Academic literature on the topic 'Batteries au Li-Ion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Batteries au Li-Ion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Batteries au Li-Ion"
Gupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma, and Jai Prakash. "Techno–economic and environmental impact analysis of electric two-wheeler batteries in India." Clean Energy 8, no. 3 (May 3, 2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Full textConder, Joanna, Cyril Marino, Petr Novák, and Claire Villevieille. "Do imaging techniques add real value to the development of better post-Li-ion batteries?" Journal of Materials Chemistry A 6, no. 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.
Full textKulkarni, Gautam. "Comparative Material Selection of Battery Pack Casing for an Electric Vehicle." International Journal for Research in Applied Science and Engineering Technology 11, no. 12 (December 31, 2023): 66–75. http://dx.doi.org/10.22214/ijraset.2023.56595.
Full textChattopadhyay, Jayeeta, Tara Sankar Pathak, and Diogo M. F. Santos. "Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review." Polymers 15, no. 19 (September 27, 2023): 3907. http://dx.doi.org/10.3390/polym15193907.
Full textWinter, Martin, Brian Barnett, and Kang Xu. "Before Li Ion Batteries." Chemical Reviews 118, no. 23 (November 30, 2018): 11433–56. http://dx.doi.org/10.1021/acs.chemrev.8b00422.
Full textBae, Jin-Yong. "Electrical Modeling and Impedance Spectra of Lithium-Ion Batteries and Supercapacitors." Batteries 9, no. 3 (March 8, 2023): 160. http://dx.doi.org/10.3390/batteries9030160.
Full textMackereth, Matthew, Rong Kou, and Sohail Anwar. "Zinc-Ion Battery Research and Development: A Brief Overview." European Journal of Engineering and Technology Research 8, no. 5 (October 20, 2023): 70–73. http://dx.doi.org/10.24018/ejeng.2023.8.5.2983.
Full textJin, Yucheng. "A general comparison on energy density between Li-Ion, Li-S and Li-O2 batteries." Applied and Computational Engineering 11, no. 1 (September 25, 2023): 283–88. http://dx.doi.org/10.54254/2755-2721/11/20230267.
Full textKim, Hee-Je, TNV Krishna, Kamran Zeb, Vinodh Rajangam, Chandu V. V. Muralee Gopi, Sangaraju Sambasivam, Kummara Venkata Guru Raghavendra, and Ihab M. Obaidat. "A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques." Electronics 9, no. 7 (July 17, 2020): 1161. http://dx.doi.org/10.3390/electronics9071161.
Full textHao, Shuai. "Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery." Solid State Phenomena 324 (September 20, 2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.
Full textDissertations / Theses on the topic "Batteries au Li-Ion"
Yang, Luyi. "Batteries beyond Li-ion : an investigation of Li-Air and Li-S batteries." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/384921/.
Full textVERSACI, DANIELE. "Materials for high energy Li-ion and post Li-ion batteries." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2896992.
Full textAndersson, Anna. "Surface Phenomena in Li-Ion Batteries." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5120-9/.
Full textOltean, Alina. "Organic Negative Electrode Materials For Li-ion and Na-ion Batteries." Licentiate thesis, Uppsala universitet, Institutionen för kemi - Ångström, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243273.
Full textWhitehead, Adam Harding. "Carbon-based negative electrodes for Li-ion batteries." Thesis, University of Southampton, 1997. https://eprints.soton.ac.uk/394278/.
Full textRuggeri, Irene <1989>. "Beyond Li-ion batteries: novel concepts and designs." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amsdottorato.unibo.it/8763/1/Thesis_IR.pdf.
Full textVERGORI, ELENA. "Li-ion batteries monitoring for electrified vehicles applications." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2839860.
Full textFleury, Xavier. "Corrélation entre dégradation des composants internes et sécurité de fonctionnement des batteries Li-ion." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI060/document.
Full textLithium-ion batteries have undeniable assets to meet several of the requirements for embedded applications. They provide high energy density and long cycle life. Nevertheless, they can face irreversible damage during their lives which could cause safety issues like the thermal runaway of the battery and its explosion. It is then essential to understand the degradation mechanisms of all the internal components of an accumulator (i.e. electrode materials, collectors, separator and electrolyte) and the progress of events in abusive conditions that can lead to an accident scenario. The aim of this thesis is to work on the security aspects of Lithium-ion batteries in order to understand these degradation mechanisms and to help to prevent future incidents.Even if the degradation mechanisms of all the internal components are studied in this work, a special attention is given to the separator. This component is indeed one of the most important safety devices of a battery and have to be electrochemically, mechanically and thermally characterized after ageing. Different washing methods have been study in order to characterize the separator without any degradation product of the electrolyte which could interfere. Porosity and tortuosity associated with the ionic conductivity of the separator have been tested.The results show that even if the separator is electrochemically inactive, its porosity can decrease because of the degradation of the negative graphite electrode. Indeed, SEI components obstruct the surface porosity of the separator. This porosity change do not cause any mechanical degradation but decrease separator performances at high current rate and promote lithium dendrite growth
Perre, Emilie. "Nano-structured 3D Electrodes for Li-ion Micro-batteries." Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119485.
Full textGullbrekken, Øystein. "Thermal characterisation of anode materials for Li-ion batteries." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19224.
Full textBooks on the topic "Batteries au Li-Ion"
Monconduit, Laure, Laurence Croguennec, and Rémi Dedryvère. Electrodes for Li-Ion Batteries. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119007364.
Full textLi li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.
Find full textLi, Biao. Studies on Anionic Redox in Li-Rich Cathode Materials of Li-Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2847-3.
Full textMcCalla, Eric. Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05849-8.
Full textKeyser, Matt. Development of a novel test method for on-demand internal short circuit in a li-ion cell. Golden, CO: National Renewable Energy Laboratory, 2011.
Find full textKim, Gi-Heon, and Matthew Keyser. Numerical and experimental investigation of internal short circuits in a Li-ion cell. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Find full textDian dong qi che yong li li zi er ci dian chi. 2nd ed. Beijing: Ke xue chu ban she, 2013.
Find full textDian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.
Find full textPlatform Li-lon battery risk assessment tool: Cooperative research and development final report. Golden, CO]: National Renewable Energy Laboratory, 2012.
Find full textBenayad, Anass, BrunoVE Béranger, Céline Barchasz, and Michel Bardet. Batteries Li-ion. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2410-6.
Full textBook chapters on the topic "Batteries au Li-Ion"
Julien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Anodes for Li-Ion Batteries." In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.
Full textJulien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Safety Aspects of Li-Ion Batteries." In Lithium Batteries, 549–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_14.
Full textJulien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Technology of the Li-Ion Batteries." In Lithium Batteries, 585–603. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_15.
Full textMazzola, Michael S., and Masood Shahverdi. "Li-Ion Battery Pack and Applications." In Rechargeable Batteries, 455–76. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15458-9_16.
Full textLiu, Kailong, Yujie Wang, and Xin Lai. "Introduction to Battery Full-Lifespan Management." In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.
Full textLuong, Huu Duc, Thien Lan Tran, and Van An Dinh. "Small Polaron–Li-Ion Complex Diffusion in the Cathodes of Rechargeable Li-Ion Batteries." In Lithium-Related Batteries, 29–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003263807-2.
Full textSaxena, Saurabh, Yinjiao Xing, and Michael G. Pecht. "PHM of Li-ion Batteries." In Prognostics and Health Management of Electronics, 349–75. Chichester, UK: John Wiley and Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119515326.ch13.
Full textCho, Seok-Kyu, JongTae Yoo, and Sang-Young Lee. "Nanocarbons in Li-Ion Batteries." In Nanocarbons for Energy Conversion: Supramolecular Approaches, 419–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92917-0_18.
Full textHameed, Abdulrahman Shahul. "Introduction to Li-ion Batteries." In Phosphate Based Cathodes and Reduced Graphene Oxide Composite Anodes for Energy Storage Applications, 1–30. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2302-6_1.
Full textBramnik, Natalia N., and Helmut Ehrenberg. "Oxides for Li Intercalation, Li-ion Batteries." In Ceramics Science and Technology, 471–94. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch63.
Full textConference papers on the topic "Batteries au Li-Ion"
Xidong Tang, Xiaofeng Mao, Jian Lin, and Brian Koch. "Capacity estimation for Li-ion batteries." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991410.
Full textKNAUTH, P., and T. DJENIZIAN. "NANOSTRUCTURED TiO2 FOR Li-ION BATTERIES." In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0133.
Full textDurganjali, C. Santhi, Harini Raghavan, and Sudha Radhika. "Modelling and Performance Analysis of Different Types of Li-Ion Battery." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.
Full textHamidi, Seyed Ahmad, Emad Manla, and Adel Nasiri. "Li-ion batteries and Li-ion ultracapacitors: Characteristics, modeling and grid applications." In 2015 IEEE Energy Conversion Congress and Exposition. IEEE, 2015. http://dx.doi.org/10.1109/ecce.2015.7310361.
Full textAlavi-Soltani, S. R., T. S. Ravigururajan, and Mary Rezac. "Thermal Issues in Lithium-Ion Batteries." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.
Full textDoersam, T., S. Schoerle, E. Hoene, K. D. Lang, C. Spieker, and T. Waldmann. "High frequency impedance of Li-ion batteries." In 2015 IEEE International Symposium on Electromagnetic Compatibility - EMC 2015. IEEE, 2015. http://dx.doi.org/10.1109/isemc.2015.7256251.
Full textNiroshana, S. M. Isuru, and Siriroj Sirisukprasert. "Adaptive pulse charger for Li-ion batteries." In 2017 8th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). IEEE, 2017. http://dx.doi.org/10.1109/ictemsys.2017.7958780.
Full textBhattacharyya, Aninda J., and Monalisa Patel. "Soft matter electrolytes for Li-ion batteries." In SPIE Defense, Security, and Sensing, edited by Nibir K. Dhar, Priyalal S. Wijewarnasuriya, and Achyut K. Dutta. SPIE, 2011. http://dx.doi.org/10.1117/12.883968.
Full textBarreras, Jorge Varela, Erik Schaltz, Soren Juhl Andreasen, and Tomasz Minko. "Datasheet-based modeling of Li-Ion batteries." In 2012 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2012. http://dx.doi.org/10.1109/vppc.2012.6422730.
Full textJano, Rajmond, Adelina Ioana Ilies, and Alexandra Fodor. "Thermal Simulations for 18650 Li-Ion Batteries." In 2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2022. http://dx.doi.org/10.1109/siitme56728.2022.9987899.
Full textReports on the topic "Batteries au Li-Ion"
Lee, Sehee. Solid State Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada589846.
Full textJohnson, Erik B. Li-Ion Batteries for Forensic Neutron Dosimetry. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ad1005451.
Full textB. Fultz. Anode Materials for Rechargeable Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/773359.
Full textXu, Kang, and Arthur v. Cresce. Electrolytes in Support of 5V Li-ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ad1000143.
Full textKidner, Neil. Cobalt-Free Cathodes for Next Generation Li-Ion Batteries. Office of Scientific and Technical Information (OSTI), July 2022. http://dx.doi.org/10.2172/1880765.
Full textHenriksen, G. L., K. Amine, and J. Liu. Materials cost evaluation report for high-power Li-ion batteries. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/808426.
Full textBraithwaite, J. W., A. Gonzales, and S. J. Lucero. Degradation of the materials of construction in Li-ion batteries. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/461265.
Full textGao, Yue, Guoxing Li, Pei Shi, and Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1839857.
Full textWang, Donghai, Au Nguyen, Heng Jiang, and Jasiel Lira. High-Performance Low-Cobalt Cathode Materials for Li-ion Batteries. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1972477.
Full textKostecki, Robert. In situ analysis of potential distribution in Li-ion Batteries. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1436865.
Full text