Academic literature on the topic 'BAY11-7082'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'BAY11-7082.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "BAY11-7082"

1

Vallejo, Abigail, Belal Chami, Joanne Dennis, Martin Simone, Gulfam Ahmad, Adrian Abdo, Arpeeta Sharma, et al. "NFκB Inhibition Mitigates Serum Amyloid A-Induced Pro-Atherogenic Responses in Endothelial Cells and Leukocyte Adhesion and Adverse Changes to Endothelium Function in Isolated Aorta." International Journal of Molecular Sciences 20, no. 1 (December 28, 2018): 105. http://dx.doi.org/10.3390/ijms20010105.

Full text
Abstract:
The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 μM BAY11-7082 or vehicle (control) followed by SAA (10 μg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in ex vivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.
APA, Harvard, Vancouver, ISO, and other styles
2

Hsia, Chih-Wei, Wei-Chieh Huang, Chih-Hao Yang, Chih-Hsuan Hsia, Thanasekaran Jayakumar, Periyakali Saravana Bhavan, Joen-Rong Sheu, and Kuan-Rau Chiou. "Comparison of the Potency of Pterostilbene with NF-κB Inhibitors in Platelet Activation: Mutual Activation by Akt-NF-κB Signaling in Human Platelets." Applied Sciences 11, no. 13 (July 2, 2021): 6149. http://dx.doi.org/10.3390/app11136149.

Full text
Abstract:
Myocardial infarction and cerebral ischemic stroke are prominent causes of death worldwide. Platelets play major roles in these diseases, although they are anucleated cells, but also express the NF-κB. Pterostilbene (PTE) possesses some intriguing pharmacological properties, including the capacity to inhibit platelet activation. We investigated the inhibitory role of PTE in NF-κB-mediated signal events and compared the relative potency with that of classical NF-κB inhibitors. PTE and IκB kinase (IKK) inhibitor, BAY11-7082, and proteasome inhibitor, Ro106-9920, inhibited platelet aggregation; the activity of BAY11-7082 and PTE were similar, but Ro106-9920 was weak in this reaction. PTE and BAY11-7082 diminished NF-κB signaling molecules, including IKK, IκBα, and p65 phosphorylation, and reversed IκBα degradation. However, Ro106-9920 was only effective in diminishing p65 phosphorylation and reversing IκBα degradation. In investigating the role of Akt and NF-κB in cell signaling events, MK-2206 (an inhibitor of Akt) markedly abolished IKK and p65 phosphorylation; BAY11-7082 also reduced Akt phosphorylation. PTE exhibited more potent activity in vivo than did BAY11-7082 in acute pulmonary thromboembolism. In conclusion, we identified a distinctive activation pathway of NF-κB and Akt involved in PTE-mediated antiplatelet aggregation, and PTE demonstrated powerful activity as a prophylactic and as clinical therapy for cardiovascular diseases.
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Wei-Chieh, Shaw-Min Hou, Ming-Ping Wu, Chih-Wei Hsia, Thanasekaran Jayakumar, Chih-Hsuan Hsia, Periyakali Saravana Bhavan, Chi-Li Chung, and Joen-Rong Sheu. "Decreased Human Platelet Activation and Mouse Pulmonary Thrombosis by Rutaecarpine and Comparison of the Relative Effectiveness with BAY11-7082: Crucial Signals of p38-NF-κB." Molecules 27, no. 2 (January 12, 2022): 476. http://dx.doi.org/10.3390/molecules27020476.

Full text
Abstract:
Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1–6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

Hsia, Chih-Wei, Chih-Hao Yang, Joen-Rong Sheu, Chih-Hsuan Hsia, Cheng-Lin Tsai, Wei-Chieh Huang, Ting-Yu Chen, Thanasekaran Jayakumar, Periyakali Saravana Bhavan, and Yi Chang. "Reduction of NF-κB Signals in Platelets and Prolongation of Platelet Plug Formation against High Shear Flow in Whole Blood on Human Subject by Columbianadin." Applied Sciences 10, no. 20 (October 19, 2020): 7323. http://dx.doi.org/10.3390/app10207323.

Full text
Abstract:
Myocardial infarction and cerebral ischemic stroke during the process of arterial thrombosis are prominently causes of death worldwide. Platelets are anucleated cells and play a critical factor in these diseases. Columbianadin (CBN), a coumarin derivative from plants, inhibits effective platelet activation. In this study, platelet function analysis revealed that the closure time of the platelet plug in human whole blood significantly prolonged by CBN, whereas CBN did not pointedly prolong the bleeding time in mice. BAY11-7082 (an inhibitor of IκB kinase) and MG-132 (an inhibitor of proteasome) inhibited collagen-stimulated platelet aggregation and ATP-release in human platelets, BAY11-7082 exhibited a higher potency than MG-132. Moreover, CBN markedly reduced NF-κB activation (e.g., IκBα and p65 phosphorylation) and reversed IκBα degradation in activated platelets. We investigated intercellular signaling events between mitogen-activated protein kinases and NF-κB, and found that BAY11-7082 abolished JNK1/2 and ERK1/2 phosphorylation. Interestingly, SP600125 (an inhibitor of JNK) but not PD98059 (an inhibitor of ERK) had no effect in NF-κB activation in activated platelets. Moreover, CBN but not BAY11-7082 significantly reduced hydroxyl radical (HO●) formation in platelets. Therefore, we propose that CBN inhibits NF-κB activation in human platelets and could present a potent clinical treatment for thromboembolic diseases.
APA, Harvard, Vancouver, ISO, and other styles
5

Hsia, Chih-Wei, Ming-Ping Wu, Ming-Yi Shen, Chih-Hsuan Hsia, Chi-Li Chung, and Joen-Rong Sheu. "Regulation of Human Platelet Activation and Prevention of Arterial Thrombosis in Mice by Auraptene through Inhibition of NF-κB Pathway." International Journal of Molecular Sciences 21, no. 13 (July 7, 2020): 4810. http://dx.doi.org/10.3390/ijms21134810.

Full text
Abstract:
Platelets are major players in the occurrence of cardiovascular diseases. Auraptene is the most abundant coumarin derivative from plants, and it has been demonstrated to possess a potent capacity to inhibit platelet activation. Although platelets are anucleated cells, they also express the transcription factor, nuclear factor-κB (NF-κB), that may exert non-genomic functions in platelet activation. In the current study, we further investigated the inhibitory roles of auraptene in NF-κB-mediated signal events in platelets. MG-132 (an inhibitor of proteasome) and BAY11-7082 (an inhibitor of IκB kinase; IKK), obviously inhibited platelet aggregation; however, BAY11-7082 exhibited more potent activity than MG-132 in this reaction. The existence of NF-κB (p65) in platelets was observed by confocal microscopy, and auraptene attenuated NF-κB activation such as IκBα and p65 phosphorylation and reversed IκBα degradation in collagen-activated platelets. To investigate cellular signaling events between PLCγ2-PKC and NF-κB, we found that BAY11-7082 abolished PLCγ2-PKC activation; nevertheless, neither U73122 nor Ro31-8220 had effect on NF-κB activation. Furthermore, both auraptene and BAY11-7082 significantly diminished HO• formation in activated platelets. For in vivo study, auraptene prolonged the occlusion time of platelet plug in mice. In conclusion, we propose a novel inhibitory pathway of NF-κB-mediated PLCγ2-PKC activation by auraptene in human platelets, and further supported that auraptene possesses potent activity for thromboembolic diseases.
APA, Harvard, Vancouver, ISO, and other styles
6

Tzao, Ching, Li-Yuan Cheng, Chien-Chih Chang, and Guang-Huan Sun. "The role of NF-κB pathway in cancer inflammation of esophageal squamous carcinoma." Journal of Clinical Oncology 31, no. 4_suppl (February 1, 2013): 42. http://dx.doi.org/10.1200/jco.2013.31.4_suppl.42.

Full text
Abstract:
42 Background: Chronic inflammation plays an important role in tumorigenesis and tumor progression in human cancers. We aim to investigate the role of NF-kB in cancer inflammation of esophageal squamous cell carcinoma (ESCC). Methods: To generate M2-polarized macrophages, cells of human U937 monocyte cell line were treated with phorbol myristate acetate (PMA, 50 ng/ml) for 6 hours, and then cultured with PMA plus Th2 cytokines, IL-4 (20 ng/ml) and IL-13 (20 ng/ml), for another 18 hours. M2 phenotype was verified by flow cytometry and by cytokine profiling using enzyme-linked immunosorbent assay (ELISA). After co-culture with M2 macrophages, transcription nuclear factor-kB (NF-kB) activity was measured using quantitative polymerase chain reaction (Q-PCR), followed by reconfirmation with Western blot analysis for IkBα in KYSE-170 and -510 ESCC cell lines (kindly provided by Dr. Yutaka Shimada at Kyoto University, Japan). A selective inhibitor to NF-kB, Bay11-7082, was used to treat ESCC cell lines co-cultured with M2 macrophages, followed by cell proliferation, migration, invasion assays and vascular endothelial growth factor (VEGF) secretion by ELISA. The effect of Bay11-7082 (5 mg/kg) against growth of ESCC tumor was tested in xenografted tumors. Results: PMA plus Th2 cytokines treatment promoted differentiation of U937 cells into M2 macrophages. When treated with Bay11-7082, proliferation, migration, invasion and induction of VEGF expression was significantly inhibited in M2 macrophage co-cultured ESCC cells with a down-regulation of IkBα expression. Tumor growth was significantly increased in M2 macrophage co-cultured ESCC cells compared to that of the non-co-cultured controls, which was significantly retarded by treatment with Bay11-7082. Conclusions: NF-kB pathway was activated in ESCC cell lines co-cultured with M2 macrophages with an increase in cell proliferation, cell motility and angiogenic factor in vitro and tumor growth in vivo, which were significantly suppressed by a NF-kB inhibitor, Bay11-7082. These results suggest a role of M2 macrophage in promoting aggressiveness of ESCC cells, possibly through an activation of NF-kB pathway that may serve as a potential therapeutic target for ESCC.
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Fangming, Yunhua Hu, Qiang Niu, Yu Li, Yusong Ding, Rulin Ma, Xianhua Wang, Shugang Li, and Jianxin Xie. "Grape Seed Proanthocyanidin Extract Inhibits Human Esophageal Squamous Cancerous Cell Line ECA109 via the NF-κB Signaling Pathway." Mediators of Inflammation 2018 (December 17, 2018): 1–12. http://dx.doi.org/10.1155/2018/3403972.

Full text
Abstract:
Esophageal squamous cell carcinoma is the most common type of squamous cell carcinoma. Grape seed proanthocyanidin extract (GSPE) is considered to exhibit anticancer activity against several different types of cancer. We aimed to determine whether GSPE inhibited esophageal squamous cancerous cells and the possible involvement of NF-κB in this process. The human esophageal squamous cancer cell line ECA109 was treated with GSPE (0–80 μg/mL) and BAY11-7082 (10 μmol/L) for 12, 24, and 48 h. The MTT assay was used to determine cell proliferation; alterations in cell apoptosis were detected by flow cytometry; levels of inflammatory factors interleukin-6 and cyclooxygenase-2 and apoptotic proteins Bax/Bcl-2 were measured by ELISA; qRT-PCR and western blots were used to examine the activation of caspase-3 and NF-κB signaling. GSPE inhibited the proliferation of ECA109 cells and induced cellular apoptosis in a time- and dose-dependent manner. ELISA results showed that GSPE and BAY11-7082 reduced the secretion of inflammatory cytokines interleukin-6 and cyclooxygenase-2. The results of PCR and western blotting indicated that GSPE and BAY11-7082 activated caspase-3 and attenuated the activation of the NF-κB signaling pathway. GSPE induced apoptosis in ECA109 cells and inhibited ECA109 cell proliferation via a reduction in the secretion of inflammatory cytokines. This mechanism may be related to the attenuation of NF-κB activity and the sensitization of caspase-3.
APA, Harvard, Vancouver, ISO, and other styles
8

Qiu, Zhen, Shaoqing Lei, Bo Zhao, Yang Wu, Wating Su, Min Liu, Qingtao Meng, Bin Zhou, Yan Leng, and Zhong-yuan Xia. "NLRP3 Inflammasome Activation-Mediated Pyroptosis Aggravates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/9743280.

Full text
Abstract:
The reactive oxygen species- (ROS-) induced nod-like receptor protein-3 (NLRP3) inflammasome triggers sterile inflammatory responses and pyroptosis, which is a proinflammatory form of programmed cell death initiated by the activation of inflammatory caspases. NLRP3 inflammasome activation plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Our present study investigated whether diabetes aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Type 1 diabetic rat model was established by intraperitoneal injection of streptozotocin (60 mg/kg). MI/R was induced by ligating the left anterior descending artery (LAD) for 30 minutes followed by 2 h reperfusion. H9C2 cardiomyocytes were exposed to high glucose (HG, 30 mM) conditions and hypoxia/reoxygenation (H/R) stimulation. The myocardial infarct size, CK-MB, and LDH release in the diabetic rats subjected to MI/R were significantly higher than those in the nondiabetic rats, accompanied with increased NLRP3 inflammasome activation and increased pyroptosis. Inhibition of inflammasome activation with BAY11-7082 significantly decreased the MI/R injury.In vitrostudies showed similar effects, as BAY11-7082 or the ROS scavenger N-acetylcysteine, attenuated HG and H/R-induced H9C2 cell injury. In conclusion, hyperglycaemia-induced NLRP3 inflammasome activation may be a ROS-dependent process in pyroptotic cell death, and NLRP3 inflammasome-induced pyroptosis aggravates MI/R injury in diabetic rats.
APA, Harvard, Vancouver, ISO, and other styles
9

Montalbano, Angela Marina, Giusy Daniela Albano, Anna Bonanno, Loredana Riccobono, Caterina Di Sano, Maria Ferraro, Liboria Siena, et al. "Autocrine Acetylcholine, Induced by IL-17A via NFκB and ERK1/2 Pathway Activation, Promotes MUC5AC and IL-8 Synthesis in Bronchial Epithelial Cells." Mediators of Inflammation 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/9063842.

Full text
Abstract:
IL-17A is overexpressed in the lung during acute neutrophilic inflammation. Acetylcholine (ACh) increases IL-8 and Muc5AC production in airway epithelial cells. We aimed to characterize the involvement of nonneuronal components of cholinergic system on IL-8 and Muc5AC production in bronchial epithelial cells stimulated with IL-17A. Bronchial epithelial cells were stimulated with recombinant human IL-17A (rhIL-17A) to evaluate the ChAT expression, the ACh binding and production, the IL-8 release, and the Muc5AC production. Furthermore, the effectiveness of PD098,059 (inhibitor of MAPKK activation), Bay11-7082 (inhibitor of IkBαphosphorylation), Hemicholinium-3 (HCh-3) (choline uptake blocker), and Tiotropium bromide (Spiriva®) (anticholinergic drug) was tested in ourin vitromodel. We showed that rhIL-17A increased the expression of ChAT, the levels of ACh binding and production, and the IL-8 and Muc5AC production in stimulated bronchial epithelial cells compared with untreated cells. The pretreatment of the cells with PD098,059 and Bay11-7082 decreased the ChAT expression and the ACh production/binding, while HCh-3 and Tiotropium decreased the IL-8 and Muc5AC synthesis in bronchial epithelial cells stimulated with rhIL-17A. IL-17A is involved in the IL-8 and Muc5AC production promoting, via NFκB and ERK1/2 pathway activation, the synthesis of ChAT, and the related activity of autocrine ACh in bronchial epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, J., WJ Zhang, W. Xiong, WH Lu, HY Zheng, X. Zhou, and J. Yuan. "PM2.5 stimulated the release of cytokines from BEAS-2B cells through activation of IKK/NF-κB pathway." Human & Experimental Toxicology 38, no. 3 (October 25, 2018): 311–20. http://dx.doi.org/10.1177/0960327118802628.

Full text
Abstract:
Previous studies indicated that exposure to fine particulate matter (PM2.5) was related to pulmonary inflammatory diseases through activation of nuclear factor kappa B (NF-κB) signaling pathway to trigger cytokine secretions in human lung carcinoma cells. To investigate the potential mechanisms underlying expression of cytokines via activated NF-κB by PM2.5, human bronchial epithelial cells (BEAS-2B cells) were treated with PM2.5 extracts at different concentrations (6, 13, 25, 50, 100, 200, and 400 µg mL−1) for 6 and 24 h. We found that 100 µg mL−1 PM2.5 increased interleukin 6 (IL-6) and IL-8 expression at 24 h ( p < 0.05 or p < 0.01). Moreover, 100 µg mL−1 PM2.5 upregulated phosphorylated IκB kinase (IKK), p65, and IκBα at 6 h, which could be reversed by the IKK inhibitor Bay11-7082 ( p < 0.05 or p < 0.01). The p65 subunit of NF-κB was translocated into the nucleus of the cells treated with 100 µg mL−1 PM2.5 at 6 and 24 h. Bay11-7082 partly inhibited PM2.5-induced increases of IL-6 and IL-8 secretion. The results indicated that PM2.5 extract increased IL-6 and IL-8 levels in BEAS-2B cells through activation of IKK/NF-κB pathway. Our study will contribute to better understanding of the mechanism of PM2.5-induced pulmonary inflammatory diseases.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "BAY11-7082"

1

Murase, Tosei. "Roles of Notch and NF-kB signaling in allogeneic responses." Phd thesis, 2006. http://hdl.handle.net/1885/7166.

Full text
Abstract:
The induction of robust allograft tolerance is the ultimate goal for clinical transplantation. Although studies have identified that dendritic cells (DCs) are important for induction of antigen-specific tolerance, the requirements for generating tolerogenic DCs are yet to be elucidated. Recently, it has been demonstrated the modulation of two signaling pathways, Notch and nuclear factor KB (NF-KB) can render DCs tolerogenic. The studies documented here examine (1) whether immature DCs over-expressing Notch-related molecules (Jagged-I, Delta-like-I (Dll-I), Lunatic Fringe (Ung) , and Manic Fringe (Mfng)) act as immunoregulatory DCs and promote allograft survival; and (2) whether DCs deficient in NF-KB signaling inhibit the alloreactive T cell response and promote allograft survival ... Although the potential for Notch signaling to promote alloantigen-specific tolerance remains unresolved, these studies suggest that inhibition of NF-KB signaling in DCs represent a potential approach for promoting allograft survival.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography