Academic literature on the topic 'Bayesian estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian estimation"
Eldemery, E. M., A. M. Abd-Elfattah, K. M. Mahfouz, and Mohammed M. El Genidy. "Bayesian and E-Bayesian Estimation for the Generalized Rayleigh Distribution under Different Forms of Loss Functions with Real Data Application." Journal of Mathematics 2023 (August 31, 2023): 1–25. http://dx.doi.org/10.1155/2023/5454851.
Full textAl-Bossly, Afrah. "E-Bayesian and Bayesian Estimation for the Lomax Distribution under Weighted Composite LINEX Loss Function." Computational Intelligence and Neuroscience 2021 (December 11, 2021): 1–10. http://dx.doi.org/10.1155/2021/2101972.
Full textXiang, Ning, and Christopher Landschoot. "Bayesian Inference for Acoustic Direction of Arrival Analysis Using Spherical Harmonics." Entropy 21, no. 6 (June 10, 2019): 579. http://dx.doi.org/10.3390/e21060579.
Full textItagaki, Hiroshi, Hiroo Asada, and Seiichi Itoh. "Bayesian Estimation." Journal of the Society of Naval Architects of Japan 1985, no. 157 (1985): 285–94. http://dx.doi.org/10.2534/jjasnaoe1968.1985.285.
Full textGuure, Chris Bambey, Noor Akma Ibrahim, and Al Omari Mohammed Ahmed. "Bayesian Estimation of Two-Parameter Weibull Distribution Using Extension of Jeffreys' Prior Information with Three Loss Functions." Mathematical Problems in Engineering 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/589640.
Full textShadmehr, Reza, and David Z. D'Argenio. "A Neural Network for Nonlinear Bayesian Estimation in Drug Therapy." Neural Computation 2, no. 2 (June 1990): 216–25. http://dx.doi.org/10.1162/neco.1990.2.2.216.
Full textLiu, Kaiwei, and Yuxuan Zhang. "The E-Bayesian Estimation for Lomax Distribution Based on Generalized Type-I Hybrid Censoring Scheme." Mathematical Problems in Engineering 2021 (May 19, 2021): 1–19. http://dx.doi.org/10.1155/2021/5570320.
Full textRen, Haiping, Qin Gong, and Xue Hu. "Estimation of Entropy for Generalized Rayleigh Distribution under Progressively Type-II Censored Samples." Axioms 12, no. 8 (August 10, 2023): 776. http://dx.doi.org/10.3390/axioms12080776.
Full textGao, Huiqing, Zhanshou Chen, and Fuxiao Li. "Linear Bayesian Estimation of Misrecorded Poisson Distribution." Entropy 26, no. 1 (January 11, 2024): 62. http://dx.doi.org/10.3390/e26010062.
Full textGustafson, Steven C., Christopher S. Costello, Eric C. Like, Scott J. Pierce, and Kiran N. Shenoy. "Bayesian Threshold Estimation." IEEE Transactions on Education 52, no. 3 (August 2009): 400–403. http://dx.doi.org/10.1109/te.2008.930092.
Full textDissertations / Theses on the topic "Bayesian estimation"
Rademeyer, Estian. "Bayesian kernel density estimation." Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/64692.
Full textDissertation (MSc)--University of Pretoria, 2017.
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.
Statistics
MSc
Unrestricted
Weiss, Yair. "Bayesian motion estimation and segmentation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9354.
Full textIncludes bibliographical references (leaves 195-204).
Estimating motion in scenes containing multiple moving objects remains a difficult problem in computer vision yet is solved effortlessly by humans. In this thesis we present a computational investigation of this astonishing performance in human vision. The method we use throughout is to formulate a small number of assumptions and see the extent to which the optimal interpretation given these assumptions corresponds to the human percept. For scenes containing a single motion we show that a wide range of previously published results are predicted by a Bayesian model that finds the most probable velocity field assuming that (1) images may be noisy and (2) velocity fields are likely to be slow and smooth. The predictions agree qualitatively, and are often in remarkable agreement quantitatively. For scenes containing multiple motions we introduce the notion of "smoothness in layers". The scene is assumed to be composed of a small number of surfaces or layers, and the motion of each layer is assumed to be slow and smooth. We again formalize these assumptions in a Bayesian framework and use the statistical technique of mixture estimation to find the predicted a surprisingly wide range of previously published results that are predicted with these simple assumptions. We discuss the shortcomings of these assumptions and show how additional assumptions can be incorporated into the same framework. Taken together, the first two parts of the thesis suggest that a seemingly complex set of illusions in human motion perception may arise from a single computational strategy that is optimal under reasonable assumptions.
(cont.) The third part of the thesis presents a computer vision algorithm that is based on the same assumptions. We compare the approach to recent developments in motion segmentation and illustrate its performance on real and synthetic image sequences.
by Yair Weiss.
Ph.D.
Bouda, Milan. "Bayesian Estimation of DSGE Models." Doctoral thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-200007.
Full textPramanik, Santanu. "The Bayesian and approximate Bayesian methods in small area estimation." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8856.
Full textThesis research directed by: Joint Program in Survey Methodology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Campolieti, Michele. "Bayesian estimation of discrete duration models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0001/NQ27884.pdf.
Full textHissmann, Michael. "Bayesian estimation for white light interferometry." Berlin Pro Business, 2005. http://shop.pro-business.com/product_info.php?products_id=357.
Full textMakarava, Natallia. "Bayesian estimation of self-similarity exponent." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6409/.
Full textDie Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen. In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert wird. Unter Berücksichtigung der Tatsache, dass der Gauß'sche selbstähnliche Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser Arbeit Realisierungen der Prozesse der fraktionalen Brown'schen Bewegung und des fraktionalen Gauß'schen Rauschens untersucht. Zusätzlich werden Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Augenbewegungen, diskutiert.
Graham, Matthew Corwin 1986. "Robust Bayesian state estimation and mapping." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98678.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 135-146).
Virtually all robotic and autonomous systems rely on navigation and mapping algorithms (e.g. the Kalman filter or simultaneous localization and mapping (SLAM)) to determine their location in the world. Unfortunately, these algorithms are not robust to outliers and even a single faulty measurement can cause a catastrophic failure of the navigation system. This thesis proposes several novel robust navigation and SLAM algorithms that produce accurate results when outliers and faulty measurements occur. The new algorithms address the robustness problem by augmenting the standard models used by filtering and SLAM algorithms with additional latent variables that can be used to infer when outliers have occurred. Solving the augmented problems leads to algorithms that are naturally robust to outliers and are nearly as efficient as their non-robust counterparts. The first major contribution of this thesis is a novel robust filtering algorithm that can compensate for both measurement outliers and state prediction errors using a set of sparse latent variables that can be inferred using an efficient convex optimization. Next the thesis proposes a batch robust SLAM algorithm that uses the Expectation- Maximization algorithm to infer both the navigation solution and the measurement information matrices. Inferring the information matrices allows the algorithm to reduce the impact of outliers on the SLAM solution while the Expectation-Maximization procedure produces computationally efficient calculations of the information matrix estimates. While several SLAM algorithms have been proposed that are robust to loop closure errors, to date no SLAM algorithms have been developed that are robust to landmark errors. The final contribution of this thesis is the first SLAM algorithm that is robust to both loop closure and landmark errors (incremental SLAM with consistency checking (ISCC)). ISCC adds integer variables to the SLAM optimization that indicate whether each measurement should be included in the SLAM solution. ISCC then uses an incremental greedy strategy to efficiently determine which measurements should be used to compute the SLAM solution. Evaluation on standard benchmark datasets as well as visual SLAM experiments demonstrate that ISCC is robust to a large number of loop closure and landmark outliers and that it can provide significantly more accurate solutions than state-of-the-art robust SLAM algorithms when landmark errors occur.
by Matthew C. Graham.
Ph. D.
Vega-Brown, Will (William Robert). "Predictive parameter estimation for Bayesian filtering." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81715.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 113-117).
In this thesis, I develop CELLO, an algorithm for predicting the covariances of any Gaussian model used to account for uncertainty in a complex system. The primary motivation for this work is state estimation; often, complex raw sensor measurements are processed into low dimensional observations of a vehicle state. I argue that the covariance of these observations can be well-modelled as a function of the raw sensor measurement, and provide a method to learn this function from data. This method is computationally cheap, asymptotically correct, easy to extend to new sensors, and noninvasive, in the sense that it augments, rather than disrupts, existing filtering algorithms. I additionally present two important variants; first, I extend CELLO to learn even when ground truth vehicle states are unavailable; and second, I present an equivalent Bayesian algorithm. I then use CELLO to learn covariance models for several systems, including a laser scan-matcher, an optical flow system, and a visual odometry system. I show that filtering using covariances predicted by CELLO can quantitatively improve estimator accuracy and consistency, both relative to a fixed covariance model and relative to carefully tuned domain-specific covariance models.
by William Vega-Brown.
S.M.
Xing, Guan. "LASSOING MIXTURES AND BAYESIAN ROBUST ESTIMATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1164135815.
Full textBooks on the topic "Bayesian estimation"
Haug, Anton J. Bayesian Estimation and Tracking. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118287798.
Full textBretthorst, G. Larry. Bayesian Spectrum Analysis and Parameter Estimation. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4684-9399-3.
Full textHarney, Hanns L. Bayesian inference: Parameter estimation and decisions. Berlin: Springer, 2002.
Find full textBayesian inference: Parameter estimation and decisions. Berlin: Springer, 2003.
Find full textCampolieti, Michele. Bayesian estimation of discrete duration models. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Find full textBayesian spectrum analysis and parameter estimation. New York: Springer-Verlag, 1988.
Find full textHarney, Hanns L. Bayesian Inference: Parameter Estimation and Decisions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Find full textHaug, Anton J. Bayesian estimation and tracking: A practical guide. Hoboken, NJ: Wiley, 2012.
Find full textBlom, H. A. P. Bayesian estimation for decision directed stochastic control. Amsterdam: National Aerospace Laboratory, 1990.
Find full textDuo, Qin. Has Bayesian estimation principle ever used Bayes' rule? London: London University, Queen Mary and Westfield College, Department of Economics, 1994.
Find full textBook chapters on the topic "Bayesian estimation"
Shekhar, Shashi, and Hui Xiong. "Bayesian Estimation." In Encyclopedia of GIS, 39. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_92.
Full textSalsburg, David S. "Bayesian Estimation." In The Use of Restricted Significance Tests in Clinical Trials, 115–25. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4414-1_12.
Full textKeener, Robert W. "Bayesian Estimation." In Theoretical Statistics, 115–27. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-93839-4_7.
Full textChaudhuri, Subhasis, and Ketan Kotwal. "Bayesian Estimation." In Hyperspectral Image Fusion, 73–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7470-8_5.
Full textHeitzinger, Clemens. "Bayesian Estimation." In Algorithms with JULIA, 397–431. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-16560-3_14.
Full textCohen, Shay. "Bayesian Estimation." In Synthesis Lectures on Human Language Technologies, 77–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-031-02161-9_4.
Full textJohnson, Matthew S., and Sandip Sinharay. "Bayesian Estimation." In Handbook of Item Response Theory, 237–58. Boca Raton, FL: CRC Press, 2015- | Series: Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b19166-13.
Full textMills, Jeffrey A., and Olivier Parent. "Bayesian MCMC Estimation." In Handbook of Regional Science, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-642-36203-3_89-1.
Full textRobert, Christian P. "Bayesian Point Estimation." In Springer Texts in Statistics, 137–77. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-4314-2_4.
Full textMills, Jeffrey A., and Olivier Parent. "Bayesian MCMC Estimation." In Handbook of Regional Science, 1571–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-23430-9_89.
Full textConference papers on the topic "Bayesian estimation"
Iseki, Toshio. "A Study on Akaike’s Bayesian Information Criterion in Wave Estimation." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49170.
Full textFischer, R. "Bayesian background estimation." In The 19th international workshop on bayesium inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381857.
Full textPicci, Giorgio, and Bin Zhu. "Bayesian Frequency Estimation." In 2019 18th European Control Conference (ECC). IEEE, 2019. http://dx.doi.org/10.23919/ecc.2019.8796054.
Full textElvira, Clement, Pierre Chainais, and Nicolas Dobigeon. "Bayesian nonparametric subspace estimation." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7952556.
Full textHoballah, I., and P. Varshney. "Distributed Bayesian parameter estimation." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272937.
Full textBridle, S. L., J. P. Kneib, S. Bardeau, and S. F. Gull. "BAYESIAN GALAXY SHAPE ESTIMATION." In Proceedings of the Yale Cosmology Workshop. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778017_0006.
Full textChen, Chulong, and Michael D. Zoltowski. "Bayesian sparse channel estimation." In SPIE Defense, Security, and Sensing. SPIE, 2012. http://dx.doi.org/10.1117/12.919302.
Full textNinness, Brett, Khoa T. Tran, and Christopher M. Kellett. "Bayesian dynamic system estimation." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039656.
Full textPapageorgiou, Ioannis, and Ioannis Kontoyiannis. "Truly Bayesian Entropy Estimation." In 2023 IEEE Information Theory Workshop (ITW). IEEE, 2023. http://dx.doi.org/10.1109/itw55543.2023.10161645.
Full textCuevas, Alejandro, Sebastian Lopez, Danilo Mandic, and Felipe Tobar. "Bayesian autoregressive spectral estimation." In 2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI). IEEE, 2021. http://dx.doi.org/10.1109/la-cci48322.2021.9769834.
Full textReports on the topic "Bayesian estimation"
Gray, Kathy, Robert Keane, Ryan Karpisz, Alyssa Pedersen, Rick Brown, and Taylor Russell. Bayesian techniques for surface fuel loading estimation. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2016. http://dx.doi.org/10.2737/rmrs-rn-74.
Full textGray, Kathy, Robert Keane, Ryan Karpisz, Alyssa Pedersen, Rick Brown, and Taylor Russell. Bayesian techniques for surface fuel loading estimation. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2016. http://dx.doi.org/10.2737/rmrs-rn-74.
Full textTang, Victor K., Ronald B. Sindler, and Raymond M. Shirven. Bayesian Estimation of n in a Binomial Distribution. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada196623.
Full textQuijano, Jorge E., Stan E. Dosso, Jan Dettmer, Lisa M. Zurk, and Martin Siderius. Bayesian Ambient Noise Inversion for Geoacoustic Uncertainty Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada571872.
Full textQuijano, Jorge E., Stan E. Dosso, Jan Dettmer, Lisa M. Zurk, and Martin Siderius. Bayesian Ambient Noise Inversion for Geoacoustic Uncertainty Estimation. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada575020.
Full textFraley, Chris, and Adrian E. Raftery. Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada454825.
Full textRodríguez-Niño, Norberto. Bayesian model estimation and selection for the weekly colombian exchange rate. Bogotá, Colombia: Banco de la República, October 2000. http://dx.doi.org/10.32468/be.161.
Full textCrews, John H., and Ralph C. Smith. Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada556967.
Full textArias, Jonas, Jesús Fernández-Villaverde, Juan Rubio Ramírez, and Minchul Shin. Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs. Cambridge, MA: National Bureau of Economic Research, March 2021. http://dx.doi.org/10.3386/w28617.
Full textÁlvarez Florens Odendahl, Luis J., and Germán López-Espinosa. Data outliers and Bayesian VARs in the euro area. Madrid: Banco de España, November 2022. http://dx.doi.org/10.53479/23552.
Full text