Academic literature on the topic 'Batterie sodio ione'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Batterie sodio ione.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Batterie sodio ione"

1

Kirkels, Arjan F., Jeroen Bleker, and Henny A. Romijn. "Ready for the Road? A Socio-Technical Investigation of Fire Safety Improvement Options for Lithium-Ion Traction Batteries." Energies 15, no. 9 (May 2, 2022): 3323. http://dx.doi.org/10.3390/en15093323.

Full text
Abstract:
Battery technology is crucial in the transition towards electric mobility. Lithium-ion batteries are conquering the market but are facing fire safety risks that might threaten further applications. In this study, we address the problem and potential solutions for traction batteries in the European Union area. We do so by taking a unique socio-technical system perspective. Therefore, a novel, mixed-method approach is applied, combining literature review; stakeholder interviews; Failure Mode, Mechanisms, and Event Analysis (FMMEA); and rapid prototyping. Our findings confirm that fire safety is an upcoming concern. Still, most stakeholders lack a full understanding of the problem. Improving safety is a shared responsibility among supply chain and societal stakeholders. For automotive applications, voluntary standard-setting on safety risks is an appropriate tool to improve fire safety, whereas for niche applications, a top-down approach setting regulations seems more suited. For both groups, the adaptation of battery pack designs to prevent thermal runaway propagation is shown to be promising from a technological, practical, and organizational perspective. The chosen mixed-method approach allowed for a holistic analysis of the problems and potential solutions. As such, it can serve as an empowerment strategy for stakeholders in the field, stimulating further discussion, agenda building, and action.
APA, Harvard, Vancouver, ISO, and other styles
2

Penisa, Xaviery N., Michael T. Castro, Jethro Daniel A. Pascasio, Eugene A. Esparcia, Oliver Schmidt, and Joey D. Ocon. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model." Energies 13, no. 20 (October 11, 2020): 5276. http://dx.doi.org/10.3390/en13205276.

Full text
Abstract:
Renewable energy (RE) utilization is expected to increase in the coming years due to its decreasing costs and the mounting socio-political pressure to decarbonize the world’s energy systems. On the other hand, lithium-ion (Li-ion) batteries are on track to hit the target 100 USD/kWh price in the next decade due to economy of scale and manufacturing process improvements, evident in the rise in Li-ion gigafactories. The forecast of RE and Li-ion technology costs is important for planning RE integration into existing energy systems. Previous cost predictions on Li-ion batteries were conducted using conventional learning curve models based on a single factor, such as either installed capacity or innovation activity. A two-stage learning curve model was recently investigated wherein mineral costs were taken as a factor for material cost to set the floor price, and material cost was a major factor for the battery pack price. However, these models resulted in the overestimation of future prices. In this work, the future prices of Li-ion nickel manganese cobalt oxide (NMC) battery packs - a battery chemistry of choice in the electric vehicle and stationary grid storage markets - were projected up to year 2025 using multi-factor learning curve models. Among the generated models, the two-factor learning curve model has the most realistic and statistically sound results having learning rates of 21.18% for battery demand and 3.0% for innovation. By year 2024, the projected price would fall below the 100 USD/kWh industry benchmark battery pack price, consistent with most market research predictions. Techno-economic case studies on the microgrid applications of the forecasted prices of Li-ion NMC batteries were conducted. Results showed that the decrease in future prices of Li-ion NMC batteries would make 2020 and 2023 the best years to start investing in an optimum (solar photovoltaic + wind + diesel generator + Li-ion NMC) and 100% RE (solar photovoltaic + wind + Li-ion NMC) off-grid energy system, respectively. A hybrid grid-tied (solar photovoltaic + grid + Li-ion NMC) configuration is the best grid-tied energy system under the current net metering policy, with 2020 being the best year to deploy the investment.
APA, Harvard, Vancouver, ISO, and other styles
3

Falk, Joern, Antonio Nedjalkov, Martin Angelmahr, and Wolfgang Schade. "Applying Lithium-Ion Second Life Batteries for Off-Grid Solar Powered System—A Socio-Economic Case Study for Rural Development." Zeitschrift für Energiewirtschaft 44, no. 1 (March 2020): 47–60. http://dx.doi.org/10.1007/s12398-020-00273-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nko, Macdonald, S. P. Daniel Chowdhury, and Olawale Popoola. "Application Assessment of Pumped Storage and Lithium-Ion Batteries on Electricity Supply Grid." Energies 12, no. 15 (July 24, 2019): 2855. http://dx.doi.org/10.3390/en12152855.

Full text
Abstract:
National electricity supply utility in South Africa (Eskom) has been facing challenges to meet load demands in the country. The lack of generation equipment maintenance, increasing load demand and lack of new generation stations has left the country with a shortage of electricity supply that leads to load shedding. As a result, alternative renewable energy is required to supplement the national grid. Photovoltaic (PV) solar generation and wind farms are leading in this regard. Sunlight fluctuates throughout the day, thereby causing irradiation which in turn causes the output of the PV plant to become unstable and unreliable. As a result, storage facilities are required to mitigate challenges that come with the integration of PV into the grid or the use of PV independently, off the grid. The same storage system can also be used to supplement the power supply at night time when there is no sunlight and/or during peak hours when the demand is high. Although storage facilities are already in existence, it is important to research their range, applications, highlight new technologies and identify the best economical solution based on present and future plans. The study investigated an improved economic and technical storage system for generation of clean energy systems using solar/PV plants as the base to supplement the grid. In addition, the research aims to provide utilities with the information required for making storage facilities available with an emphasis on capital cost, implementation, operation and maintenance costs. The study solution is expected to be economical and technically proficient in terms of PV output stabilization and provision of extra capacity during peak times. The research technology’s focus includes different storage batteries, pumped storage and other forms of storage such as supercapacitors. The analysis or simulations were carried out using current analytic methods and software, such as HOMER Pro®. The end results provide the power utility in South Africa and abroad with options for energy storage facilities that could stabilise output demand, increase generation capacity and provide backup power. Consumers would have access to power most of the time, thereby reducing generation constraints and eventually the monthly cost of electricity due to renewable energies’ accessibility. Increased access to electricity will contribute to socio-economic development in the country. The proposed solution is environmentally friendly and would alleviate the present crisis of load shedding due to the imbalance of high demand to lower generations.
APA, Harvard, Vancouver, ISO, and other styles
5

Popien, Jan-Linus, Christian Thies, Alexander Barke, and Thomas S. Spengler. "Comparative sustainability assessment of lithium-ion, lithium-sulfur, and all-solid-state traction batteries." International Journal of Life Cycle Assessment, March 1, 2023. http://dx.doi.org/10.1007/s11367-023-02134-4.

Full text
Abstract:
Abstract Purpose Traction batteries are a key component for the performance and cost of electric vehicles. While they enable emission-free driving, their supply chains are associated with environmental and socio-economic impacts. Hence, the advancement of batteries increasingly focuses on sustainability next to technical performance. However, due to different system definitions, comparing the results of sustainability assessments is difficult. Therefore, a sustainability assessment of different batteries on a common basis considering the three sustainability dimensions is needed. Methods This paper investigates the sustainability of current and prospective traction battery technologies for electric vehicles. It provides a common base for the comparison of the predominant lithium-ion batteries with new technologies such as lithium-sulfur and all-solid-state batteries regarding the environmental and socio-economic impacts in their supply chain. A life cycle sustainability assessment of ten battery types is carried out using a cradle-to-gate perspective and consistent system boundaries. Four environmental impact categories (climate change, human toxicity, mineral resource depletion, photochemical oxidant formation), one economic performance indicator (total battery cost), and three social risk categories (child labor, corruption, forced labor) are analyzed. Results The assessment results indicate that the new battery technologies are not only favorable in terms of technical performance but also have the potential to reduce environmental impacts, costs, and social risks. This holds particularly for the lithium-sulfur battery with solid electrolyte. The environmental benefits are even amplified with a higher share of renewable energy for component and battery production. Nevertheless, hotspots related to the high energy demand of production and the supply chain of the active materials remain. Conclusions This article emphasizes the need to evaluate different battery technologies on a common basis to ensure comparability of the results and to derive reliable recommendations. The results indicate that the lithium-sulfur battery with solid electrolyte is preferable since this battery has the best indicator scores for all impact categories investigated. However, all-solid-state batteries are still under development so that no conclusive recommendation can be made, but further development of these battery technologies appears promising.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Batterie sodio ione"

1

GENTILE, ANTONIO. "MXene-based materials for alkaline-ion batteries: synthesis, properties, applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.

Full text
Abstract:
La produzione sempre maggiore di dispositivi portatili e auto elettriche chiede al mercato di produrre dispositivi efficienti in grado di poter accumulare l’energia elettrica. Per questo tipo di tecnologie in cui la miniaturizzazione del dispositivo è essenziale, le batterie litio ione (LIBs) sono diventate il mezzo di accumulare energia. La ricerca su queste batterie è focalizzata ad ottenere dispositivi sempre più performanti con materiali elettrodici ad alte capacità gravimetriche e volumetriche. Accanto all’aspetto tecnologico, legato alla ottimizzazione dei materiali, vi è anche quello dell’approvvigionamento dei componenti attivi della batteria, tra tutti il litio. La problematica attualmente è affrontata studiando batterie con altri metalli alcalini (Na e K). Di questi dispositivi non esistono però materiali già standardizzati malgrado la ricerca, specialmente sulle batterie sodio ione (SIB), sia partita solo qualche anno più tardi rispetto quella delle LIB; per cui queste tecnologie oggi sono destinate ad affiancare quelle delle LIB per sopperire all’enorme richiesta di mercato di batterie per i veicoli del futuro. L’obbiettivo del presente lavoro è stato quello di sviluppare materiali anodici a base di MXene per ottenere efficienti anodi per batterie sodio e litio ione. I MXenes sono una famiglia di carburi di metalli di transizione con una struttura 2D che sembrerebbe promettente per l’intercalazione di diversi ioni grazie ad una grande flessibilità ed adattabilità strutturale nei confronti del tipo di ione intercalante. L’intercalazione degli ioni avviene con un meccanismo pseudocapacitivo per cui i materiali hanno capacità limitate, ma hanno grande stabilità elettrochimica su migliaia di cicli ed efficienze coulombiche prossime al 100%. La produzione di questo materiale avviene per etching in HF di un precursore chiamato MAX phase. Questo è il metodo più facile e veloce per ottenere il materiale in scala di laboratorio ma presenta numerose criticità quando i volumi vengono rapportati su scala industriale. Una gran parte del lavoro è stata dedicata allo studio della tecnica sintetica per ottenere MXenes per SIB riducendo o sostituendo HF nella sintesi chimica. I materiali sono stati caratterizzati con varie tecniche di caratterizzazioni strutturali, morfologiche ed elettrochimiche. Data la struttura 2D, che ricorda quella del grafene, un uso frequente in letteratura è quello della realizzazioni di nanocompositi per SIB e LIB, al fine di produrre materiali ad alta capacità, come richiesto nel mercato delle batterie. Sono stati quindi ottenuti dei nanocompositi a base di antimonio-MXene e ossido di stagno-MXene testati rispettivamente in SIB e LIB. Antimonio e ossido di stagno sono due materiale dalla elevata capacità teorica, quando usati come anodi in batterie, ma allo stesso tempo sono estremamente fragili e tendono a polverizzarsi nei processi di carica e scarica. Il MXene è servito da buffer per limitare o evitare la frattura e distacco delle leghe dalla superficie elettrodica
The ever-increasing production of portable devices and electric cars asks to the market to produce efficient devices that can store electrical energy. For these types of technologies, where device miniaturization is essential, lithium-ion batteries (LIBs) have become leaders as energy storage systems. The research on the lithium-ion batteries is focused to obtain more performing devices with high gravimetric and volumetric capacities of the electrode materials. In addition to the technological aspect, related to the optimization of materials, there is the supply chain of active components of the battery to consider, starting from lithium. At the moment, the problem is tackled by studying batteries with other alkaline metal ions, i.e. Na+ and K+. However, there are no standardized active materials for these devices, especially on sodium-ion batteries (SIBs), started only a few years later than that of LIBs; therefore, today these technologies are intended to support the LIBs in order to satisfy the enormous market demand of the batteries for the future vehicles. The goal of this work was to develop MXene-based anode materials to obtain efficient anodes for sodium and lithium-ion batteries. MXenes are a family of inorganic transition metal carbides, nitrides, and carbonitrides with a 2D structure that would seem promising for the intercalation of different ions due to a great flexibility and adaptability towards several intercalating ions. The ion intercalations occur by a pseudocapacitive mechanism whereby the materials have limited capacity, but they have great electrochemical stability over thousands of cycles and coulombic efficiencies near to 100%. The production of this material was done by HF etching of a precursor called MAX phase. This is the easiest and fastest method to obtain the material in laboratory scale, but it has many criticalities when the process has to be scale-up to industrial scale. A large part of this work was spent studying the synthetic technique to obtain MXenes for SIB by reducing or replacing HF in the chemical synthesis. The materials have been characterized by various techniques such as X-ray diffractometry, electron microscopy, X-ray photoelectron spectroscopy, etc., and by electrochemical tests, such as cyclic voltammetry and galvanostatic cycling. Thanks to the 2D structure, a common use of MXene in the literature is in nanocomposite syntheses for SIBs and LIBs, in order to produce high-capacity materials, as required in the battery market. Therefore, two nanocomposites based on antimony-MXene and tin oxide-MXene tested for SIB and for LIB respectively, were synthesized. Antimony and tin oxide are two materials with high theoretical capacity when used as anodes in batteries, but at the same time, they are extremely fragile and tend to pulverize during charging and discharging processes. MXene is used as a buffer to limit or prevent cracking and separation of alloys from the electrode surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Farina, Luca. "Sodium Ion battery for energy intensive application." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
In questa tesi viene proposto uno studio sulle batterie agli ioni sodio e lo sviluppo di un innovativo metodo di studio che sfrutta il microscopio a scansione elettronica (SEM). Le batterie ioni sodio (SIB) sono una tecnologia innovativa che ha interessato gli studiosi soprattutto negli ultimi anni, in virtù della loro competitività rispetto alle più diffuse batterie agli ioni litio (LIB). Infatti, rispetto a queste ultime, caratterizzate dalla presenza di metalli rari e costosi e dal cobalto, un metallo altamente inquinante, le SIB sono costituite da sodio, tra i metalli più abbondanti sulla crosta terrestre, e soprattutto non necessitano di cobalto, risultando così molto più economiche. In questa tesi si proporrà lo studio di un substrato per lo sviluppo delle batterie anode-free. Negli ultimi studi sta prendendo piede l’idea di realizzare una batteria senza anodo in quanto risulta complesso un materiale con caratteristiche di intercalazione buone per questo elettrodo. Si procede poi a riportare la caratterizzazione del substrato in analisi. In particolare viene presentato un innovativo porta campioni per lo studio con SEM, completamente progettato e realizzato appositamente per il presente studio. Si tratta di un sistema air-tight che protegge il campione dall’ossidazione. La caratterizzazione d’immagine con il SEM risulta particolarmente utile in quanto permette di capire come procede la deposizione del sodio sul substrato studiato. Vengono infine presentati i risultati della caratterizzazione del substrato considerato. L’intera tesi è stata portata avanti all’interno dell’Energy Storage Group del College of Engineering, presso Swansea University, Swansea (UK).
APA, Harvard, Vancouver, ISO, and other styles
3

PIANTA, NICOLÒ. "Strategies for the optimization and characterization of materials for energy storage." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382288.

Full text
Abstract:
Sin dalla sua invenzione, la batteria agli ioni di litio ha dominato il mercato dei sistemi di accumulo elettrochimico, grazie alle sue eccezionali proprietà in termini di energia e densità di potenza. Tuttavia, il fatto che questa tecnologia sia indissolubilmente legata a risorse rare e disomogenee distribuite, per lo più litio e cobalto, rende indispensabile avere delle alternative, se non sostituirla completamente almeno per diversificare il mercato e ridurre la dipendenza dai suddetti risorse rare. Due esempi di tali alternative sono la batteria agli ioni di Na e il condensatore elettrochimico a doppio strato. Questi dispositivi hanno la possibilità di competere con i LIB in alcune situazioni, ma entrambi potrebbero trarre grandi benefici da un aumento della loro densità di energia. Inoltre, il monitoraggio dell'evoluzione delle loro prestazioni dovrebbe essere considerato una priorità al fine di ottenere informazioni più approfondite su come migliorarle in modo da renderle paragonabili alle LIB. La ricerca di dottorato qui descritta si è concentrata su due obiettivi principali: proporre modi per migliorare la densità di energia dei sistemi di accumulo (NIB e EDLC) e suggerire una nuova tecnica per monitorare tali dispositivi operando: la spettroscopia di impedenza elettrochimica dinamica. La fabbricazione di elettrodi ad alto potenziale è un modo per migliorare le capacità di accumulo di energia di una batteria agli ioni di Na. In questa tesi è stato sintetizzato Na3V2(PO4)2F3, un materiale attivo in grado di immagazzinare ioni sodio ad un potenziale medio di 3,8 V vs Na+/Na. Questo materiale è stato utilizzato per fabbricare elettrodi massicci autoportanti (carico di massa attiva: 25 mg cm-2), che si è rivelato un metodo molto interessante per migliorare la densità di energia. L'NVPF è stato anche testato come un vero catodo in una cella a ioni di sodio completa in modo da dimostrarne l'alto potenziale e i relativi problemi. Per migliorare le densità energetiche degli EDLC, sono state preparate e studiate soluzioni altamente concentrate di acetato di potassio in acqua dalla loro caratterizzazione fisico-chimica ed elettrochimica all'uso di quelle più concentrate (elettrolita acqua-in-sale) in EDLC simmetrici a base di carbonio. Tali soluzioni si sono rivelate in grado di aumentare sia la capacità che la massima differenza di potenziale raggiungibile tra i due elettrodi, risultando in densità di energia maggiori rispetto agli elettroliti convenzionali (es. soluzione 6M KOH in acqua). Infine, la spettroscopia di impedenza elettrochimica dinamica è stata valutata come metodo per studiare NIB ed EDLC durante il ciclo. Due sistemi, un EDLC acquoso e un materiale di inserimento per NIBs, sono stati analizzati con dEIS: una tecnica in grado di monitorare i cambiamenti temporali nella spettroscopia di impedenza elettrochimica mentre un dispositivo subisce un processo ciclico. Questo approccio si è rivelato fattibile sia per le tecniche potenziodinamiche che per quelle galvanostatiche, consentendo di sondare l'impedenza dei singoli elettrodi anche in condizioni sperimentali simili a quelle con cui opera un dispositivo reale.
Ever since its invention, the Li-ion battery has dominated the market of electrochemical storage systems, thanks to its outstanding properties in terms of energy and power density. However, the fact that this technology is inextricably linked to non-homogenously distributed and rare resources, mostly lithium and cobalt, makes it essential to have alternatives, if not to completely replace it at least to diversify the market and reduce the dependence on the aforementioned rare resources. Two examples of such alternatives are the Na-ion battery and the electrochemical double-layer capacitor. These devices have the chance to compete with LIBs in some situations but both of them could greatly benefit from an increase in their energy density. Also, monitoring the evolution of their performances should be considered a priority in order to get deeper insights on how to improve them so to make them comparable to LIBs. The doctoral research here described was focused on two main objectives: proposing ways to improve the energy density of storage systems (NIBs and EDLCs) and suggesting a new technique to monitor such devices operando: the dynamic electrochemical impedance spectroscopy. Fabricating high potential electrodes is a way to improve the energy storage capabilities of a Na-ion battery. In this thesis, Na3V2(PO4)2F3, an active material able to store sodium-ions at a mean potential as high as 3.8 V vs Na+/Na, was synthesised. This material was used to fabricate self-standing massive electrodes (active mass loading: 25 mg cm-2), which proved to be a very interesting method to improve the energy density. NVPF was also tested as an actual cathode in a full sodium-ion cell so to prove its high potential and relative issues. To improve EDLCs energy densities, highly concentrated solutions of potassium acetate in water were prepared and studied from their physicochemical and electrochemical characterization to the use of the highest concentrated ones (water-in-salt electrolyte) in symmetric carbon-based EDLCs. Such solutions proved to be able to increase both the capacitance and the maximum reachable potential difference between the two electrodes, resulting in higher energy densities compared to conventional electrolytes (e.g. 6M KOH solution in water). Finally, dynamic electrochemical impedance spectroscopy was evaluated as a method to study NIBs and EDLCs while cycling. Two systems, an aqueous EDLC and an insertion material for NIBs, were analysed with dEIS: a technique able to monitor the temporal changes in the electrochemical impedance spectroscopy while a device undergoes a cycling process. This approach proved to be doable for both potentiodynamic and galvanostatic techniques, allowing to probe the impedance of the single electrodes even in experimental conditions similar to those with which a real device operates.
APA, Harvard, Vancouver, ISO, and other styles
4

Vaněk, Martin. "Připrava a charakterizace keramických aktivních materiálů pro sodno-iontové akumulátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242140.

Full text
Abstract:
Hlavním cílem této práce je charakterizace vzorků titanátů, jako materiálů pro sodíko-iontové (Na-ion) akumulátory. Syntéza některých vzorků je součástí této práce. Charakterizace je zaměřena na elektrochemické vlastnosti, složení a morfologii použitých materiálů. První část se zabývá lithium-iontovými (Li-ion) akumulátory. Byly vybrány, protože jsou ve vědeckých článcích dobře popsány a základní funkční princip je aplikovatelný také na Na-ion akumulátory. Materiály používáné pro katody, anody a elektrolyty následují po krátké části shrnující parametry a konstrukci Li-ion akumulátorů. Následující kapitola je zaměřena na sodíko-iontové akumulátory. Srovnání sodíku a lithia je následováno materiály používanými pro elektrody a elektrolyty (s důrazem na anodové materiály). Třetí část popisuje analytické metody použité pro charakterizaci elektrod a materiálů. Jedná se o elektrochemickou charakterizaci (cyklická voltametrie a galvanostatické cyklování s potenciálovým omezením), morfologii (rastrovací elektronová mikroskopie) a složení (X-ray difrakční spektroskopie). Poslední dvě kapitoly obsahují syntézu a charakterizaci sodného titanátu a charakterizaci dvou vzorků TiO2. Výsledky této práce jsou shrnuty v závěru.
APA, Harvard, Vancouver, ISO, and other styles
5

Bečan, Jan. "Pokročilé uhlíkové struktury jako materiál pro Na-ion akumulátory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442445.

Full text
Abstract:
This diploma thesis deals with the description of individual types of batteries. The first part is focused to primary and secondary batteries, materials for their positive and negative electrodes with a focus on lithium-ion batteries and their changes over time. The next section focuses on a more detailed description of sodium-ion batteries, used electrode materials and to their problems. Practical part is focesed to preparing of electrode materials and to completing of measuring electrochemical cell and to discribing of measuring methodes and to evaluation of measured data.
APA, Harvard, Vancouver, ISO, and other styles
6

Savoca, Riccardo. "il litio: mobilita' elettrica e prevenzione incendi nella catena produttiva." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.

Find full text
Abstract:
Il presente elaborato di tesi affronta un tema di grande attualità: la corsa alla mobilità elettrica che vede il litio come elemento protagonista della propulsione del futuro; le batterie derivanti da questo elemento, rappresentano infatti, una soluzione tecnologica per raggiungere la neutralità climatica e sostituzione dei combustibili fossili. Da questo presupposto è sorta la necessità di comprendere più profondamente quali fossero le complesse implicazioni sociali, economiche ed ambientali, nonché le possibili conseguenze in termini di sicurezza relative al litio, al fine di definire delle linee guida sotto il profilo della sicurezza antincendio, per la corretta progettazione degli organismi edilizi che ospitano dispositivi ricaricabili ed in particolare quelli contenenti batterie agli ioni di litio. Questa trattazione sarà accompagnata da un’elaborazione analitica dei dati raccolti con l’intento di comprendere le quantità in gioco, le tendenze del mercato e di offrire una panoramica sugli obbiettivi internazionali posti dai vari paesi sul tema della mobilità elettrica, proiettandoli agli anni individuati come fondamentali per ridurre le drammatiche conseguenze dei cambiamenti climatici (2050), con tutte le implicazioni che potrebbero comprometterne la riuscita. Verrà affronta la progettualità degli organismi edilizi che ospitano dispositivi al litio nelle diverse fasi del ciclo di vita, attraverso l’analisi della sicurezza delle batterie utilizzate per la mobilità elettrica, indagandone le vulnerabilità, i vari meccanismi di danno e conseguenze a cose, persone e ambiente, le criticità e le normative di riferimento, con un focus sulla cosiddetta catena logistica. Individuando nel rischio di incendio la principale conseguenza di un evento incidentale si proporranno linee guida di riferimento sotto il profilo antincendio; in particolare, sull’impostazione offerta dal Codice di prevenzione incendi, verranno individuate specifiche prescrizioni.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography