Dissertations / Theses on the topic 'Bayesian Machine Learning (BML)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bayesian Machine Learning (BML).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Habli, Nada. "Nonparametric Bayesian Modelling in Machine Learning." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34267.
Full textHigson, Edward John. "Bayesian methods and machine learning in astrophysics." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289728.
Full textMenke, Joshua E. "Improving machine learning through oracle learning /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1726.pdf.
Full textMenke, Joshua Ephraim. "Improving Machine Learning Through Oracle Learning." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/843.
Full textHuszár, Ferenc. "Scoring rules, divergences and information in Bayesian machine learning." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648333.
Full textRoychowdhury, Anirban. "Robust and Scalable Algorithms for Bayesian Nonparametric Machine Learning." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1511901271093727.
Full textYu, Shen. "A Bayesian machine learning system for recognizing group behaviour." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=32565.
Full textShahriari, Bobak. "Practical Bayesian optimization with application to tuning machine learning algorithms." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59104.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Sampson, Oliver [Verfasser]. "Widened Machine Learning with Application to Bayesian Networks / Oliver Sampson." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1209055597/34.
Full textScalabrin, Maria. "Bayesian Learning Strategies in Wireless Networks." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3424931.
Full textQuesta tesi raccoglie i lavori di ricerca svolti durante il mio percorso di dottorato, il cui filo conduttore è dato dal Bayesian reasoning con applicazioni in reti wireless. Il contributo fondamentale dato dal Bayesian reasoning sta nel fare deduzioni: ragionare riguardo a quello che non conosciamo, dato quello che conosciamo. Nel fare deduzioni riguardo alla natura delle cose, impariamo nuove caratteristiche proprie dell’ambiente in cui l’agente fa esperienza, e questo è ciò che ci permette di fare uso dell’informazione acquisita, adattandoci a nuove condizioni. Nel momento in cui facciamo uso dell’informazione acquisita, la nostra convinzione (belief) riguardo allo stato dell’ambiente cambia in modo tale da riflettere la nostra nuova conoscenza. Questa tesi tratta degli aspetti probabilistici nel processare l’informazione con applicazioni nei seguenti ambiti di ricerca: Machine learning based network analysis using millimeter-wave narrow-band energy traces; Bayesian forecasting and anomaly detection in vehicular monitoring networks; Online power management strategies for energy harvesting mobile networks; Beam-training and data transmission optimization in millimeter-wave vehicular networks. In questi lavori di ricerca studiamo aspetti di riconoscimento di pattern in dati reali attraverso metodi di supervised/unsupervised learning (classification, forecasting and anomaly detection, multi-step ahead prediction via kernel methods). Infine, presentiamo il contesto matematico dei Markov Decision Processes (MDPs), il quale sta anche alla base del reinforcement learning, dove Partially Observable MDPs utilizzano il concetto probabilistico di convinzione (belief) al fine di prendere decisoni riguardo allo stato dell’ambiente in millimeter-wave vehicular networks. Lo scopo di questa tesi è di investigare il considerevole potenziale nel fare deduzioni, andando a dettagliare il contesto matematico e come il modello probabilistico dato dal Bayesian reasoning si possa adattare agevolmente a vari ambiti di ricerca con applicazioni in reti wireless.
FRANZESE, GIULIO. "Contributions to Efficient Machine Learning." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2875759.
Full textMcCalman, Lachlan Robert. "Function Embeddings for Multi-modal Bayesian Inference." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/12031.
Full textShon, Aaron P. "Bayesian cognitive models for imitation /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/7013.
Full textLuo, Zhiyuan. "A probabilistic reasoning and learning system based on Bayesian belief networks." Thesis, Heriot-Watt University, 1992. http://hdl.handle.net/10399/1490.
Full textZhao, Yajing. "Chaotic Model Prediction with Machine Learning." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8419.
Full textKégl, Balazs. "Contributions to machine learning: the unsupervised, the supervised, and the Bayesian." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00674004.
Full textWu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Full textPh. D.
Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
Dos, Santos De Oliveira Rafael. "Bayesian Optimisation for Planning under Uncertainty." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20762.
Full textBratières, Sébastien. "Non-parametric Bayesian models for structured output prediction." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274973.
Full textRademeyer, Estian. "Bayesian kernel density estimation." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/64692.
Full textDissertation (MSc)--University of Pretoria, 2017.
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.
Statistics
MSc
Unrestricted
Riggelsen, Carsten. "Approximation methods for efficient learning of Bayesian networks /." Amsterdam ; Washington, DC : IOS Press, 2008. http://www.loc.gov/catdir/toc/fy0804/2007942192.html.
Full textGabbur, Prasad. "Machine Learning Methods for Microarray Data Analysis." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/195829.
Full textCheng, Jie. "Learning Bayesian networks from data : an information theory based approach." Thesis, University of Ulster, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243621.
Full textWistuba, Martin [Verfasser], and Lars [Akademischer Betreuer] Schmidt-Thieme. "Automated Machine Learning - Bayesian Optimization, Meta-Learning & Applications / Martin Wistuba ; Betreuer: Lars Schmidt-Thieme." Hildesheim : Universität Hildesheim, 2018. http://d-nb.info/1161526323/34.
Full textFredlund, Richard. "A Bayesian expected error reduction approach to Active Learning." Thesis, University of Exeter, 2011. http://hdl.handle.net/10036/3170.
Full textYu, Xiaofeng. "Prediction Intervals for Class Probabilities." The University of Waikato, 2007. http://hdl.handle.net/10289/2436.
Full textAbeywardana, Sachinthaka. "Variational Inference in Generalised Hyperbolic and von Mises-Fisher Distributions." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/16504.
Full textTrifonova, Neda. "Machine-learning approaches for modelling fish population dynamics." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13386.
Full textHospedales, Timothy. "Bayesian multisensory perception." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/2156.
Full textMohamed, Shakir. "Generalised Bayesian matrix factorisation models." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/237246.
Full textPrando, Giulia. "Non-Parametric Bayesian Methods for Linear System Identification." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3426195.
Full textRecentemente, il problema di identificazione di sistemi lineari è stato risolto ricorrendo a metodi Bayesiani non-parametrici, che sfruttano di tecniche di Machine Learning ampiamente utilizzate, come la regressione gaussiana e la regolarizzazione basata su kernels. Seguendo il paradigma Bayesiano, queste procedure richiedono una distribuzione Gaussiana a-priori per la risposta impulsiva. Tale distribuzione viene definita in funzione di alcuni parametri (chiamati iper-parametri nell'ambito Bayesiano), che vengono stimati usando i dati a disposizione. Una volta che gli iper-parametri sono stati fissati, è possibile calcolare lo stimatore a minima varianza come il valore atteso della risposta impulsiva, condizionato rispetto alla distribuzione a posteriori. Assumendo che i dati di identificazione siano corrotti da rumore Gaussiano, tale stimatore coincide con la soluzione di un problema di stima regolarizzato, nel quale il termine di regolarizzazione è la norma l2 della risposta impulsiva, pesata dall'inverso della funzione di covarianza a priori (tale funzione viene anche detta "kernel" nella letteratura di Machine Learning). Recenti lavori hanno dimostrato come questi metodi Bayesiani possano contemporaneamente selezionare un modello ottimale e stimare la quantità sconosciuta. In tal modo sono in grado di superare uno dei principali problemi che affliggono le tecniche di identificazione parametrica, ovvero quella della selezione della complessità di modello. Considerando come benchmark le tecniche classiche di identificazione (ovvero i Metodi a Predizione d'Errore e gli algoritmi Subspace), questa tesi estende ed analizza alcuni aspetti chiave della procedura Bayesiana sopraccitata. In particolare, la tesi si sviluppa su quattro argomenti principali. 1. DESIGN DELLA DISTRIBUZIONE A PRIORI. Sfruttando la teoria delle distribuzioni a Massima Entropia, viene derivato un nuovo tipo di regolarizzazione l2 con l'obiettivo di penalizzare il rango della matrice di Hankel contenente i coefficienti di Markov. In tal modo è possibile controllare la complessità del modello stimato, misurata in termini del grado di McMillan. 2. CARATTERIZZAZIONE DELL'INCERTEZZA. Gli intervalli di confidenza costruiti dall'algoritmo di identificazione Bayesiana non-parametrica vengono analizzati e confrontati con quelli restituiti dai metodi parametrici a Predizione d'Errore. Convertendo quest'ultimi nelle loro approssimazioni campionarie, il confronto viene effettuato nello spazio a cui appartiene la risposta impulsiva. 3. STIMA ON-LINE. L'applicazione delle tecniche Bayesiane non-parametriche per l'identificazione dei sistemi viene estesa ad uno scenario on-line, in cui nuovi dati diventano disponibili ad intervalli di tempo prefissati. Vengono proposte due modifiche chiave della procedura standard off-line in modo da soddisfare i requisiti della stima real-time. Viene anche affrontata l'identificazione di sistemi tempo-varianti tramite l'introduzione, nel criterio di stima, di un fattore di dimenticanza, il quale e' in seguito trattato come un iper-parametro. 4. RIDUZIONE DEL MODELLO STIMATO. Le tecniche di identificazione Bayesiana non-parametrica restituiscono una stima della risposta impulsiva del sistema sconosciuto, ovvero un modello con un alto (verosimilmente infinito) grado di McMillan. Viene quindi proposta un'apposita procedura per ridurre tale modello ad un grado più basso, in modo che risulti più adatto per future applicazioni di controllo e filtraggio. Vengono inoltre confrontati diversi criteri per la selezione dell'ordine del modello ridotto.
Graff, Philip B. "Bayesian methods for gravitational waves and neural networks." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244270.
Full textBrouwer, Thomas Alexander. "Bayesian matrix factorisation : inference, priors, and data integration." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269921.
Full textJiang, Ke. "Small-Variance Asymptotics for Bayesian Models." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492465751839975.
Full textBui, Thang Duc. "Efficient deterministic approximate Bayesian inference for Gaussian process models." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273833.
Full textSrivastava, Santosh. "Bayesian minimum expected risk estimation of distributions for statistical learning /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6765.
Full textScherreik, Matthew D. "Online Clustering with Bayesian Nonparametrics." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1610711743492959.
Full textHaußmann, Manuel [Verfasser], and Fred A. [Akademischer Betreuer] Hamprecht. "Bayesian Neural Networks for Probabilistic Machine Learning / Manuel Haußmann ; Betreuer: Fred A. Hamprecht." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1239116233/34.
Full textHayashi, Shogo. "Information Exploration and Exploitation for Machine Learning with Small Data." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263774.
Full textXu, Jian. "Iterative Aggregation of Bayesian Networks Incorporating Prior Knowledge." Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1105563019.
Full textYang, Ying. "Discretization for Naive-Bayes learning." Monash University, School of Computer Science and Software Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9393.
Full textZhu, Zhanxing. "Integrating local information for inference and optimization in machine learning." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20980.
Full textRomanes, Sarah Elizabeth. "Discriminant Analysis Methods for Large Scale and Complex Datasets." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/21721.
Full textGrimes, David B. "Learning by imitation and exploration : Bayesian models and applications in humanoid robotics /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/6879.
Full textDondelinger, Frank. "Machine learning approach to reconstructing signalling pathways and interaction networks in biology." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7850.
Full textMichelen, Strofer Carlos Alejandro. "Machine Learning and Field Inversion approaches to Data-Driven Turbulence Modeling." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103155.
Full textDoctor of Philosophy
The Reynolds-averaged Navier-Stokes (RANS) equations are widely used to simulate fluid flows in engineering applications despite their known inaccuracy in many flows of practical interest. The uncertainty in the RANS equations is known to stem from the Reynolds stress tensor for which no universally applicable turbulence model exists. The computational cost of more accurate methods for fluid flow simulation, however, means RANS simulations will likely continue to be a major tool in engineering applications and there is still a need for improved RANS turbulence modeling. This dissertation explores two different approaches to use available experimental data to improve RANS predictions by improving the uncertain Reynolds stress tensor field. The first approach is using machine learning to learn a data-driven turbulence model from a set of training data. This model can then be applied to predict new flows in place of traditional turbulence models. To this end, this dissertation presents a novel framework for training deep neural networks using experimental measurements of velocity and pressure. When using velocity and pressure data, gradient-based training of the neural network requires the sensitivity of the RANS equations to the learned Reynolds stress. Two different methods, the continuous adjoint and ensemble approximation, are used to obtain the required sensitivity. The second approach explored in this dissertation is field inversion, whereby available data for a flow of interest is used to infer a Reynolds stress field that leads to improved RANS solutions for that same flow. Here, the field inversion is done via the ensemble Kalman inversion (EKI), a Monte Carlo Bayesian procedure, and the focus is on improving the inference by enforcing known physical constraints on the inferred Reynolds stress field. To this end, a method for enforcing boundary conditions on the inferred field is presented. While further development is needed, the two data-driven approaches explored and improved upon here demonstrate the potential for improved practical RANS predictions.
Matosevic, Antonio. "On Bayesian optimization and its application to hyperparameter tuning." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-74962.
Full textRichmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Full textQiao, Junqing. "Semi-Autonomous Wheelchair Navigation With Statistical Context Prediction." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/869.
Full textWalker, Daniel David. "Bayesian Test Analytics for Document Collections." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3530.
Full text