Academic literature on the topic 'Bayesian estimate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bayesian estimate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bayesian estimate"
Rahman, Mohammad Lutfor, Steven G. Gilmour, Peter J. Zemroch, and Pauline R. Ziman. "Bayesian analysis of fuel economy experiments." Journal of Statistical Research 54, no. 1 (August 25, 2020): 43–63. http://dx.doi.org/10.47302/jsr.2020540103.
Full textSanger, Terence D. "Bayesian Filtering of Myoelectric Signals." Journal of Neurophysiology 97, no. 2 (February 2007): 1839–45. http://dx.doi.org/10.1152/jn.00936.2006.
Full textFässler, Sascha M. M., Andrew S. Brierley, and Paul G. Fernandes. "A Bayesian approach to estimating target strength." ICES Journal of Marine Science 66, no. 6 (February 12, 2009): 1197–204. http://dx.doi.org/10.1093/icesjms/fsp008.
Full textChrist, Theodore J., and Christopher David Desjardins. "Curriculum-Based Measurement of Reading: An Evaluation of Frequentist and Bayesian Methods to Model Progress Monitoring Data." Journal of Psychoeducational Assessment 36, no. 1 (June 15, 2017): 55–73. http://dx.doi.org/10.1177/0734282917712174.
Full textAl-Hossain, Abdullah Y. "Burr-X Model Estimate using Bayesian and non-Bayesian Approaches." Journal of Mathematics and Statistics 12, no. 2 (February 1, 2016): 77–85. http://dx.doi.org/10.3844/jmssp.2016.77.85.
Full textAmbrose, Paul G., Jeffrey P. Hammel, Sujata M. Bhavnani, Christopher M. Rubino, Evelyn J. Ellis-Grosse, and George L. Drusano. "Frequentist and Bayesian Pharmacometric-Based Approaches To Facilitate Critically Needed New Antibiotic Development: Overcoming Lies, Damn Lies, and Statistics." Antimicrobial Agents and Chemotherapy 56, no. 3 (December 12, 2011): 1466–70. http://dx.doi.org/10.1128/aac.01743-10.
Full textEmelyanov, V. E., and S. P. Matyuk. "BAYESIAN ESTIMATE OF TELECOMMUNICATION SYSTEMS PREPAREDNESS." Civil Aviation High Technologies 24, no. 1 (February 22, 2021): 16–22. http://dx.doi.org/10.26467/2079-0619-2021-24-1-16-22.
Full textAGBAJE, Olorunsola F., Stephen D. LUZIO, Ahmed I. S. ALBARRAK, David J. LUNN, David R. OWENS, and Roman HOVORKA. "Bayesian hierarchical approach to estimate insulin sensitivity by minimal model." Clinical Science 105, no. 5 (November 1, 2003): 551–60. http://dx.doi.org/10.1042/cs20030117.
Full textRichard, Michael D., and Richard P. Lippmann. "Neural Network Classifiers Estimate Bayesian a posteriori Probabilities." Neural Computation 3, no. 4 (December 1991): 461–83. http://dx.doi.org/10.1162/neco.1991.3.4.461.
Full textBen Zaabza, Hafedh, Abderrahmen Ben Gara, Hedi Hammami, Mohamed Amine Ferchichi, and Boulbaba Rekik. "Estimation of variance components of milk, fat, and protein yields of Tunisian Holstein dairy cattle using Bayesian and REML methods." Archives Animal Breeding 59, no. 2 (June 1, 2016): 243–48. http://dx.doi.org/10.5194/aab-59-243-2016.
Full textDissertations / Theses on the topic "Bayesian estimate"
OLIVEIRA, ANA CRISTINA BERNARDO DE. "BAYESIAN MODEL TO ESTIMATE ADVERTISING RECALL IN MARKETING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7528@1.
Full textA importância de sistemas que monitorem continuamente as resposta dos consumidores à propaganda é notadamente reconhecida pela comunidade de pesquisa de mercado. A coleta sistemática deste tipo de informação é importante porque através desta, pode-se revisar campanhas anteriores, corrigir tendências detectadas em pré-testes e melhor orientar as tomadas de decisão nos setores de propaganda. O presente trabalho contém um modelo para tentar medir esta resposta baseada em Modelos Lineares Dinâmicos Generalizados.
Analysis of consumer markets define and attempt to measure many variables in studies of the effectiveness of adversitising. The awareness in a consumer population of a particular advertising is one such quantity, the subject of the above-referenced studies. We define and give the implementation of model based in dynamic Generalised Linear Models which is used to measure this quantity.
James, Peter Welbury. "Design and analysis of studies to estimate cerebral blood flow." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251020.
Full textRodewald, Oliver Russell. "Use of Bayesian inference to estimate diversion likelihood in a PUREX facility." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/76951.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 66-67).
Nuclear Fuel reprocessing is done today with the PUREX process, which has been demonstrated to work at industrial scales at several facilities around the world. Use of the PUREX process results in the creation of a stream of pure plutonium, which allows the process to be potentially used by a proliferator. Safeguards have been put in place by the IAEA and other agencies to guard against the possibility of diversion and misuse, but the cost of these safeguards and the intrusion into a facility they represent could cause a fuel reprocessing facility operator to consider foregoing standard safeguards in favor of diversion detection that is less intrusive. Use of subjective expertise in a Bayesian network offers a unique opportunity to monitor a fuel reprocessing facility while collecting limited information compared to traditional safeguards. This work focuses on the preliminary creation of a proof of concept Bayesian network and its application to a model nuclear fuel reprocessing facility.
by Oliver Russell Rodewald.
S.M.and S.B.
SOUZA, MARCUS VINICIUS PEREIRA DE. "A BAYESIAN APPROACH TO ESTIMATE THE EFFICIENT OPERATIONAL COSTS OF ELECTRICAL ENERGY UTILITIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12361@1.
Full textEsta tese apresenta os principais resultados de medidas de eficiência dos custos operacionais de 60 distribuidoras brasileiras de energia elétrica. Baseado no esquema yardstick competition, foi utilizado uma Rede Neural d e Kohonen (KNN) para identificar grupos de empresas similares. Os resultados obtidos pela KNN não são determinísticos, visto que os pesos sinápticos da rede são inicializados aleatoriamente. Então, é realizada uma simulação de Monte Carlo para encontrar os clusters mais frequentes. As medidas foram obtidas por modelos DEA (input oriented, com e sem restrições aos pesos) e modelos Bayesianos e frequencistas de fronteira estocástica (utilizando as funções Cobb-Douglas e Translog). Em todos os modelos, DEA e SFA, a única variável input refere-se ao custo operacional (OPEX). Os índices de eficiência destes modelos representam a potencial redução destes custos de acordo com cada concessionária avaliada. Os outputs são os cost drivers da variável OPEX: número de unidades consumidoras (uma proxy da quantidade de serviço), montante de energia distribuída (uma proxy do produto total) e a extensão da rede de distribuição (uma proxy da dispersão dos consumidores na área de concessão). Finalmente, vale registrar que estas técnicas podem mitigar a assimetria de informação e aprimorar a habilidade do agente regulador em comparar os desempenhos das distribuidoras em ambientes de regulação incentivada.
This thesis presents the main results of the cost efficiency scores of 60 Brazilian electricity distribution utilities. Based on yardstick competition scheme, it was applied a Kohonen Neural Networks (KNN) to identify and to group the similar utilities. The KNN results are not deterministic, since the estimated weights are randomly initialized. Thus, a Monte Carlo simulation was used in order to find the most frequent clusters. Therefore was examined the use of the DEA methodology (input oriented, with and without weight constraints) and Bayesian and non- Bayesian Stochastic Frontier Analysis (centered on a Cobb- Douglas and Translog cost functions) to evaluate the cost efficiency scores of electricity distribution utilities. In both models the only input variable is operational cost (OPEX). The efficiency measures from these models reflect the potential of the reduction of operational costs of each utility. The outputs are the cost-drivers of the OPEX: the number of customers (a proxy for the amount of service), the total electric power supplied (a proxy for the amount of product delivered) and the distribution network size (a proxy of the customers scattering in the operating territory of each distribution utility). Finally, it is important to mention that these techniques can reduce the information assimetry to improve the regulator´s skill to compare the performance of the utilities in incentive regulation environments.
Xiao, Yuqing. "Estimate the True Pass Probability for Near-Real-Time Monitor Challenge Data Using Bayesian Analysis." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/20.
Full textHUAMANI, LUIS ALBERTO NAVARRO. "A BAYESIAN PROCEDUCE TO ESTIMATE THE INDIVIDUAL CONTRIBUTION OF INDIVIDUAL END USES IN RESIDENCIAL ELECTRICAL ENERGY CONSUMPTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8691@1.
Full textEsta dissertação investiga a utilização do Modelo de Regressão Multivariada Seemingly Unrelated sob uma perspectiva Bayesiana, na estimação das curvas de carga dos principais eletrodomésticos. Será utilizada uma estrutura de Demanda Condicional (CDA), consideradas de especial interesse no setor comercial e residencial para o gerenciamento pelo lado da demanda (Demand Side Management) dos hábitos dos consumidores residenciais. O trabalho envolve três partes principais: uma apresentação das metodologias estatísticas clássicas usadas para estimar as curvas de cargas; um estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated usando uma aproximação Bayesiana. E por último o desenvolvimento do modelo num estudo de caso. Na apresentação das metodologias clássicas fez-se um levantamento preliminar da estrutura CDA para casos univariados usando Regressão Múltipla, e multivariada usando Regressão Multivariada Seemingly Unrelated, onde o desempenho desta estrutura depende da estrutura de correlação entre os erros de consumo horário durante um dia específico; assim como as metodologias usadas para estimar as curvas de cargas. No estudo sobre Modelos de Regressão Multivariada Seemingly Unrelated a partir da abordagem Bayesiana considerou-se um fator importante no desempenho da metodologia de estimação, a saber: informação a priori. No desenvolvimento do modelo, foram estimadas as curvas de cargas dos principais eletrodomésticos numa abordagem Bayesiana mostrando o desempenho da metodologia na captura de ambos tipos de informação: estimativas de engenharia e estimativas CDA. Os resultados obtidos avaliados pelo método acima comprovaram superioridade na explicação de dados em relação aos modelos clássicos.
The present dissertation investigates the use of multivariate regression models from a Bayesian point of view. These models were used to estimate the electric load behavior of household end uses. A conditional demand structure was used considering its application to the demand management of the residential and commercial consumers. This work is divided in three main parts: a description of the classical statistical methodologies used for the electric load prediction, a study of the multivariate regression models using a Bayesian approach and a further development of the model applied to a case study. A preliminary revision of the CDA structure was done for univariate cases using multiple regression. A similar revision was done for other cases using multivariate regression (Seemingly Unrelated). In those cases, the behavior of the structure depends on the correlation between a minimization of the daily demand errors and the methodologies used for the electric load prediction. The study on multivariate regression models (Seemingly Unrelated) was done from a Bayesian point of view. This kind of study is very important for the prediction methodology. When developing the model, the electric load curves of the main household appliances were predicted using a Bayesian approach. This fact showed the performance of the metodology on the capture of two types of information: Engineering prediction and CDA prediction. The results obtained using the above method, for describing the data, were better than the classical models.
Bergström, David. "Bayesian optimization for selecting training and validation data for supervised machine learning : using Gaussian processes both to learn the relationship between sets of training data and model performance, and to estimate model performance over the entire problem domain." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157327.
Full textLi, Qing. "Recurrent-Event Models for Change-Points Detection." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/78207.
Full textPh. D.
Benko, Matej. "Hledaní modelů pohybu a jejich parametrů pro identifikaci trajektorie cílů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445467.
Full textNickless, Alecia. "Regional CO₂ flux estimates for South Africa through inverse modelling." Doctoral thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29703.
Full textBooks on the topic "Bayesian estimate"
Houston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Find full textHouston, Walter M. Empirical Bayes estimates of parameters from the logistic regression model. Iowa City, Iowa: ACT, Inc., 1997.
Find full textDoppelhofer, Gernot. Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach. Cambridge, MA: National Bureau of Economic Research, 2000.
Find full textTanabe, Kunio. BNDE, FORTRAN subroutines for computing Bayesian nonparametric univariate and bivariate density estimator. Tokyo: Institute of Statistical Mathematics, 1988.
Find full textWalsh, Bruce, and Michael Lynch. Analysis of Short-term Selection Experiments: 2. Mixed-model and Bayesian Approaches. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198830870.003.0019.
Full textQuintana, José Mario, Carlos Carvalho, James Scott, and Thomas Costigliola. Extracting S&P500 and NASDAQ Volatility: The Credit Crisis of 2007–2008. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.13.
Full textHigdon, Dave, Katrin Heitmann, Charles Nakhleh, and Salman Habib. Combining simulations and physical observations to estimate cosmological parameters. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.26.
Full textChappell, Michael, Bradley MacIntosh, and Thomas Okell. Kinetic Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.003.0004.
Full textGelfand, Alan, and Sujit K. Sahu. Models for demography of plant populations. Edited by Anthony O'Hagan and Mike West. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198703174.013.17.
Full textSize matters: measuring the effects of inequality and growth shocks. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/934-1.
Full textBook chapters on the topic "Bayesian estimate"
Ghosh, J. K. "The Horvitz-Thompson Estimate and Basu’s Circus Revisited." In Bayesian Analysis in Statistics and Econometrics, 225–28. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2944-5_14.
Full textO’Hagan, Anthony, and Frank S. Wells. "Use of Prior Information to Estimate Costs in a Sewerage Operation." In Case Studies in Bayesian Statistics, 118–62. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-2714-4_3.
Full textPeña, José M., Víctor Robles, Óscar Marbán, and María S. Pérez. "Bayesian Methods to Estimate Future Load in Web Farms." In Advances in Web Intelligence, 217–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24681-7_24.
Full textJoanes, Derrick N., Christine A. Gill, and Andrew J. Baczkowski. "Simulation of a Bayesian Interval Estimate for a Heterogeneity Measure." In Compstat, 187–92. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-52463-9_20.
Full textMira, Antonietta, and Paolo Tenconi. "Bayesian Estimate of Default Probabilities via MCMC with Delayed Rejection." In Seminar on Stochastic Analysis, Random Fields and Applications IV, 275–89. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7943-9_17.
Full textNaumov, Oleksandr, Mariia Voronenko, Olga Naumova, Nataliia Savina, Svitlana Vyshemyrska, Vitaliy Korniychuk, and Volodymyr Lytvynenko. "Using Bayesian Networks to Estimate the Effectiveness of Innovative Projects." In Lecture Notes in Computational Intelligence and Decision Making, 729–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82014-5_50.
Full textDammalapati, Sai Krishna, Vishal Murmu, and Gnanasekaran Nagarajan. "Bayesian Inference Approach to Estimate Robin Coefficient Using Metropolis Hastings Algorithm." In Recent Advances in Chemical Engineering, 293–302. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1633-2_32.
Full textJiang, Liangxiao, Dianhong Wang, and Zhihua Cai. "Scaling Up the Accuracy of Bayesian Network Classifiers by M-Estimate." In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 475–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74205-0_52.
Full textdel Río, Sergio, and Edwin Villanueva. "A Novel Method to Estimate Parents and Children for Local Bayesian Network Learning." In Lecture Notes in Networks and Systems, 468–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82196-8_35.
Full textDuan, Jing, Zhengkui Lin, Weiguo Yi, and Mingyu Lu. "Scaling Up the Accuracy of Bayesian Classifier Based on Frequent Itemsets by M-estimate." In Artificial Intelligence and Computational Intelligence, 357–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16530-6_42.
Full textConference papers on the topic "Bayesian estimate"
de Melo, Brian A. R., Raony C. C. Cesar, and Carlos A. B. Pereira. "Sample sizes to estimate proportions and correlation." In XI BRAZILIAN MEETING ON BAYESIAN STATISTICS: EBEB 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4759606.
Full textGu, L., G. Li, J. Abramczyk, and J. Prybylski. "A Bayesian Estimate of Vehicle Safety Performance." In SAE 2005 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-0822.
Full textIseki, Toshio. "An Improved Stochastic Modeling for Bayesian Wave Estimation." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83740.
Full textTorres-Avilés, F., C. Molina, and M. J. Muñoz. "Bayesian approaches for Poisson models to estimate bivariate relative risks." In XI BRAZILIAN MEETING ON BAYESIAN STATISTICS: EBEB 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4759618.
Full textDan, Zhiping, Xi Chen, Haitao Gan, and Changxin Gao. "Locally Adaptive Shearlet Denoising Based on Bayesian MAP Estimate." In Graphics (ICIG). IEEE, 2011. http://dx.doi.org/10.1109/icig.2011.134.
Full textNagel, Joseph B., and Bruno Sudret. "A Bayesian Multilevel Approach to Optimally Estimate Material Properties." In Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Reston, VA: American Society of Civil Engineers, 2014. http://dx.doi.org/10.1061/9780784413609.151.
Full textFeng Hu, Wei Li, Jorma Lilleberg, and Matti Latva-aho. "On the approximate noise modeling for the Estimate-and-Forward relay with the Bayesian estimator." In 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2013. http://dx.doi.org/10.1109/wcnc.2013.6555206.
Full textBin Kamarul Hatta, Khairul Anwar, Kuokkwee Wee, Wooi Ping Cheah, and Yit Yin Wee. "A True Bayesian Estimate concept in LTE downlink scheduling algorithm." In 2015 International Telecommunication Networks and Applications Conference (ITNAC). IEEE, 2015. http://dx.doi.org/10.1109/atnac.2015.7366791.
Full textSuvorova, Alena V. "Models for respondents' behavior rate estimate: Bayesian Network structure synthesis." In 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). IEEE, 2017. http://dx.doi.org/10.1109/scm.2017.7970503.
Full textHendri, Eko Primadi, Aji Hamim Wigena, and Anik Djuraidah. "BAYESIAN QUANTILE REGRESSION MODELING TO ESTIMATE EXTREME RAINFALL IN INDRAMAYU." In Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-8-2019.2290491.
Full textReports on the topic "Bayesian estimate"
Mulcahy, Garrett, Dusty Brooks, and Brian Ehrhart. Using Bayesian Methodology to Estimate Liquefied Natural Gas Leak Frequencies. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1782412.
Full textCheng, Benny N., and Lap S. Tam. Bayesian Missile System Reliability from Point Estimates. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada611099.
Full textWilliams, Brian. Bayesian Optimal Sensor Augmentation Via Estimated Mutual Information. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1669078.
Full textDoppelhofer, Gernot, Ronald Miller, and Xavier Sala-i-Martin. Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. Cambridge, MA: National Bureau of Economic Research, June 2000. http://dx.doi.org/10.3386/w7750.
Full textMelo-Velandia, Luis Fernando, Rubén Albeiro Loaiza-Maya, and Mauricio Villamizar-Villegas. Bayesian combination for inflation forecasts : the effects of a prior based on central banks' estimates. Bogotá, Colombia: Banco de la República, November 2014. http://dx.doi.org/10.32468/be.853.
Full text