Academic literature on the topic 'Bayesian Inference Damage Detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian Inference Damage Detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian Inference Damage Detection"
Jiang, Xiaomo, and Sankaran Mahadevan. "Bayesian Probabilistic Inference for Nonparametric Damage Detection of Structures." Journal of Engineering Mechanics 134, no. 10 (October 2008): 820–31. http://dx.doi.org/10.1061/(asce)0733-9399(2008)134:10(820).
Full textAlkam, Feras, and Tom Lahmer. "Eigenfrequency-Based Bayesian Approach for Damage Identification in Catenary Poles." Infrastructures 6, no. 4 (April 13, 2021): 57. http://dx.doi.org/10.3390/infrastructures6040057.
Full textSmith, Reuel, Mohammad Modarres, and Enrique López Droguett. "A recursive Bayesian approach to small fatigue crack propagation and detection modeling." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 232, no. 6 (March 15, 2018): 738–53. http://dx.doi.org/10.1177/1748006x18758721.
Full textPrajapat, Kanta, and Samit Ray-Chaudhuri. "Detection of multiple damages employing best achievable eigenvectors under Bayesian inference." Journal of Sound and Vibration 422 (May 2018): 237–63. http://dx.doi.org/10.1016/j.jsv.2018.02.012.
Full textHou, Yunyun, Ruiyu He, Jie Dong, Yangrui Yang, and Wei Ma. "IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model." Electronics 11, no. 20 (October 12, 2022): 3287. http://dx.doi.org/10.3390/electronics11203287.
Full textKernicky, Timothy, Matthew Whelan, and Ehab Al-Shaer. "Vibration-based damage detection with uncertainty quantification by structural identification using nonlinear constraint satisfaction with interval arithmetic." Structural Health Monitoring 18, no. 5-6 (October 25, 2018): 1569–89. http://dx.doi.org/10.1177/1475921718806476.
Full textMandal, Manisha, and Shyamapada Mandal. "Detection of transmission change points during unlock-3 and unlock-4 measures controlling COVID-19 in India." Journal of Drug Delivery and Therapeutics 11, no. 2 (March 15, 2021): 76–86. http://dx.doi.org/10.22270/jddt.v11i2.4600.
Full textSahu, Abhijeet, and Katherine Davis. "Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems: An Evidence Theoretic and Meta-Heuristic Approach." Sensors 22, no. 6 (March 9, 2022): 2100. http://dx.doi.org/10.3390/s22062100.
Full textHospedales, Timothy, and Sethu Vijayakumar. "Multisensory Oddity Detection as Bayesian Inference." PLoS ONE 4, no. 1 (January 15, 2009): e4205. http://dx.doi.org/10.1371/journal.pone.0004205.
Full textJiang, Xiaomo, Yong Yuan, and Xian Liu. "Bayesian inference method for stochastic damage accumulation modeling." Reliability Engineering & System Safety 111 (March 2013): 126–38. http://dx.doi.org/10.1016/j.ress.2012.11.006.
Full textDissertations / Theses on the topic "Bayesian Inference Damage Detection"
Goi, Yoshinao. "Bayesian Damage Detection for Vibration Based Bridge Health Monitoring." Kyoto University, 2018. http://hdl.handle.net/2433/232013.
Full textLebre, Sophie. "Stochastic process analysis for Genomics and Dynamic Bayesian Networks inference." Phd thesis, Université d'Evry-Val d'Essonne, 2007. http://tel.archives-ouvertes.fr/tel-00260250.
Full textFirst we study a parsimonious Markov model called Mixture Transition Distribution (MTD) model which is a mixture of Markovian transitions. The overly high number of constraints on the parameters of this model hampers the formulation of an analytical expression of the Maximum Likelihood Estimate (MLE). We propose to approach the MLE thanks to an EM algorithm. After comparing the performance of this algorithm to results from the litterature, we use it to evaluate the relevance of MTD modeling for bacteria DNA coding sequences in comparison with standard Markovian modeling.
Then we propose two different approaches for genetic regulation network recovering. We model those genetic networks with Dynamic Bayesian Networks (DBNs) whose edges describe the dependency relationships between time-delayed genes expression. The aim is to estimate the topology of this graph despite the overly low number of repeated measurements compared with the number of observed genes.
To face this problem of dimension, we first assume that the dependency relationships are homogeneous, that is the graph topology is constant across time. Then we propose to approximate this graph by considering partial order dependencies. The concept of partial order dependence graphs, already introduced for static and non directed graphs, is adapted and characterized for DBNs using the theory of graphical models. From these results, we develop a deterministic procedure for DBNs inference.
Finally, we relax the homogeneity assumption by considering the succession of several homogeneous phases. We consider a multiple changepoint
regression model. Each changepoint indicates a change in the regression model parameters, which corresponds to the way an expression level depends on the others. Using reversible jump MCMC methods, we develop a stochastic algorithm which allows to simultaneously infer the changepoints location and the structure of the network within the phases delimited by the changepoints.
Validation of those two approaches is carried out on both simulated and real data analysis.
Ko, Kyungduk. "Bayesian wavelet approaches for parameter estimation and change point detection in long memory processes." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2804.
Full textReichl, Johannes, and Sylvia Frühwirth-Schnatter. "A Censored Random Coefficients Model for the Detection of Zero Willingness to Pay." Springer, 2011. http://epub.wu.ac.at/3707/1/WU_epub_(2).pdf.
Full textZhang, Hanze. "Bayesian inference on quantile regression-based mixed-effects joint models for longitudinal-survival data from AIDS studies." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7456.
Full textOsborne, Michael A. "Bayesian Gaussian processes for sequential prediction, optimisation and quadrature." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:1418c926-6636-4d96-8bf6-5d94240f3d1f.
Full textSuvorov, Anton. "Molecular Evolution of Odonata Opsins, Odonata Phylogenomics and Detection of False Positive Sequence Homology Using Machine Learning." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7320.
Full textZhang, Fan. "Statistical Methods for Characterizing Genomic Heterogeneity in Mixed Samples." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/419.
Full textAsgrimsson, David Steinar. "Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451.
Full textEn maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem.
Kennedy, Justin M. "Wave-induced marine craft motion estimation and control." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/213481/1/Justin_Kennedy_Thesis.pdf.
Full textBook chapters on the topic "Bayesian Inference Damage Detection"
Mohammadi-Ghazi, Reza, and Oral Buyukozturk. "Bayesian Inference for Damage Detection in Unsupervised Structural Health Monitoring." In Model Validation and Uncertainty Quantification, Volume 3, 283–89. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_30.
Full textPepi, Chiara, and Massimiliano Gioffré. "Vibration Based Bayesian Inference for Finite Element Model Parameters Estimation and Damage Detection." In Lecture Notes in Mechanical Engineering, 1591–607. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41057-5_129.
Full textChowdhury, Ananda S., and Suchendra M. Bhandarkar. "Fracture Detection Using Bayesian Inference." In Computer Vision-Guided Virtual Craniofacial Surgery, 91–109. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-296-4_6.
Full textHanson, Timothy, Sudipto Banerjee, Pei Li, and Alexander McBean. "Spatial Boundary Detection for Areal Counts." In Nonparametric Bayesian Inference in Biostatistics, 377–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19518-6_19.
Full textBassetti, Federico, Fabrizio Leisen, Edoardo Airoldi, and Michele Guindani. "Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations." In Nonparametric Bayesian Inference in Biostatistics, 97–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19518-6_5.
Full textEftekhar Azam, Saeed. "Recursive Bayesian Estimation of Partially Observed Dynamic Systems." In Online Damage Detection in Structural Systems, 7–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02559-9_2.
Full textYang, Yuan, Zhongmin Cai, Weixuan Mao, and Zhihai Yang. "Identifying Intrusion Infections via Probabilistic Inference on Bayesian Network." In Detection of Intrusions and Malware, and Vulnerability Assessment, 307–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20550-2_16.
Full textHegenderfer, Joshua, Sez Atamturktur, and Austin Gillen. "Damage Detection in Steel Structures Using Bayesian Calibration Techniques." In Topics in Modal Analysis II, Volume 6, 179–93. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2419-2_16.
Full textÁsgrímsson, Davíð Steinar, Ignacio González, Giampiero Salvi, and Raid Karoumi. "Bayesian Deep Learning for Vibration-Based Bridge Damage Detection." In Structural Integrity, 27–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_2.
Full textDzunic, Zoran, Justin G. Chen, Hossein Mobahi, Oral Buyukozturk, and John W. Fisher. "A Bayesian State-Space Approach for Damage Detection and Classification." In Conference Proceedings of the Society for Experimental Mechanics Series, 171–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15248-6_18.
Full textConference papers on the topic "Bayesian Inference Damage Detection"
Zhou, K., Q. Shuai, and J. Tang. "Adaptive Damage Detection Using Tunable Piezoelectric Admittance Sensor and Intelligent Inference." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7624.
Full textBellam Muralidhar, Nanda Kishore, and Dirk Lorenz. "A Model-Based Damage Identification using Guided Ultrasonic Wave Propagation in Fiber Metal Laminates." In VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12684.
Full textShuai, Q., K. Zhou, and J. Tang. "Structural damage identification using piezoelectric impedance and Bayesian inference." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Jerome P. Lynch. SPIE, 2015. http://dx.doi.org/10.1117/12.2084442.
Full textNajar, Fatma, Nuha Zamzami, and Nizar Bouguila. "Fake News Detection Using Bayesian Inference." In 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2019. http://dx.doi.org/10.1109/iri.2019.00066.
Full textLiu, Chen, Xuemei Bai, Gounou Charles Sobabe, Chenjie Zhang, Zhijun Wang, and Bin Guo. "Spectrum detection based on Bayesian inference." In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. http://dx.doi.org/10.1109/cisp-bmei.2017.8302115.
Full textHooi, Bryan, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha Makhija, and Christos Faloutsos. "BIRDNEST: Bayesian Inference for Ratings-Fraud Detection." In Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016. http://dx.doi.org/10.1137/1.9781611974348.56.
Full textCanillas, Remi, Omar Hasan, Laurent Sarrat, and Lionel Brunie. "Supplier Impersonation Fraud Detection using Bayesian Inference." In 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2020. http://dx.doi.org/10.1109/bigcomp48618.2020.00-53.
Full textShuai, Q., G. Liang, and J. Tang. "Piezoelectric admittance-based damage identification by Bayesian inference with pre-screening." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Gyuhae Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2219159.
Full textJin, Yuanwei. "Cognitive multi-antenna radar detection using Bayesian inference." In 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2012. http://dx.doi.org/10.1109/sam.2012.6250524.
Full textGao, Hong-Yun, and Kin-Man Lam. "Salient object detection using octonion with Bayesian inference." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025666.
Full text