Academic literature on the topic 'Bayesian non-Parametric model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian non-Parametric model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian non-Parametric model"
Assaf, A. George, Mike Tsionas, Florian Kock, and Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model." Annals of Tourism Research 87 (March 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Full textAssaf, A. George, Mike Tsionas, Florian Kock, and Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model." Annals of Tourism Research 87 (March 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Full textLI, R., J. ZHOU, and L. WANG. "ESTIMATION OF THE BINARY LOGISTIC REGRESSION MODEL PARAMETER USING BOOTSTRAP RE-SAMPLING." Latin American Applied Research - An international journal 48, no. 3 (July 31, 2018): 199–204. http://dx.doi.org/10.52292/j.laar.2018.228.
Full textAlamri, Faten S., Edward L. Boone, and David J. Edwards. "A Bayesian Monotonic Non-parametric Dose-Response Model." Human and Ecological Risk Assessment: An International Journal 27, no. 8 (August 12, 2021): 2104–23. http://dx.doi.org/10.1080/10807039.2021.1956298.
Full textMinh Nguyen, Thanh, and Q. M. Jonathan Wu. "A non-parametric Bayesian model for bounded data." Pattern Recognition 48, no. 6 (June 2015): 2084–95. http://dx.doi.org/10.1016/j.patcog.2014.12.019.
Full textXia, Yunqing. "Application of non parametric Bayesian methods in high dimensional data." Journal of Computational Methods in Sciences and Engineering 24, no. 2 (May 10, 2024): 731–43. http://dx.doi.org/10.3233/jcm-237104.
Full textLi, Hong, and Yang Lu. "A Bayesian non-parametric model for small population mortality." Scandinavian Actuarial Journal 2018, no. 7 (January 2, 2018): 605–28. http://dx.doi.org/10.1080/03461238.2017.1418420.
Full textDong, Alice X. D., Jennifer S. K. Chan, and Gareth W. Peters. "RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES." ASTIN Bulletin 45, no. 3 (July 9, 2015): 503–50. http://dx.doi.org/10.1017/asb.2015.8.
Full textMILADINOVIC, BRANKO, and CHRIS P. TSOKOS. "SENSITIVITY OF THE BAYESIAN RELIABILITY ESTIMATES FOR THE MODIFIED GUMBEL FAILURE MODEL." International Journal of Reliability, Quality and Safety Engineering 16, no. 04 (August 2009): 331–41. http://dx.doi.org/10.1142/s0218539309003423.
Full textHabeeb, Ahmed Abdulsamad, and Qutaiba N. Nayef Al-Kazaz. "Bayesian and Classical Semi-parametric Estimation of the Balanced Longitudinal Data Model." International Academic Journal of Social Sciences 10, no. 2 (November 2, 2023): 25–38. http://dx.doi.org/10.9756/iajss/v10i2/iajss1010.
Full textDissertations / Theses on the topic "Bayesian non-Parametric model"
Bartcus, Marius. "Bayesian non-parametric parsimonious mixtures for model-based clustering." Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0010/document.
Full textThis thesis focuses on statistical learning and multi-dimensional data analysis. It particularly focuses on unsupervised learning of generative models for model-based clustering. We study the Gaussians mixture models, in the context of maximum likelihood estimation via the EM algorithm, as well as in the Bayesian estimation context by maximum a posteriori via Markov Chain Monte Carlo (MCMC) sampling techniques. We mainly consider the parsimonious mixture models which are based on a spectral decomposition of the covariance matrix and provide a flexible framework particularly for the analysis of high-dimensional data. Then, we investigate non-parametric Bayesian mixtures which are based on general flexible processes such as the Dirichlet process and the Chinese Restaurant Process. This non-parametric model formulation is relevant for both learning the model, as well for dealing with the issue of model selection. We propose new Bayesian non-parametric parsimonious mixtures and derive a MCMC sampling technique where the mixture model and the number of mixture components are simultaneously learned from the data. The selection of the model structure is performed by using Bayes Factors. These models, by their non-parametric and sparse formulation, are useful for the analysis of large data sets when the number of classes is undetermined and increases with the data, and when the dimension is high. The models are validated on simulated data and standard real data sets. Then, they are applied to a real difficult problem of automatic structuring of complex bioacoustic data issued from whale song signals. Finally, we open Markovian perspectives via hierarchical Dirichlet processes hidden Markov models
Ren, Yan. "A Non-parametric Bayesian Method for Hierarchical Clustering of Longitudinal Data." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337085531.
Full textGebremeskel, Haftu Gebrehiwot. "Implementing hierarchical bayesian model to fertility data: the case of Ethiopia." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424458.
Full textBackground: L’Etiopia è una nazione divisa in 9 regioni amministrative (definite su base etnica) e due città. Si tratta di una nazione citata spesso come esempio di alta fecondità e rapida crescita demografica. Nonostante gli sforzi del governo, fecondità e cresita della popolazione rimangono elevati, specialmente a livello regionale. Pertanto, lo studio della fecondità in Etiopia e nelle sue regioni – caraterizzate da un’alta variabilità – è di vitale importanza. Un modo semplice di rilevare le diverse caratteristiche della distribuzione della feconditàè quello di costruire in modello adatto, specificando diverse funzioni matematiche. In questo senso, vale la pena concentrarsi sui tassi specifici di fecondità, i quali mostrano una precisa forma comune a tutte le popolazioni. Tuttavia, molti paesi mostrano una “simmetrizzazione” che molti modelli non riescono a cogliere adeguatamente. Pertanto, per cogliere questa la forma dei tassi specifici, sono stati utilizzati alcuni modelli parametrici ma l’uso di tali modelliè ancora molto limitato in Africa ed in Etiopia in particolare. Obiettivo: In questo lavoro si utilizza un nuovo modello per modellare la fecondità in Etiopia con quattro obiettivi specifici: (1). esaminare la forma dei tassi specifici per età dell’Etiopia a livello nazionale e regionale; (2). proporre un modello che colga al meglio le varie forme dei tassi specifici sia a livello nazionale che regionale. La performance del modello proposto verrà confrontata con quella di altri modelli esistenti; (3). adattare la funzione di fecondità proposta attraverso un modello gerarchico Bayesiano e mostrare che tale modelloè sufficientemente flessibile per stimare la fecondità delle singole regioni – dove le stime possono essere imprecise a causa di una bassa numerosità campionaria; (4). confrontare le stime ottenute con quelle fornite da metodi non gerarchici (massima verosimiglianza o Bayesiana semplice) Metodologia: In questo studio, proponiamo un modello a 4 parametri, la Normale Asimmetrica, per modellare i tassi specifici di fecondità. Si mostra che questo modello è sufficientemente flessibile per cogliere adeguatamente le forme dei tassi specifici a livello sia nazionale che regionale. Per valutare la performance del modello, si è condotta un’analisi preliminare confrontandolo con altri dieci modelli parametrici e non parametrici usati nella letteratura demografica: la funzione splie quadratica, la Cubic-Spline, i modelli di Coale e Trussel, Beta, Gamma, Hadwiger, polinomiale, Gompertz, Peristera-Kostaki e l’Adjustment Error Model. I modelli sono stati stimati usando i minimi quadrati non lineari (nls) e il Criterio d’Informazione di Akaike viene usato per determinarne la performance. Tuttavia, la stima per le singole regioni pu‘o risultare difficile in situazioni dove abbiamo un’alta variabilità della numerosità campionaria. Si propone, quindi di usare procedure gerarchiche che permettono di ottenere stime più affidabili rispetto ai modelli non gerarchici (“pooling” completo o “unpooling”) per l’analisi a livello regionale. In questo studia si formula un modello Bayesiano gerarchico ottenendo la distribuzione a posteriori dei parametri per i tassi di fecnodità specifici a livello regionale e relativa stima dell’incertezza. Altri metodi non gerarchici (Bayesiano semplice e massima verosimiglianza) vengono anch’essi usati per confronto. Gli algoritmi Gibbs Sampling e Metropolis-Hastings vengono usati per campionare dalla distribuzione a posteriori di ogni parametro. Anche il metodo del “Data Augmentation” viene utilizzato per ottenere le stime. La robustezza dei risultati viene controllata attraverso un’analisi di sensibilità e l’opportuna diagnostica della convergenza degli algoritmi viene riportata nel testo. In tutti i casi, si sono usate distribuzioni a priori non-informative. Risultati: I risutlati ottenuti dall’analisi preliminare mostrano che il modello Skew Normal ha il pi`u basso AIC nelle regioni Addis Ababa, Dire Dawa, Harari, Affar, Gambela, Benshangul-Gumuz e anche per le stime nazionali. Nelle altre regioni (Tigray, Oromiya, Amhara, Somali e SNNP) il modello Skew Normal non risulta il milgiore, ma comunque mostra un buon adattamento ai dati. Dunque, il modello Skew Normal risulta il migliore in 6 regioni su 11 e sui tassi specifici di tutto il paese. Conclusioni: Dunque, il modello Skew Normal risulta globalmente il migliore. Da questo risultato iniziale, siè partiti per costruire i modelli Gerachico Bayesiano, Bayesiano semplice e di massima verosimiglianza. Il risultato del confronto tra questi tre approcci è che il modello gerarchico fornisce stime più preciso rispetto agli altri.
Bratières, Sébastien. "Non-parametric Bayesian models for structured output prediction." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274973.
Full textZhang, Jufen. "Bayesian density estimation and classification of incomplete data using semi-parametric and non parametric models." Thesis, University of Exeter, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426082.
Full textXu, Yangyi. "Frequentist-Bayesian Hybrid Tests in Semi-parametric and Non-parametric Models with Low/High-Dimensional Covariate." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71285.
Full textPh. D.
Knowles, David Arthur. "Bayesian non-parametric models and inference for sparse and hierarchical latent structure." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610403.
Full textHadrich, Ben Arab Atizez. "Étude des fonctions B-splines pour la fusion d'images segmentées par approche bayésienne." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0385/document.
Full textIn this thesis we are treated the problem of nonparametric estimation probability distributions. At first, we assumed that the unknown density f was approximated by a basic mixture quadratic B-spline. Then, we proposed a new estimate of the unknown density function f based on quadratic B-splines, with two methods estimation. The first is based on the maximum likelihood method and the second is based on the Bayesian MAP estimation method. Then we have generalized our estimation study as part of the mixture and we have proposed a new estimator mixture of unknown distributions based on the adapted estimation of two methods. In a second time, we treated the problem of semi supervised statistical segmentation of images based on the hidden Markov model and the B-sline functions. We have shown the contribution of hybridization of the hidden Markov model and B-spline functions in unsupervised Bayesian statistical image segmentation. Thirdly, we presented a fusion approach based on the maximum likelihood method, through the nonparametric estimation of probabilities, for each pixel of the image. We then applied this approach to multi-spectral and multi-temporal images segmented by our nonparametric and unsupervised algorithm
Yang, Sikun [Verfasser], Heinz Akademischer Betreuer] Köppl, and Kristian [Akademischer Betreuer] [Kersting. "Non-parametric Bayesian Latent Factor Models for Network Reconstruction / Sikun Yang ; Heinz Köppl, Kristian Kersting." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-96957.
Full textYang, Sikun [Verfasser], Heinz [Akademischer Betreuer] Köppl, and Kristian [Akademischer Betreuer] Kersting. "Non-parametric Bayesian Latent Factor Models for Network Reconstruction / Sikun Yang ; Heinz Köppl, Kristian Kersting." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/1204200769/34.
Full textBooks on the topic "Bayesian non-Parametric model"
Florens, J. P., M. Mouchart, J. P. Raoult, L. Simar, and A. F. M. Smith. Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches. Springer London, Limited, 2012.
Find full textBrazier, John, Julie Ratcliffe, Joshua A. Salomon, and Aki Tsuchiya. Modelling health state valuation data. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198725923.003.0005.
Full textBook chapters on the topic "Bayesian non-Parametric model"
Khoufache, Reda, Anisse Belhadj, Hanene Azzag, and Mustapha Lebbah. "Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model." In Advances in Knowledge Discovery and Data Mining, 271–83. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2242-6_22.
Full textBatmanghelich, Nematollah Kayhan, Ardavan Saeedi, Raul San Jose Estepar, Michael Cho, and William M. Wells. "Inferring Disease Status by Non-parametric Probabilistic Embedding." In Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging, 49–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61188-4_5.
Full textAlhaji, Baba B., Hongsheng Dai, Yoshiko Hayashi, Veronica Vinciotti, Andrew Harrison, and Berthold Lausen. "Analysis of ChIP-seq Data Via Bayesian Finite Mixture Models with a Non-parametric Component." In Analysis of Large and Complex Data, 507–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25226-1_43.
Full textAlmeida, Carlos, and Michel Mouchart. "Bayesian Encompassing Specification Test Under Not Completely Known Partial Observability*." In Bayesian Statistics 8, 575–80. Oxford University PressOxford, 2007. http://dx.doi.org/10.1093/oso/9780199214655.003.0021.
Full textWalker, S. G., and J. C. Wakefield. "Bayesian Approaches to the Population Modelling of a Monotonic Dose-Response Relation." In Bayesian Statistics 5, 783–90. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0059.
Full text"Mobile Robot Localization with Recursive Bayesian Filters." In Simultaneous Localization and Mapping for Mobile Robots, 203–52. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2104-6.ch007.
Full textBandyopadhyay, Arindam. "Statistical Tools for Model Validation and Back Testing." In Basic Statistics for Risk Management in Banks and Financial Institutions, 233–54. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0009.
Full text"5. Random Coefficient Models." In Bayesian Non- and Semi-parametric Methods and Applications, 152–86. Princeton University Press, 2014. http://dx.doi.org/10.1515/9781400850303-006.
Full textHeikkinen, Juha. "Trans-dimensional Bayesian non-parametrics with spatial point processes." In Highly Structured Stochastic Systems, 203–6. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198510550.003.0019.
Full textHjort, N. L. "Bayesian Approaches to Non- and Semiparametric Density Estimation." In Bayesian Statistics 5, 223–54. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0013.
Full textConference papers on the topic "Bayesian non-Parametric model"
Matteoli, Stefania, Marco Diani, and Giovanni Corsini. "Bayesian Non-Parametric Detector Based on the Replacement Model." In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883554.
Full textZhuang, Peixian, Wei Wang, Delu Zeng, and Xinghao Ding. "Robust mixed noise removal with non-parametric Bayesian sparse outlier model." In 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2014. http://dx.doi.org/10.1109/mmsp.2014.6958792.
Full textEnsafi, Shahab, Shijian Lu, Ashraf A. Kassim, and Chew Lim Tan. "Sparse non-parametric Bayesian model for HEP-2 cell image classification." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7163964.
Full textFujimoto, Masakiyo, Yotaro Kubo, and Tomohiro Nakatani. "Unsupervised non-parametric Bayesian modeling of non-stationary noise for model-based noise suppression." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854667.
Full textOtoshi, Tatsuya, Shin'ichi Arakawa, Masayuki Murata, and Takeo Hosomi. "Non-parametric Decision-Making by Bayesian Attractor Model for Dynamic Slice Selection." In GLOBECOM 2021 - 2021 IEEE Global Communications Conference. IEEE, 2021. http://dx.doi.org/10.1109/globecom46510.2021.9685972.
Full textAliamiri, A., J. Stalnaker, and E. Miller. "A Bayesian Approach for Classification of Buried Objects using Non-Parametric Prior Model." In 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.1003.
Full text"NON-PARAMETRIC BAYESIAN ALIGNMENT AND RECOVERY OF OCCLUDED FACE USING DIRECT COMBINED MODEL." In International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002833704950498.
Full textZhou, Deyu, Xuan Zhang, and Yulan He. "Event extraction from Twitter using Non-Parametric Bayesian Mixture Model with Word Embeddings." In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/e17-1076.
Full textKamigaito, Hidetaka, Taro Watanabe, Hiroya Takamura, Manabu Okumura, and Eiichiro Sumita. "Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model." In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1143.
Full textGiremus, Audrey, and Vincent Pereira. "A Bayesian non parametric time-switching autoregressive model for multipath errors in GPS navigation." In 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2016. http://dx.doi.org/10.1109/sam.2016.7569698.
Full textReports on the topic "Bayesian non-Parametric model"
Petrova, Katerina. On the Validity of Classical and Bayesian DSGE-Based Inference. Federal Reserve Bank of New York, January 2024. http://dx.doi.org/10.59576/sr.1084.
Full text