Academic literature on the topic 'Bayesian Moment Matching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian Moment Matching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian Moment Matching"
Zhang, Qiong, and Yongjia Song. "Moment-Matching-Based Conjugacy Approximation for Bayesian Ranking and Selection." ACM Transactions on Modeling and Computer Simulation 27, no. 4 (December 20, 2017): 1–23. http://dx.doi.org/10.1145/3149013.
Full textFranke, Reiner, Tae-Seok Jang, and Stephen Sacht. "Moment matching versus Bayesian estimation: Backward-looking behaviour in a New-Keynesian baseline model." North American Journal of Economics and Finance 31 (January 2015): 126–54. http://dx.doi.org/10.1016/j.najef.2014.11.001.
Full textCao, Zhixing, and Ramon Grima. "Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data." Journal of The Royal Society Interface 16, no. 153 (April 3, 2019): 20180967. http://dx.doi.org/10.1098/rsif.2018.0967.
Full textNakagawa, Tomoyuki, and Shintaro Hashimoto. "On Default Priors for Robust Bayesian Estimation with Divergences." Entropy 23, no. 1 (December 27, 2020): 29. http://dx.doi.org/10.3390/e23010029.
Full textYiu, A., R. J. B. Goudie, and B. D. M. Tom. "Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood." Biometrika 107, no. 4 (May 21, 2020): 857–73. http://dx.doi.org/10.1093/biomet/asaa028.
Full textDimas, Christos, Vassilis Alimisis, Nikolaos Uzunoglu, and Paul P. Sotiriadis. "A Point-Matching Method of Moment with Sparse Bayesian Learning Applied and Evaluated in Dynamic Lung Electrical Impedance Tomography." Bioengineering 8, no. 12 (November 25, 2021): 191. http://dx.doi.org/10.3390/bioengineering8120191.
Full textHeath, Anna, Ioanna Manolopoulou, and Gianluca Baio. "Estimating the Expected Value of Sample Information across Different Sample Sizes Using Moment Matching and Nonlinear Regression." Medical Decision Making 39, no. 4 (May 2019): 347–59. http://dx.doi.org/10.1177/0272989x19837983.
Full textBrowning, Alexander P., Christopher Drovandi, Ian W. Turner, Adrianne L. Jenner, and Matthew J. Simpson. "Efficient inference and identifiability analysis for differential equation models with random parameters." PLOS Computational Biology 18, no. 11 (November 28, 2022): e1010734. http://dx.doi.org/10.1371/journal.pcbi.1010734.
Full textHabibi, Reza. "Conditional Beta Approximation: Two Applications." Indonesian Journal of Mathematics and Applications 2, no. 1 (March 31, 2024): 9–23. http://dx.doi.org/10.21776/ub.ijma.2024.002.01.2.
Full textLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning." Entropy 23, no. 11 (October 23, 2021): 1387. http://dx.doi.org/10.3390/e23111387.
Full textDissertations / Theses on the topic "Bayesian Moment Matching"
Heath, A. "Bayesian computations for Value of Information measures using Gaussian processes, INLA and Moment Matching." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10050229/.
Full textVallade, Vincent. "Contributions à la résolution parallèle du problème SAT." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS260.
Full textThis thesis presents multiple and orthogonal contributions to the improvement of the parallel resolution of the Boolean satisfiability problem (or SAT problem). An instance of the SAT problem is a propositional formula of a particular form (the conjunctive normal form is the most common) representing, in general, the variables and constraints of a real-world problem, such as multi-constraint planning, hardware and software verification or cryptography. Solving the SAT problem involves determining whether there is an assignment of variables that satisfies the formula. An algorithm capable of providing an answer to this problem is called a SAT solver. A simplified view of a SAT solver is an algorithm that will traverse the set of possible combinations of values for each variable until it finds a combination that makes the formula true (the formula is SAT). If the solver has gone through all the possible combinations without finding a solution, the formula is UNSAT. Obviously, this algorithm has an exponential complexity, indeed the SAT problem is the first problem to have been determined NP-complete. Many algorithms and heuristics have been developed to accelerate the solving capacity of this problem, mainly in a sequential context. The ubiquity of multi-core machines has encouraged considerable efforts in the parallel resolution of the SAT problem. This thesis is a continuation of these efforts. The contributions made by this thesis focus on the quality of information sharing between the different workers of a parallel SAT solver. A first contribution presents an efficient method to implement an asynchronous algorithm for reducing the size of the shared information. A second contribution combines the information extracted from the particular structure of the propositional formula with the information extracted dynamically during the resolution of the problem by the solver in order to create a filter that maximizes the quality of the shared information. Finally, a last contribution deals with the integration of a component allowing to determine in a probabilistic way the truth value of the variables allowing to make a formula satisfiable. The call of this component during the solving process allows to guide the solver more quickly towards a solution (if a solution exists)
Book chapters on the topic "Bayesian Moment Matching"
Vallade, Vincent, Saeed Nejati, Julien Sopena, Souheib Baarir, and Vijay Ganesh. "Diversifying a Parallel SAT Solver with Bayesian Moment Matching." In Dependable Software Engineering. Theories, Tools, and Applications, 227–33. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21213-0_14.
Full textCowell*, R. G., A. P. Dawid*, and P. Sebastiani**. "A Comparison of Sequential Learning Methods for Incomplete Data." In Bayesian Statistics 5, 533–42. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0031.
Full textDonovan, Therese M., and Ruth M. Mickey. "The Shark Attack Problem Revisited: MCMC with the Metropolis Algorithm." In Bayesian Statistics for Beginners, 193–211. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198841296.003.0013.
Full textConference papers on the topic "Bayesian Moment Matching"
Li, Ximing, Changchun Li, Jinjin Chi, and Jihong Ouyang. "Variance Reduction in Black-box Variational Inference by Adaptive Importance Sampling." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/333.
Full text