26, 2012): 1–6. http://dx.doi.org/10.1155/2012/595646.

Full text
Abstract:
Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.
APA, Harvard, Vancouver, ISO, and other styles
30

Liang, Yansheng, Xue Yun, Minru He, Zhaojun Wang, Shaowei Wang, and Ming Lei. "Zero-order-free complex beam shaping." Optics and Lasers in Engineering 155 (August 2022): 107048. http://dx.doi.org/10.1016/j.optlaseng.2022.107048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

GAO Yu-han, 高瑀含, 安志勇 AN Zhi-yong, 李娜娜 LI Na-na, 赵伟星 ZHAO Wei-xing, and 王劲松 WANG Jin-song. "Optical design of Gaussian beam shaping." Optics and Precision Engineering 19, no. 7 (2011): 1464–71. http://dx.doi.org/10.3788/ope.20111907.1464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Baum, Marcus. "Towards Dynamic Holographic Laser Beam Shaping." Journal of Laser Micro/Nanoengineering 10, no. 2 (May 2015): 216–21. http://dx.doi.org/10.2961/jlmn.2015.02.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Grunwald, Rüdiger, Siegfried Woggon, Uwe Griebner, Rudi Ehlert, and Wolfgang Reinecke. "Axial Beam Shaping with Nonspherical Microoptics." Japanese Journal of Applied Physics 37, Part 1, No. 6B (June 30, 1998): 3701–7. http://dx.doi.org/10.1143/jjap.37.3701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Meltaus, J., J. Salo, E. Noponen, M. M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, et al. "Millimeter-wave beam shaping using holograms." IEEE Transactions on Microwave Theory and Techniques 51, no. 4 (April 2003): 1274–80. http://dx.doi.org/10.1109/tmtt.2003.809679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sales, Tasso R. M. "Structured microlens arrays for beam shaping." Optical Engineering 42, no. 11 (November 1, 2003): 3084. http://dx.doi.org/10.1117/1.1618817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zhao, Yiqiong. "Vector iterative algorithms for beam shaping." Optical Engineering 42, no. 11 (November 1, 2003): 3080. http://dx.doi.org/10.1117/1.1619411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhdanova, Alexandra A., Yujie Shen, Jonathan V. Thompson, Marlan O. Scully, Vladislav V. Yakovlev, and Alexei V. Sokolov. "Controlled supercontinua via spatial beam shaping." Journal of Modern Optics 65, no. 11 (August 30, 2017): 1332–35. http://dx.doi.org/10.1080/09500340.2017.1366566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Peng, Yan-Qing Lu, and Wei Hu. "Beam shaping via photopatterned liquid crystals." Liquid Crystals 43, no. 13-15 (June 2, 2016): 2051–61. http://dx.doi.org/10.1080/02678292.2016.1191685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

De Sio, Luciano, David E. Roberts, Zhi Liao, Jeoungyeon Hwang, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball. "Beam shaping diffractive wave plates [Invited]." Applied Optics 57, no. 1 (November 22, 2017): A118. http://dx.doi.org/10.1364/ao.57.00a118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shealy, David L., and John A. Hoffnagle. "Laser beam shaping profiles and propagation." Applied Optics 45, no. 21 (July 20, 2006): 5118. http://dx.doi.org/10.1364/ao.45.005118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Keren-Zur, Shay, Ori Avayu, Lior Michaeli, and Tal Ellenbogen. "Nonlinear Beam Shaping with Plasmonic Metasurfaces." ACS Photonics 3, no. 1 (December 22, 2015): 117–23. http://dx.doi.org/10.1021/acsphotonics.5b00528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Grillo, Vincenzo, Ebrahim Karimi, Roberto Balboni, Gian Carlo Gazzadi, Stefano Frabboni, Erfan Mafakheri, and Robert W. Boyd. "Innovative Phase Plates for Beam Shaping." Microscopy and Microanalysis 20, S3 (August 2014): 228–29. http://dx.doi.org/10.1017/s1431927614002864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Streibl, Norbert. "Beam Shaping with Optical Array Generators." Journal of Modern Optics 36, no. 12 (December 1989): 1559–73. http://dx.doi.org/10.1080/09500348914551681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Desfarges-Berthelemot, A., V. Kermene, B. Colombeau, M. Vampouille, and C. Froehly. "Intracavity beam shaping and referenceless holography." Optical Materials 18, no. 1 (October 2001): 27–35. http://dx.doi.org/10.1016/s0925-3467(01)00125-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shapira, Asia, Roy Shiloh, Irit Juwiler, and Ady Arie. "Two-dimensional nonlinear beam shaping: erratum." Optics Letters 37, no. 22 (November 15, 2012): 4795. http://dx.doi.org/10.1364/ol.37.004795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shapiro, Howard M. "Laser Beam Shaping and Spot Size." Current Protocols in Cytometry 1, no. 1 (July 1997): 1.6.1–1.6.5. http://dx.doi.org/10.1002/0471142956.cy0106s01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bischoff, Christian, Erwin Jäger, and Udo Umhofer. "Beam Shaping Optics for Process Acceleration." Laser Technik Journal 12, no. 3 (June 2015): 53–57. http://dx.doi.org/10.1002/latj.201500016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pallier, Gwenn, and Jean‐François Poisson. "Beam shaping to scale up microprocessing." PhotonicsViews 20, no. 1 (January 3, 2023): 32–35. http://dx.doi.org/10.1002/phvs.202300003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bilalodin, Bilalodin, Aris Haryadi, Kartika Sari, and Wihantoro Wihantoro. "OPTIMIZATION AND VERIFICATION OF DOUBLE LAYER BEAM SHAPING ASSEMBLY (DLBSA) FOR EPITHERMAL NEUTRON GENERATION." Jurnal Teknologi 84, no. 4 (May 30, 2022): 103–12. http://dx.doi.org/10.11113/jurnalteknologi.v84.18047.

Full text
Abstract:
The designs of Beam Shaping Assembly (BSA) for moderating fast neutron into epithermal neutron have been conducted. Some BSA models that are previously developed are still having problems in generating epithermal neutron. Instead, we propose designs of double layer beam shaping assembly (DLBSA) to produce epithermal neutron. Optimization of the Double Layer Beam Shaping Assembly (DLBSA) design was carried out using the genetic algorithm (AG) method using MCNPX and verified using the Particle and Heavy Ion Transport code System (PHITS). The optimization resulted in four configurations up to the 21st generation capable of producing epithermal neutron beams that comply with the IAEA standards. The best four configurations are obtained by combining: (1) Al with one of the CaF2, BiF3 or PbF2 materials as moderator, (2) Pb with Pb, Ni, or Bi as a reflector, (3) Ni with FeC, or C as collimator, (4) (FeC + LiF) as fast neutron filter, Cd or B4C as thermal neutron filter. Verification of the four optimum configurations of the DLBSA model using PHITS code shows that the epithermal neutron beam produced by DLBSA has met the IAEA standards.
APA, Harvard, Vancouver, ISO, and other styles
50

Amoiropoulos, Kostas, Georgia Kioselaki, Nikolaos Kourkoumelis, and Aris Ikiades. "Shaping Beam Profiles Using Plastic Optical Fiber Tapers with Application to Ice Sensors." Sensors 20, no. 9 (April 28, 2020): 2503. http://dx.doi.org/10.3390/s20092503.

Full text
Abstract:
Using either bulk or fiber optics the profile of laser beams can be altered from Gaussian to top-hat or hollow beams allowing enhanced performance in applications like laser cooling, optical trapping, and fiber sensing. Here, we report a method based on multimode Plastic Optical Fibers (POF) long-tapers, to tweak the beam profile from near Gaussian to a hollow beam, by generating surface irregularities on the conical sections of the taper with a heat-and-pull technique. Furthermore, a cutback technique applied on long tapers expanded the output beam profile by more than twice the numerical aperture (NA) of the fiber. The enhanced sensitivity and detection efficiency of the extended profile was tested on a fiber optical ice sensor related to aviation safety.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography