Academic literature on the topic 'Batteries 18650 usagées'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Batteries 18650 usagées.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Batteries 18650 usagées"
Phi Cuong Anh, NGUYEN, LE Duc Hieu, and LUONG Ngoc Minh. "STUDY ON THE EFFECT OF TEMPERATURE ON THE OPERATION OF THE PANASONIC NCR-18650B ELECTRIC VEHICLE BATTERY." Vinh University Journal of Science 53, no. 1A (March 20, 2023): 26–35. http://dx.doi.org/10.56824/vujs.2023a134.
Full textSoeprapto, Soeprapto, Rini Nur Hasanah, and Taufik Taufik. "Battery management system on electric bike using Lithium-Ion 18650." International Journal of Power Electronics and Drive Systems (IJPEDS) 10, no. 3 (September 1, 2019): 1529. http://dx.doi.org/10.11591/ijpeds.v10.i3.pp1529-1537.
Full textSalas-Cardona, Jesús A., José A. Posada-Montoya, Sergio D. Saldarriaga-Zuluaga, Nicolas Muñoz-Galeano, and Jesús M. López-Lezama. "A Novel Method for Obtaining the Electrical Model of Lithium Batteries in a Fully Electric Ultralight Aircraft." World Electric Vehicle Journal 15, no. 11 (October 23, 2024): 482. http://dx.doi.org/10.3390/wevj15110482.
Full textOhrelius, Mathilda, Rakel Lindstrom, and Göran Lindbergh. "Aging Aware Battery Operation and State of Health Evaluation in Energy Storage Systems." ECS Meeting Abstracts MA2023-02, no. 2 (December 22, 2023): 166. http://dx.doi.org/10.1149/ma2023-022166mtgabs.
Full textMagne-Tang, Nicolas, Céline Decaux, Pierre-Xavier Thivel, and Christine Lefrou. "Exploring the Discharge Performance of Li-ion Batteries Using Ohmic Drop Compensation." Batteries 9, no. 9 (September 1, 2023): 451. http://dx.doi.org/10.3390/batteries9090451.
Full textZhang, Zhizu, Changwei Ji, Yangyi Liu, Yanan Wang, Bing Wang, and Dianqing Liu. "Effect of Aging Path on Degradation Characteristics of Lithium-Ion Batteries in Low-Temperature Environments." Batteries 10, no. 3 (March 15, 2024): 107. http://dx.doi.org/10.3390/batteries10030107.
Full textLi, Chao, Yigang Kong, Changjiang Wang, Xueliang Wang, Min Wang, and Yulong Wang. "Relevance-Based Reconstruction Using an Empirical Mode Decomposition Informer for Lithium-Ion Battery Surface-Temperature Prediction." Energies 17, no. 19 (October 8, 2024): 5001. http://dx.doi.org/10.3390/en17195001.
Full textSteger, Fabian, Jonathan Krogh, Lasantha Meegahapola, and Hans-Georg Schweiger. "Calculating Available Charge and Energy of Lithium-Ion Cells Based on OCV and Internal Resistance." Energies 15, no. 21 (October 25, 2022): 7902. http://dx.doi.org/10.3390/en15217902.
Full textStreb, Moritz, Mathilda Ohrelius, Matilda Klett, and Göran Lindbergh. "Online Aging Diagnostics Using Optimally Designed Experiments." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 353. http://dx.doi.org/10.1149/ma2022-023353mtgabs.
Full textXu, Qian, Xueyuan Wang, Wenjun Fan, Xuezhe Wei, and Haifeng Dai. "Design and Implementation of a Non-Destructive AC Heating System for Lithium-Ion Battery Modules." Batteries 10, no. 9 (August 24, 2024): 300. http://dx.doi.org/10.3390/batteries10090300.
Full textDissertations / Theses on the topic "Batteries 18650 usagées"
Hayagan, Neil. "Li-ion battery (LIB) direct recycling using pressurized CO2-based technology." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0239.
Full textLithium-ion batteries (LIBs) have revolutionized portable electronics and expanded into the mobility sector through advancements in electrode materials, electrolytes, and production processes. However, the growing LIB demand poses global waste management challenges. As critical resources, LIB materials require efficient recycling within the context of circular economy while meeting sustainability and carbon-neutrality goals. Conventional recycling methods, such as pyrometallurgy and hydrometallurgy, fall short in fully recovering LIB components, particularly as production scraps—a new, pristine waste stream—emerge. Direct recycling, a novel and efficient strategy, preserves material properties such as composition, structure, and properties, improving the recovery rates. This dissertation explores direct recycling of production scraps and evaluate spent 18650 cells their recycling potential across varying levels of degradation. A novel CO2-based process was developed for the direct recycling of LIB electrode production scrap. Using a solvent mixture of triethyl phosphate, acetone, and CO2, binder dissolution was enhanced and the delamination of positive electrode materials was accelerated, efficiently separating LiNi0.6Mn0.2Co0.2O2 (NMC622) from the current collector. The study also explores the degradation in 18650 cells with NMC622 cathode, graphite anode, and EC-based electrolyte under various ageing protocols, revealing significant material changes, including Li loss, electrolyte decomposition, and Mn migration. Liquid CO2 and acetonitrile were used to extract carbonates and liquid degradation products, while dimethyl carbonate as a cosolvent with liquid CO2 allowed high lithium recovery. These findings provide valuable insights into battery aging and highlight challenges for effective direct recycling, emphasizing the need for innovative strategies to address this complex degradation processes
Conference papers on the topic "Batteries 18650 usagées"
Gudi, Abhay, and Sastry Bonala. "Cycle Aging of a Commercial Lithium-Ion Cell – A Numerical Approach." In SAENIS TTTMS Thermal Management Systems Conference-2023. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0027.
Full textShah, Ravindra, Siva Murugesan, and Swapnil Ghugal. "Hardware in Loop Simulation based approach for Development and Validation of Battery Management System." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-adm-078.
Full text