Dissertations / Theses on the topic 'Bayes predictor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Bayes predictor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Zerbeto, Ana Paula. "Melhor preditor empírico aplicado aos modelos beta mistos." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09042014-132109/.
Full textThe mixed beta regression models are extensively used to analyse data with hierarquical structure and that take values in a restricted and known interval. In order to propose a prediction method for their random components, the results previously obtained in the literature for the empirical Bayes predictor were extended to beta regression models with random intercept normally distributed. The proposed predictor, called empirical best predictor (EBP), can be applied in two situations: when the interest is predict individuals effects for new elements of groups that were already analysed by the fitted model and, also, for elements of new groups. Simulation studies were designed and their results indicated that the performance of EBP was efficient and satisfatory in most of scenarios. Using the propose to analyse two health databases, the same results of simulations were observed in both two cases of application, and good performances were observed. So, the proposed method is promissing for the use in predictions for mixed beta regression models.
Ayme, Alexis. "Supervised learning with missing data : a non-asymptotic point of view." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS252.
Full textMissing values are common in most real-world data sets due to the combination of multiple sources andinherently missing information, such as sensor failures or unanswered survey questions. The presenceof missing values often prevents the application of standard learning algorithms. This thesis examinesmissing values in a prediction context, aiming to achieve accurate predictions despite the occurrence ofmissing data in both training and test datasets. The focus of this thesis is to theoretically analyze specific algorithms to obtain finite-sample guarantees. We derive minimax lower bounds on the excess risk of linear predictions in presence of missing values.Such lower bounds depend on the distribution of the missing pattern, and can grow exponentially withthe dimension. We propose a very simple method consisting in applying Least-Square procedure onthe most frequent missing patterns only. Such a simple method turns out to be near minimax-optimalprocedure, which departs from the Least-Square algorithm applied to all missing patterns. Followingthis, we explore the impute-then-regress method, where imputation is performed using the naive zeroimputation, and the regression step is carried out via linear models, whose parameters are learned viastochastic gradient descent. We demonstrate that this very simple method offers strong finite-sampleguarantees in high-dimensional settings. Specifically, we show that the bias of this method is lowerthan the bias of ridge regression. As ridge regression is often used in high dimensions, this proves thatthe bias of missing data (via zero imputation) is negligible in some high-dimensional settings. Thesefindings are illustrated using random features models, which help us to precisely understand the role ofdimensionality. Finally, we study different algorithm to handle linear classification in presence of missingdata (logistic regression, perceptron, LDA). We prove that LDA is the only model that can be valid forboth complete and missing data for some generic settings
Laws, David Joseph. "A Bayes decision theoretic approach to the optimal design of screens." Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/648.
Full textWong, Hubert. "Small sample improvement over Bayes prediction under model uncertainty." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ56646.pdf.
Full textDahlgren, Lindström Adam. "Structured Prediction using Voted Conditional Random FieldsLink Prediction in Knowledge Bases." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-140692.
Full textLiu, Benmei. "Hierarchical Bayes estimation and empirical best prediction of small-area proportions." College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9149.
Full textThesis research directed by: Joint Program in Survey Methodology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Bakal, Mehmet. "Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning." UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/90.
Full textKhan, Imran Qayyum. "Simultaneous prediction of symptom severity and cause in data from a test battery for Parkinson patients, using machine learning methods." Thesis, Högskolan Dalarna, Datateknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4586.
Full textWang, Kai. "Novel computational methods for accurate quantitative and qualitative protein function prediction /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/11488.
Full textFredette, Marc. "Prediction of recurrent events." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1142.
Full textEldud, Omer Ahmed Abdelkarim. "Prediction of protein secondary structure using binary classificationtrees, naive Bayes classifiers and the Logistic Regression Classifier." Thesis, Rhodes University, 2016. http://hdl.handle.net/10962/d1019985.
Full textGetty, Kimberly Chapman. "Gender and Professional Experience as Predictors of Consultants' Likelihood of Use of Social Power Bases." NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-04172006-105027/.
Full textKothawade, Rohan Dilip. "Wine quality prediction model using machine learning techniques." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20009.
Full textLi, Qiuxiang. "Orthologous pair transfer and hybrid Bayes methods to predict the protein-protein interaction network of the Anopheles gambiae mosquitoes." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/4635.
Full textWilms, Christoph [Verfasser], Daniel [Akademischer Betreuer] Hoffmann, and Peter [Akademischer Betreuer] Bayer. "Methods for the prediction of complex biomolecular structures / Christoph Wilms. Gutachter: Peter Bayer. Betreuer: Daniel Hoffmann." Duisburg, 2014. http://d-nb.info/1048087301/34.
Full textLEGENDRE, JEAN-FRANCOIS. "Etude de modeles de prediction de la propagation bases sur la theorie geometrique de la diffraction." Rennes, INSA, 1995. http://www.theses.fr/1995ISAR0001.
Full textWarsitha, Tedy, and Robin Kammerlander. "Analyzing the ability of Naive-Bayes and Label Spreading to predict labels with varying quantities of training data : Classifier Evaluation." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-188132.
Full textEn studie utfördes på klassifieringsmetoderna Naive-Bayes och Label Spreading applicerade i ett spam filter. Meto- dernas förmåga att predicera observerades och resultaten jämfördes i ett McNemar test, vilket ledde till upptäckten av styrkorna och svagheterna av de valda metoderna i en miljö med varierande träningsdata. Fastän resultaten var ofullständiga på grund av bristfälliga resurser, så diskute- ras den bakomliggande teorin utifrån flera vinklar. Denna diskussion har målet att ge en bättre förståelse kring de bakomliggande förutsättningarna som kan leda till poten- tiellt annorlunda resultat för de valda metoderna. Vidare öppnar detta möjligheter för förbättringar och framtida stu- dier. Slutsatsen som dras av denna studie är att signifikanta skillnader existerar i förmågan att kunna predicera klasser mellan de två valda klassifierarna. Den slutgiltiga rekom- mendationen blir att välja en klassifierare utifrån utbudet av träningsdata och tillgängligheten av datorkraft.
Vavilikolanu, Srutha. "Crash Prediction Models on Truck-Related Crashes on Two-lane Rural Highways with Vertical Curves." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1221758522.
Full textSchram, Christophe. "Aeroacoustics of subsonic jets: Prediction of the sound produced by vortex pairing bases on particle image velocimetry." Doctoral thesis, Universite Libre de Bruxelles, 2003. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211341.
Full textKnecht, Casey Scott. "Crash Prediction Modeling for Curved Segments of Rural Two-Lane Two-Way Highways in Utah." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4352.
Full textHátle, Lukáš. "Využití Bayesovských sítí pro predikci korporátních bankrotů." Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-192331.
Full textAl, Takash Ahmad. "Development of Numerical Methods to Accelerate the Prediction of the Behavior of Multiphysics under Cyclic Loading." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0014/document.
Full textIn the framework of structural calculation, the reduction of computation time plays an important rolein the proposition of failure criteria in the aeronautic and automobile domains. Particularly, the prediction of the stabilized cycle of polymer under cyclic loading requires solving of a thermo-viscoelastic problem with a high number of cycles. The presence of different time scales, such as relaxation time (viscosity), thermal characteristic time (thermal), and the cycle time (loading) lead to a huge computation time when an incremental scheme is used such as with the Finite Element Method (FEM).In addition, an allocation of memory will be used for data storage. The objective of this thesis isto propose new techniques and to extend existent ones. A transient thermal problem with different time scales is considered in the aim of computation time reduction. The proposed methods are called model reduction methods. First, the Proper Generalized Decomposition method (PGD) was extended to a nonlinear transient cyclic 3D problems. The non-linearity was considered by combining the PGD method with the Discrete Empirical Interpolation Method (DEIM), a numerical strategy used in the literature. Results showed the efficiency of the PGD in generating accurate results compared to the FEM solution with a relative error less than 1%. Then, a second approach was developed in order to reduce the computation time. It was based on the collection of the significant modes calculated from the PGD method for different time scales. A dictionary assembling these modes is then used to calculate the solution for different characteristic times and different boundary conditions. This approach was adapted in the case of a weak coupled diffusion thermal problem. The novelty of this method is to consider a dictionary composed of spatio-temporal bases and not spatial only as usedin the POD. The results showed again an exact reproduction of the solution in addition to a huge time reduction. However, when different cycle times are considered, the number of modes increases which limits the usage of the approach. To overcome this limitation, a third numerical strategy is proposed in this thesis. It consists in considering a priori known time bases and is called the mixed strategy. The originality in this approach lies in the construction of a priori time basis based on the Fourier analysis of different simulations for different time scales and different values of parameters.Once this study is done, an analytical expression of time bases based on parameters such as the characteristic time and the cycle time is proposed. The related spatial bases are calculated using the PGD algorithm. This method is then tested for the resolution of 3D thermal problems under cyclic loading linear and nonlinear and a weak coupled diffusion thermal problem
Stretta, Jean-Michel. "Contribution de la teledetection aerospatiale a l'elaboration des bases de l'halieutique operationnelle : l'exemple des pecheries thonieres tropicales de surface (aspect predictif)." Paris 6, 1991. http://www.theses.fr/1991PA066346.
Full textPinaire, Jessica. "Explorer les trajectoires de patients via les bases médico-économiques : application à l'infarctus du myocarde." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS020/document.
Full textWith approximately 120,000 people affected each year, 12,000 deaths from the first crisis and 18,000 deaths after one year, myocardial infarction is a major public health issue. This pathology requires hospitalization and management in an intensive care cardiology unit. We study this pathology using the French national Prospective Paiement System (PPS) databases.The collection of national hospital data within the framework of the PPS generates about 25 million records per year.These data, which are initially collected for medico-economic purposes, contain information that may have other purposes: improving patient care, predicting the evolution of care, planning their costs, etc.Another emerging issue is that of providing tools for exploring patients' hospital trajectories using data from the PPS. Through several objectives, this thesis aims to suggest tools combining methods from three disciplines: medical computing, data mining and biostatistics.We make four contributions.The first contribution concerns the constitution of a quality database to analyze patient trajectories. The second contribution is a semi-automatic method for the systematic review of the literature. This part of the work delineates the contours of the trajectory concept in the biomedical field. The third contribution is the identification of care trajectories in the prediction of intra-hospital death. Our research strategy is divided into two phases: 1) Identification of typical patient trajectories using data mining tools; 2) Construction of a prediction model from these trajectories to predict death. Finally, the last contribution is the characterization of patient flows through the various hospital events, also considering of delays and costs. In this contribution, we propose a combined-data mining and a longitudinal data clustering technique
López, Massaguer Oriol 1972. "Development of informatic tools for extracting biomedical data from open and propietary data sources with predictive purposes." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/471540.
Full textWe developed new software tools to obtain information from public and private data sources to develop in silico toxicity models. The first of these tools is Collector, an Open Source application that generates “QSAR-ready” series of compounds annotated with bioactivities, extracting the data from the Open PHACTS platform using semantic web technologies. Collector was applied in the framework of the eTOX project to develop predictive models for toxicity endpoints. Additionally, we conceived, designed, implemented and tested a method to derive toxicity scorings suitable for predictive modelling starting from in vivo preclinical repeated-dose studies generated by the pharmaceutical industry. This approach was tested by generating scorings for three hepatotoxicity endpoints: ‘degenerative lesions’, ‘inflammatory liver changes’ and ‘non-neoplasic proliferative lesions’. The suitability of these scores was tested by comparing them with experimentally obtained point of departure doses as well as by developing tentative QSAR models, obtaining acceptable results. Our method relies on ontology-based inference to extract information from our ontology annotated data stored in a relational database. Our method, as a whole, can be applied to other preclinical toxicity databases to generate toxicity scorings. Moreover, the ontology-based inference method on its own is applicable to any relational databases annotated with ontologies.
Alborzi, Seyed Ziaeddin. "Automatic Discovery of Hidden Associations Using Vector Similarity : Application to Biological Annotation Prediction." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0035.
Full textThis thesis presents: 1) the development of a novel approach to find direct associations between pairs of elements linked indirectly through various common features, 2) the use of this approach to directly associate biological functions to protein domains (ECDomainMiner and GODomainMiner), and to discover domain-domain interactions, and finally 3) the extension of this approach to comprehensively annotate protein structures and sequences. ECDomainMiner and GODomainMiner are two applications to discover new associations between EC Numbers and GO terms to protein domains, respectively. They find a total of 20,728 and 20,318 non-redundant EC-Pfam and GO-Pfam associations, respectively, with F-measures of more than 0.95 with respect to a “Gold Standard” test set extracted from InterPro. Compared to around 1500 manually curated associations in InterPro, ECDomainMiner and GODomainMiner infer a 13-fold increase in the number of available EC-Pfam and GO-Pfam associations. These function-domain associations are then used to annotate thousands of protein structures and millions of protein sequences for which their domain composition is known but that currently lack experimental functional annotations. Using inferred function-domain associations and considering taxonomy information, thousands of annotation rules have automatically been generated. Then, these rules have been utilized to annotate millions of protein sequences in the TrEMBL database
Mbaye, Ndèye Maguette. "Multimodal learning to predict breast cancer prognosis." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM017.
Full textBreast cancer is one of the most common cancers worldwide, accounting for 12.5% of new cases each year. In 2022, around 2.3 million women were diagnosed, with over 666,000 deaths. Although electronic health records (EHRs) have revolutionized clinical research by providing valuable data, breast cancer studies rarely exploit free-text medical reports, which nonetheless contain crucial information. This thesis proposes to develop machine and deep learning models to predict breast cancer outcomes using multimodal data (French text reports, laboratory results, clinical descriptors) from a large Institut Curie cohort. Models were built to analyze these modalities separately and then jointly. Results show that the integration of textual and structured data improves the prediction of patients' survival status. Moreover, the analy-sis of predictive factors for patients' survival status opens up new perspectives for a better understanding of underlying mechanisms in breast cancer, and thus, for improving care
Alborzi, Seyed Ziaeddin. "Automatic Discovery of Hidden Associations Using Vector Similarity : Application to Biological Annotation Prediction." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0035/document.
Full textThis thesis presents: 1) the development of a novel approach to find direct associations between pairs of elements linked indirectly through various common features, 2) the use of this approach to directly associate biological functions to protein domains (ECDomainMiner and GODomainMiner), and to discover domain-domain interactions, and finally 3) the extension of this approach to comprehensively annotate protein structures and sequences. ECDomainMiner and GODomainMiner are two applications to discover new associations between EC Numbers and GO terms to protein domains, respectively. They find a total of 20,728 and 20,318 non-redundant EC-Pfam and GO-Pfam associations, respectively, with F-measures of more than 0.95 with respect to a “Gold Standard” test set extracted from InterPro. Compared to around 1500 manually curated associations in InterPro, ECDomainMiner and GODomainMiner infer a 13-fold increase in the number of available EC-Pfam and GO-Pfam associations. These function-domain associations are then used to annotate thousands of protein structures and millions of protein sequences for which their domain composition is known but that currently lack experimental functional annotations. Using inferred function-domain associations and considering taxonomy information, thousands of annotation rules have automatically been generated. Then, these rules have been utilized to annotate millions of protein sequences in the TrEMBL database
Schaberreiter, T. (Thomas). "A Bayesian network based on-line risk prediction framework for interdependent critical infrastructures." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526202129.
Full textTiivistelmä Tässä väitöskirjassa esitellään läpileikkausmalli kriittisten infrastruktuurien jatkuvaan käytön riskimallinnukseen. Tämän mallin avulla voidaan tiedottaa toisistaan riippuvaisia palveluita mahdollisista vaaroista, ja siten pysäyttää tai hidastaa toisiinsa vaikuttavat ja kumuloituvat vikaantumiset. Malli analysoi kriittisen infrastruktuurin palveluriskiä tutkimalla kriittisen infrastruktuuripalvelun tilan, joka on mitattu perusmittauksella (esimerkiksi anturi- tai ohjelmistotiloina) kriittisen infrastruktuurin palvelukomponenttien välillä ja tarkkailemalla koetun kriittisen infrastruktuurin palveluriskiä, joista palvelut riippuvat (kriittisen infrastruktuurin palveluriippuvuudet). Kriittisen infrastruktuurin palveluriski arvioidaan todennäköisyyden avulla käyttämällä Bayes-verkkoja. Lisäksi malli mahdollistaa tulevien riskien ennustamisen lyhyellä, keskipitkällä ja pitkällä aikavälillä, ja mahdollistaa niiden keskinäisten riippuvuuksien mallintamisen, joka on yleensä vaikea esittää Bayes-verkoissa. Kriittisen infrastruktuurin esittäminen kriittisen infrastruktuurin tietoturvamallina edellyttää analyysiä. Tässä väitöskirjassa esitellään kriittisen infrastruktuurin analyysimenetelmä, joka perustuu PROTOS-MATINE -riippuvuusanalyysimetodologiaan. Kriittiset infrastruktuurit esitetään kriittisen infrastruktuurin palveluina, palvelujen keskinäisinä riippuvuuksina ja perusmittauksina. Lisäksi tutkitaan varmuusindikaattoreita, joilla voidaan tutkia suoraan toiminnassa olevan kriittisen infrastruktuuripalvelun riskianalyysin oikeellisuutta, kuin myös riskiarvioita riippuvuuksista. Tutkimuksessa laadittiin työkalu, joka tukee kriittisen infrastruktuurin tietoturvamallin toteuttamisen kaikkia vaiheita. Kriittisen infrastruktuurin tietoturvamalli ja varmuusindikaattorien oikeellisuus vahvistettiin konseptitutkimuksella, ja alustavat tulokset osoittavat menetelmän toimivuuden
Kurzfassung In dieser Doktorarbeit wird ein Sektorübergreifendes Modell für die kontinuierliche Risikoabschätzung von kritische Infrastrukturen im laufenden Betrieb vorgestellt. Das Modell erlaubt es, Dienstleistungen, die in Abhängigkeit einer anderen Dienstleistung stehen, über mögliche Gefahren zu informieren und damit die Gefahr des Übergriffs von Risiken in andere Teile zu stoppen oder zu minimieren. Mit dem Modell können Gefahren in einer Dienstleistung anhand der Überwachung von kontinuierlichen Messungen (zum Beispiel Sensoren oder Softwarestatus) sowie der Überwachung von Gefahren in Dienstleistungen, die eine Abhängigkeit darstellen, analysiert werden. Die Abschätzung von Gefahren erfolgt probabilistisch mittels eines Bayessches Netzwerks. Zusätzlich erlaubt dieses Modell die Voraussage von zukünftigen Risiken in der kurzfristigen, mittelfristigen und langfristigen Zukunft und es erlaubt die Modellierung von gegenseitigen Abhängigkeiten, die im Allgemeinen schwer mit Bayesschen Netzwerken darzustellen sind. Um eine kritische Infrastruktur als ein solches Modell darzustellen, muss eine Analyse der kritischen Infrastruktur durchgeführt werden. In dieser Doktorarbeit wird diese Analyse durch die PROTOS-MATINE Methode zur Analyse von Abhängigkeiten unterstützt. Zusätzlich zu dem vorgestellten Modell wird in dieser Doktorarbeit eine Studie über Indikatoren, die das Vertrauen in die Genauigkeit einer Risikoabschätzung evaluieren können, vorgestellt. Die Studie beschäftigt sich sowohl mit der Evaluierung von Risikoabschätzungen innerhalb von Dienstleistungen als auch mit der Evaluierung von Risikoabschätzungen, die von Dienstleistungen erhalten wurden, die eine Abhängigkeiten darstellen. Eine Software, die alle Aspekte der Erstellung des vorgestellten Modells unterstützt, wurde entwickelt. Sowohl das präsentierte Modell zur Abschätzung von Risiken in kritischen Infrastrukturen als auch die Indikatoren zur Uberprüfung der Risikoabschätzungen wurden anhand einer Machbarkeitsstudie validiert. Erste Ergebnisse suggerieren die Anwendbarkeit dieser Konzepte auf kritische Infrastrukturen
Pichot, François. "Développement d’une méthode numérique pour la prédiction des dimensions d’un cordon de soudure tig : application aux superalliages bases cobalt et nickel." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14489/document.
Full textGas Tungsten Arc Welding (GTAW) is the most widely used welding process in aeronautics, due to its weld quality. During a welding operation, the thermal source induces thermal gradients causing strains and stresses that could affect assembly’s life duration. The aim of this study is to develop a numerical model of the welding process in order to get optimized process parameters.Before coupling thermal and mechanical phenomena, we must modelize heat transfers during welding. We propose a simplified heat source linked to the process parameters which enables to predict the main dimensions of the weld pool and the thermal evolution in the solid part. This source is defined by an homogeneous heat flux depending on a power P distributed in a R radius disk. These two parameters relate to process parameters, the arc height (h) and the current intensity I.Experiment tests was achieved to study the weld pool dimensions for both cases : incomplete penetration and full penetration weld. For each test, we identified the heat source parameters (P, R) which allow to obtain the experimental weld pool dimensions. The confrontation of numerical and experimental results enables to get links between the heat source parameters (P, R) and the welding parameters (I, h), producing a predictive heat source. The heat source reliability was verified taking into account several welding configurations with various superalloys sheet thickness, welding speed, materials.A coupled thermal-mechanical analysis, based on our thermal model, was applied to an industrial case: a nickel based superalloy components assembly of a gas turbine
Derras, Boumédiène. "Estimation des mouvements sismiques et de leur variabilité par approche neuronale : Apport à la compréhension des effets de la source, de propagation et de site." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAU013/document.
Full textThis thesis is devoted to an in-depth analysis of the ability of "Artificial Neural Networks" (ANN) to achieve reliable ground motion predictions. A first important aspect concerns the derivation of "GMPE" (Ground Motion Prediction Equations) with an ANN approach, and the comparison of their performance with those of "classical" GMGEs derived on the basis of empirical regressions with pre-established, more or less complex, functional forms. To perform such a comparison involving the two "betweeen-event" and "within-event" components of the random variability, we adapt the algorithm of the "random effects model" to the neural approach. This approach is tested on various, real and synthetic, datasets: the database compiled from European, Mediterranean and Middle Eastern events (RESORCE: Reference database for Seismic grOund-motion pRediction in Europe), the database NGA West 2 (Next Generation Attenuation West 2 developed in the USA), and the Japanese database derived from the KiK-net accelerometer network. In addition, a comprehensive set of synthetic data is also derived with a stochastic simulation approach. The considered ground motion parameters are those which are most used in earthquake engineering (PGA, PGV, response spectra and also, in some cases, local amplification functions). Such completely "data-driven" neural models, inform us about the respective, and possibly coupled, influences of the amplitude decay with distance, the magnitude scaling effects, and the site conditions, with a particular focus on the detection of non-linearities in site response. Another important aspect is the use of ANNs to test the relevance of different site proxies, through their ability to reduce the random variability of ground motion predictions. The ANN approach allows to use such site proxies either individually or combined, and to investigate their respective impact on the various characteristics of ground motion. The same section also includes an investigation on the links between the non-linear aspects of the site response and the different site proxies. Finally, the third section focuses on a few source-related effects: analysis of the influence of the "style of faulting" on ground motion, and, indirectly, the dependence between magnitude and seismic stress drop
Sengupta, Aritra. "Empirical Hierarchical Modeling and Predictive Inference for Big, Spatial, Discrete, and Continuous Data." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1350660056.
Full textPetřík, Patrik. "Predikce vývoje akciového trhu prostřednictvím technické a psychologické analýzy." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2010. http://www.nusl.cz/ntk/nusl-222507.
Full textKoseler, Kaan Tamer. "Realization of Model-Driven Engineering for Big Data: A Baseball Analytics Use Case." Miami University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=miami1524832924255132.
Full textŠenovský, Jakub. "Dolování z dat v jazyce Python." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363895.
Full textHrach, Vlastimil. "Využití prostředků umělé inteligence na kapitálových trzích." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2011. http://www.nusl.cz/ntk/nusl-222912.
Full textCarvalho, Jo?o Batista. "Predi??o em modelos de tempo de falha acelerado com efeito aleat?rio para avalia??o de riscos de falha em po?os petrol?feros." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18635.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
We considered prediction techniques based on models of accelerated failure time with random e ects for correlated survival data. Besides the bayesian approach through empirical Bayes estimator, we also discussed about the use of a classical predictor, the Empirical Best Linear Unbiased Predictor (EBLUP). In order to illustrate the use of these predictors, we considered applications on a real data set coming from the oil industry. More speci - cally, the data set involves the mean time between failure of petroleum-well equipments of the Bacia Potiguar. The goal of this study is to predict the risk/probability of failure in order to help a preventive maintenance program. The results show that both methods are suitable to predict future failures, providing good decisions in relation to employment and economy of resources for preventive maintenance.
Consideramos t?cnicas de predi??o baseadas em modelos de tempo de falha acelerado com efeito aleat?rio para dados de sobreviv?ncia correlacionados. Al?m do enfoque bayesiano atrav?s do Estimador de Bayes Emp?rico, tamb?m discutimos sobre o uso de um m?todo cl?ssico, o Melhor Preditor Linear N?o Viciado Emp?rico (EBLUP), nessa classe de modelos. Para ilustrar a utilidade desses m?todos, fazemos aplica??es a um conjunto de dados reais envolvendo tempos entre falhas de equipamentos de po?os de petr?leo da Bacia Potiguar. Neste contexto, o objetivo ? predizer os riscos/probabilidades de falha com a finalidade de subsidiar programas de manuten??o preventiva. Os resultados obtidos mostram que ambos os m?todos s?o adequados para prever falhas futuras, proporcionando boas decis?es em rela??o ao emprego e economia de recursos para manuten??o preventiva
Hellsing, Edvin, and Joel Klingberg. "It’s a Match: Predicting Potential Buyers of Commercial Real Estate Using Machine Learning." Thesis, Uppsala universitet, Institutionen för informatik och media, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445229.
Full textDenna uppsats har undersökt utvecklingen av och potentiella effekter med ett intelligent beslutsstödssystem (IDSS) för att prediktera potentiella köpare av kommersiella fastigheter. Det övergripande behovet av ett sådant system har identifierats existerar på grund av informtaionsöverflöd, vilket systemet avser att reducera. Genom att förkorta bearbetningstiden av data kan tid allokeras till att skapa förståelse av omvärlden med kollegor. Systemarkitekturen som undersöktes bestod av att gruppera köpare av kommersiella fastigheter i kluster baserat på deras köparegenskaper, och sedan träna en prediktionsmodell på historiska transkationsdata från den svenska fastighetsmarknaden från Lantmäteriet. Prediktionsmodellen tränades på att prediktera vilken av grupperna som mest sannolikt kommer köpa en given fastighet. Tre olika klusteralgoritmer användes och utvärderades för grupperingen, en densitetsbaserad, en centroidbaserad och en hierarkiskt baserad. Den som presterade bäst var var den centroidbaserade (K-means). Tre övervakade maskininlärningsalgoritmer användes och utvärderades för prediktionerna. Dessa var Naive Bayes, Random Forests och Support Vector Machines. Modellen baserad p ̊a Random Forests presterade bäst, med en noggrannhet om 99,9%.
González, Rubio Jesús. "On the effective deployment of current machine translation technology." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/37888.
Full textGonzález Rubio, J. (2014). On the effective deployment of current machine translation technology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37888
TESIS
García, Durán Alberto. "Learning representations in multi-relational graphs : algorithms and applications." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2271/document.
Full textInternet provides a huge amount of information at hand in such a variety of topics, that now everyone is able to access to any kind of knowledge. Such a big quantity of information could bring a leap forward in many areas if used properly. This way, a crucial challenge of the Artificial Intelligence community has been to gather, organize and make intelligent use of this growing amount of available knowledge. Fortunately, important efforts have been made in gathering and organizing knowledge for some time now, and a lot of structured information can be found in repositories called Knowledge Bases (KBs). A main issue with KBs is that they are far from being complete. This thesis proposes several methods to add new links between the existing entities of the KB based on the learning of representations that optimize some defined energy function. We also propose a novel application to make use of this structured information to generate questions in natural language
Bogadhi, Amarender R. "Une étude expérimentale et théorique de l'intégration de mouvement pour la poursuite lente : Un modèle Bayesien récurrent et hiérarchique." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM5009/document.
Full textThis thesis addresses two studies by studying smooth pursuit eye movements for a translating tilted bar stimulus. First, the dynamic integration of local visual motion signals originating from retina and second, the influence of extra-retinal signals on motion integration. It also proposes a more generalized, hierarchical recurrent bayesian framework for smooth pursuit. The first study involved investigating dynamic motion integration for varying contrasts and speeds using a tilted bar stimuli. Results show that higher speeds and lower contrasts result in higher initial direction bias and subsequent dynamics of motion integration is slower for lower contrasts. It proposes an open-loop version of a recurrent bayesian model where a recurrent bayesian network is cascaded with an oculomotor plant to generate smooth pursuit responses. The model responses qualitatively account for the different dynamics observed in smooth pursuit responses to tilted bar stimulus at different speeds and contrasts. The second study investigated the dynamic interactions between retinal and extra-retinal signals in dynamic motion integration for smooth pursuit by transiently blanking the target at different moments during open-loop and steady-state phases of pursuit. The results suggest that weights to retinal and extra-retinal signals are dynamic in nature and extra-retinal signals dominate retinal signals on target reappearance after a blank introduced during open-loop of pursuit when compared to a blank introduced during steady-state of pursuit. The previous version of the model is updated to a closed-loop version and extended to a hierarchical recurrent bayesian model
Mervin, Lewis. "Improved in silico methods for target deconvolution in phenotypic screens." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283004.
Full textHaris, Daniel. "Optimalizace strojového učení pro predikci KPI." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385922.
Full textLeang, Isabelle. "Fusion en ligne d'algorithmes de suivi visuel d'objet." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066486/document.
Full textVisual object tracking is an elementary function of computer vision that has been the subject of numerous studies. Drift over time is one of the most critical phenomena to master because it leads to the permanent loss of the target being tracked. Despite the numerous approaches proposed in the literature to counter this phenomenon, none outperforms another in terms of robustness to the various sources of visual perturbations: variation of illumination, occlusion, sudden movement of camera, change of aspect. The objective of this thesis is to exploit the complementarity of a set of tracking algorithms by developing on-line fusion strategies capable of combining them generically. The proposed fusion chain consists of selecting the trackers from indicators of good functioning, combining their outputs and correcting them. On-line drift prediction was studied as a key element of the selection mechanism. Several methods are proposed for each step of the chain, giving rise to 46 possible fusion configurations. Evaluated on 3 databases, the study highlighted several key findings: effective selection greatly improves robustness; The correction improves the robustness but is sensitive to bad selection, making updating preferable to reinitialization; It is more advantageous to combine a small number of complementary trackers with homogeneous performances than a large number; The robustness of fusion of a small number of trackers is correlated to the incompleteness measure, which makes it possible to select the appropriate combination of trackers to a given application context
Xu, Jiaofen. "Bagging E-Bayes for Estimated Breeding Value Prediction." Master's thesis, 2009. http://hdl.handle.net/10048/626.
Full textWang, Min-Hsueh, and 王敏學. "Using Bayes Theorem to Establish Fall Risk Prediction System-A Case of Older People." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/ax82sc.
Full text慈濟大學
醫學資訊學系碩士班
103
Due to the ageing of Taiwan's population, the proportion of the elderly population in the community become more and more, and falls are the most easily accidents in the elderly. There are nearly fifty percent of people injured in the falls accident, so it is very important to use early prevention to reduce damage caused by falls. The current studies are mostly based on falls detection and notification, but it ignores the concept of “prevention is better than cure.” In this study, we collect three-axis acceleration values into fall criteria, combine with measurement values of physiology and history of disease, and calculate the sensitivity and specificity, as a basis for predicting the risk of falls. In the development and operation of the platform, we use quite popular software “Excel.” The purpose is to help people and health care providers easily to use and maintain the system. In this study, we expect the system can practically be used to predict the falls risk after confirm the accuracy of system by public test and achieve a certain degree of accuracy in falls risk by Bayes theorem.
Farrell, John J. "The prediction of HLA genotypes from next generation sequencing and genome scan data." Thesis, 2014. https://hdl.handle.net/2144/14694.
Full textAskari, Hemmat Reyhane. "SLA violation prediction : a machine learning perspective." Thèse, 2016. http://hdl.handle.net/1866/18754.
Full textKodzaga, Ermin. "Learning controller for prediction of lane change times : A study of driving behaviour using naive Bayes and Artificial Neural Networks." Thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-322983.
Full textPrasetio, Murman Dwi, and Murman Dwi Prasetio. "AN INVESTIGATION OF RELATIONSHIP BETWEEN PREDICTION WORD AND SUBTASK CATEGORY IN TASK ANALYSIS – A NAIVE BAYES BASED MACHINE LEARNING APPROACH." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/70666453826288063516.
Full text國立臺灣科技大學
工業管理系
100
Traditionally, indexing and searching of speech content in several tasks analysis have been achieved through a combination of separately construct natural language processing engines. Natural language processing is based on speech, the speech is primary mode of communication among human being and also the most natural and efficient form of exchanging information among human in speech. So, it is only logical that the next technological development to be natural language speech recognition for Human Computer Interaction (HCI).Unfortunately, in line with the development of computer system and its user interface a task analysis of users' current activities is not sufficient to guess what tasks the users will do following the previous tasks. In Lin and Lehto’s study, a Bayesian based semi-automated task analysis tool was developed to help task analysts predict categories of tasks/subtasks performed by knowledge agents from telephone conversations where agents were trying to help customers to troubleshoot their problems. The purpose of this study is to examine the dataset that was established by Lin and Lehto (2007) and further analyze the result of Bayesian based task analysis model proposed by Lin and Lehto (2009) by comparing the existing datasets result between two machine learning open source program based on Bayesian approach Text miner and Rapid miner which was invented by Hofmann, M and Klinkenberg, R, 2009. In this analysis, the Rapid Miner program generated a total of fifteen prediction results words in telephone’s dialog conversation between call center agent and customer. The fifteen combination words consist of single-words, pair-words, triple-words, quadruple words, single-pairs words, single-triple words, single-quadruple words, pair-triple words, pair-quadruple words, triple-quadruple words, single-pair-triple words, single-pair-quadruple words, single-triple-quadruple words, pair-triple-quadruple words, single-pair-triple-quadruple words. To identify the relationship between prediction words and main subtask categories, this study tries comparing machine learning open source program between Rapid Miner and Text Miner. These studies observe the results from rapid miner tool based on naive Bayesian having a poor performance than text miner to predict the relationship between prediction words and main subtask categories. Based on analysis Rapid Miner and Text Miner each has 71 subtask categories for 5184 narratives dialog datasets, the precision rate of rapid miner for all narratives datasets 33%, and testing set 26% and also for the training set 35% also the tool performance an average of correct prediction probability 19.91%. A total of 11 categories have correct prediction of over 50%. Out of these 11 Categories, 39 have correct predictions of below 50%. Compare to text miner tool’s results of main subtask categories in Fuzzy Bayesian task analysis consists of 13 categories have correct predictions of 80% or above and 34 categories have correct predictions of 50% or above. However, since Text miner under developing, a further analysis with the same datasets is needed to reconfirm the findings and compare the other tool based on text processing with the other algorithm or model development.