Journal articles on the topic 'Batterie au Li'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Batterie au Li.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Do, Dinh Vinh, Christophe Forgez, Khadija El Kadri Benkara, and Guy Friedrich. "Surveillance temps réel de batterie Li-ion." European Journal of Electrical Engineering 14, no. 2-3 (June 30, 2011): 383–97. http://dx.doi.org/10.3166/ejee.14.383-397.
Full textHörpel, G., P. Pilgram, and M. Winter. "Moderne Li-Ionen-Batterie-Komponenten: Gegenwart und Zukunft." Chemie Ingenieur Technik 80, no. 9 (September 2008): 1241. http://dx.doi.org/10.1002/cite.200750844.
Full textZhao-Karger, Zhirong, and Maximilian Fichtner. "Exploring Battery Materials for Ca Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 639. http://dx.doi.org/10.1149/ma2023-024639mtgabs.
Full textMathialagan, Kowsalya, Saranya T, Ammu Surendran, Ditty Dixon, Nishanthi S.T., and Aiswarya Bhaskar. "(Digital Presentation) Development of Bifunctional Oxygen Electrocatalysts for Electrically Rechargeable Zinc-Air Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 403. http://dx.doi.org/10.1149/ma2022-024403mtgabs.
Full textHao, Shuai. "Studies on the Performance of Two Dimensional AlSi as the Anodes of Li Ion Battery." Solid State Phenomena 324 (September 20, 2021): 109–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.324.109.
Full textYuan, Yuan. "Comparative Studies on Monolayer and Bilayer Phosphorous as the Anodes of Li Ion Battery." Key Engineering Materials 896 (August 10, 2021): 61–66. http://dx.doi.org/10.4028/www.scientific.net/kem.896.61.
Full textKotobuki, Masashi. "Recent progress of ceramic electrolytes for post Li and Na batteries." Functional Materials Letters 14, no. 03 (February 18, 2021): 2130003. http://dx.doi.org/10.1142/s1793604721300036.
Full textMossaddek, Meriem, El Mehdi Laadissi, Chouaib Ennawaoui, Sohaib Bouzaid, and Abdelowahed Hajjaji. "Enhancing battery system identification: nonlinear autoregressive modeling for Li-ion batteries." International Journal of Electrical and Computer Engineering (IJECE) 14, no. 3 (June 1, 2024): 2449. http://dx.doi.org/10.11591/ijece.v14i3.pp2449-2456.
Full textBao, Wurigumula, and Ying Shirley Meng. "(Invited) Development and Application of Titration Gas Chromatography in Elucidating the Behavior of Anode in Lithium Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (August 28, 2023): 633. http://dx.doi.org/10.1149/ma2023-012633mtgabs.
Full textYounesi, Reza, Gabriel M. Veith, Patrik Johansson, Kristina Edström, and Tejs Vegge. "Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S." Energy & Environmental Science 8, no. 7 (2015): 1905–22. http://dx.doi.org/10.1039/c5ee01215e.
Full textChattopadhyay, Jayeeta, Tara Sankar Pathak, and Diogo M. F. Santos. "Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review." Polymers 15, no. 19 (September 27, 2023): 3907. http://dx.doi.org/10.3390/polym15193907.
Full textConder, Joanna, Cyril Marino, Petr Novák, and Claire Villevieille. "Do imaging techniques add real value to the development of better post-Li-ion batteries?" Journal of Materials Chemistry A 6, no. 8 (2018): 3304–27. http://dx.doi.org/10.1039/c7ta10622j.
Full textKanamura, Kiyoshi. "Separator for Lithium Batteries." membrane 41, no. 3 (2016): 121–26. http://dx.doi.org/10.5360/membrane.41.121.
Full textPuttaswamy, Rangaswamy, Ranjith Krishna Pai, and Debasis Ghosh. "Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries." Journal of Materials Chemistry A 10, no. 2 (2022): 508–53. http://dx.doi.org/10.1039/d1ta06747h.
Full textGupta, Aman, Ditipriya Bose, Sandeep Tiwari, Vikrant Sharma, and Jai Prakash. "Techno–economic and environmental impact analysis of electric two-wheeler batteries in India." Clean Energy 8, no. 3 (May 3, 2024): 147–56. http://dx.doi.org/10.1093/ce/zkad094.
Full textLiu, Qiang, Sisi Zhou, Cong Tang, Qiaoling Zhai, Xianggong Zhang, and Rui Wang. "Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries." Energies 11, no. 10 (September 21, 2018): 2512. http://dx.doi.org/10.3390/en11102512.
Full textGabrisch, H., R. Yazami, and B. Fultz. "Lattice defects in LiCoO2." Microscopy and Microanalysis 7, S2 (August 2001): 518–19. http://dx.doi.org/10.1017/s143192760002866x.
Full textBazant, Martin. "(Invited, Digital Presentation) Driven Nucleation and Growth in Lithium Batteries." ECS Meeting Abstracts MA2022-01, no. 23 (July 7, 2022): 1136. http://dx.doi.org/10.1149/ma2022-01231136mtgabs.
Full textTsai, Wan-Yu, Xi Chen, Sergiy Kalnaus, Ritu Sahore, and Andrew S. Westover. "Li Morphology Evolution during Initial Cycling in a Gel Composite Electrolyte." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 526. http://dx.doi.org/10.1149/ma2022-024526mtgabs.
Full textChen, Lina, Haipeng Liu, Mengrui Li, Shiqiang Zhou, Funian Mo, Suzhu Yu, and Jun Wei. "Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives." Batteries 9, no. 8 (July 25, 2023): 391. http://dx.doi.org/10.3390/batteries9080391.
Full textSong, Zihui, Wanyuan Jiang, Xigao Jian, and Fangyuan Hu. "Advanced Nanostructured Materials for Electrocatalysis in Lithium–Sulfur Batteries." Nanomaterials 12, no. 23 (December 6, 2022): 4341. http://dx.doi.org/10.3390/nano12234341.
Full textZhang, Xin, Yongan Yang, and Zhen Zhou. "Towards practical lithium-metal anodes." Chemical Society Reviews 49, no. 10 (2020): 3040–71. http://dx.doi.org/10.1039/c9cs00838a.
Full textCho, Jang-Hyeon, Eunji Yoo, Jae-Seong Yeo, Hyunki Yoon, and Yusong Choi. "Improved Electrochemical Performances of Li/CFx-MnO2 Primary Batteries Via the Optimization of Electrolytes." ECS Meeting Abstracts MA2022-02, no. 2 (October 9, 2022): 153. http://dx.doi.org/10.1149/ma2022-022153mtgabs.
Full textSchiavi, Pier Giorgio, Ludovica Baldassari, Pietro Altimari, Emanuela Moscardini, Luigi Toro, and Francesca Pagnanelli. "Process Simulation for Li-MnO2 Primary Battery Recycling: Cryo-Mechanical and Hydrometallurgical Treatments at Pilot Scale." Energies 13, no. 17 (September 2, 2020): 4546. http://dx.doi.org/10.3390/en13174546.
Full textLiu, Yiming, Tian Qin, Pengxian Wang, Menglei Yuan, Qiongguang Li, and Shaojie Feng. "Challenges and Solutions for Low-Temperature Lithium–Sulfur Batteries: A Review." Materials 16, no. 12 (June 13, 2023): 4359. http://dx.doi.org/10.3390/ma16124359.
Full textMeng, Shirley. "(Battery Division Research Award) Advanced Characterization of Electrochemical Interfaces and Systems for Next-Generation Batteries." ECS Meeting Abstracts MA2023-02, no. 7 (December 22, 2023): 990. http://dx.doi.org/10.1149/ma2023-027990mtgabs.
Full textJin, Yucheng. "A general comparison on energy density between Li-Ion, Li-S and Li-O2 batteries." Applied and Computational Engineering 11, no. 1 (September 25, 2023): 283–88. http://dx.doi.org/10.54254/2755-2721/11/20230267.
Full textZhu, Hongli. "In Operando Neutron Image Characterizations of Li Metal in All Solid State Batteries." ECS Meeting Abstracts MA2023-01, no. 6 (August 28, 2023): 972. http://dx.doi.org/10.1149/ma2023-016972mtgabs.
Full textYang, Xiaofei, Xia Li, Keegan Adair, Huamin Zhang, and Xueliang Sun. "Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application." Electrochemical Energy Reviews 1, no. 3 (June 23, 2018): 239–93. http://dx.doi.org/10.1007/s41918-018-0010-3.
Full textKim, Hee-Je, TNV Krishna, Kamran Zeb, Vinodh Rajangam, Chandu V. V. Muralee Gopi, Sangaraju Sambasivam, Kummara Venkata Guru Raghavendra, and Ihab M. Obaidat. "A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques." Electronics 9, no. 7 (July 17, 2020): 1161. http://dx.doi.org/10.3390/electronics9071161.
Full textWang, Chunsheng. "(Invited) Electrolyte Design for Li-Ion and Li Metal Batteries." ECS Meeting Abstracts MA2023-02, no. 57 (December 22, 2023): 2741. http://dx.doi.org/10.1149/ma2023-02572741mtgabs.
Full textBae, Jin-Yong. "Electrical Modeling and Impedance Spectra of Lithium-Ion Batteries and Supercapacitors." Batteries 9, no. 3 (March 8, 2023): 160. http://dx.doi.org/10.3390/batteries9030160.
Full textChang, Zheng, Xujiong Wang, Yaqiong Yang, Jie Gao, Minxia Li, Lili Liu, and Yuping Wu. "Rechargeable Li//Br battery: a promising platform for post lithium ion batteries." J. Mater. Chem. A 2, no. 45 (2014): 19444–50. http://dx.doi.org/10.1039/c4ta04419c.
Full textWolff, Deidre, Lluc Canals Casals, Gabriela Benveniste, Cristina Corchero, and Lluís Trilla. "The Effects of Lithium Sulfur Battery Ageing on Second-Life Possibilities and Environmental Life Cycle Assessment Studies." Energies 12, no. 12 (June 25, 2019): 2440. http://dx.doi.org/10.3390/en12122440.
Full textSharma, Subash, Tetsuya Osugi, Sahar Elnobi, Shinsuke Ozeki, Balaram Paudel Jaisi, Golap Kalita, Claudio Capiglia, and Masaki Tanemura. "Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling." Nanomaterials 10, no. 8 (July 29, 2020): 1483. http://dx.doi.org/10.3390/nano10081483.
Full textLobachev, Emil, and Petru Andrei. "The Impact of Multi-Layered Porosity Distribution on the Performance of Lithium-Oxygen Batteries with Organic Electrolyte." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 424. http://dx.doi.org/10.1149/ma2022-024424mtgabs.
Full textLiu, Jinyun, Jiawei Long, Sen Du, Bai Sun, Shuguang Zhu, and Jinjin Li. "Three-Dimensionally Porous Li-Ion and Li-S Battery Cathodes: A Mini Review for Preparation Methods and Energy-Storage Performance." Nanomaterials 9, no. 3 (March 15, 2019): 441. http://dx.doi.org/10.3390/nano9030441.
Full textWang, Chunsheng. "(Battery Division Research Award Address) Electrolytes for High Energy Li-ion and Li Metal Batteries." ECS Meeting Abstracts MA2021-02, no. 3 (October 19, 2021): 286. http://dx.doi.org/10.1149/ma2021-023286mtgabs.
Full textGao, Yuan, Qianyi Guo, Qiang Zhang, Yi Cui, and Zijian Zheng. "Li–S Batteries: Fibrous Materials for Flexible Li–S Battery (Adv. Energy Mater. 15/2021)." Advanced Energy Materials 11, no. 15 (April 2021): 2170058. http://dx.doi.org/10.1002/aenm.202170058.
Full textYe, Ruijie, Chih-Long Tsai, Martin Ihrig, Serkan Sevinc, Melanie Rosen, Enkhtsetseg Dashjav, Yoo Jung Sohn, Egbert Figgemeier, and Martin Finsterbusch. "Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries." Green Chemistry 22, no. 15 (2020): 4952–61. http://dx.doi.org/10.1039/d0gc01009j.
Full textLu, Yingying. "Li–O2 batteries." Green Energy & Environment 1, no. 1 (April 2016): 3. http://dx.doi.org/10.1016/j.gee.2016.04.007.
Full textLi, Yajie, Yongjian Zheng, Kai Guo, Jingtai Zhao, and Chilin Li. "Mg-Li Hybrid Batteries: The Combination of Fast Kinetics and Reduced Overpotential." Energy Material Advances 2022 (January 4, 2022): 1–18. http://dx.doi.org/10.34133/2022/9840837.
Full textSultana, Fozia, Khaled Althubeiti, Khamael M. Abualnaja, Jiahui Wang, Abid Zaman, Asad Ali, Safeer Ahmad Arbab, Sarir Uddin, and Qing Yang. "An innovative approach towards the simultaneous enhancement of the oxygen reduction and evolution reactions using a redox mediator in polymer based Li–O2 batteries." Dalton Transactions 50, no. 44 (2021): 16386–94. http://dx.doi.org/10.1039/d1dt03033g.
Full textMarinaro, Mario, Santhana K. Eswara Moorthy, Jörg Bernhard, Ludwig Jörissen, Margret Wohlfahrt-Mehrens, and Ute Kaiser. "Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries." Beilstein Journal of Nanotechnology 4 (October 18, 2013): 665–70. http://dx.doi.org/10.3762/bjnano.4.74.
Full textZhao, Yang. "Interface Engineering and Understanding for the Next-Generation Batteries." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 75. http://dx.doi.org/10.1149/ma2022-01175mtgabs.
Full textCheng, Hao, Shiyun Zhang, Jian Mei, Lvchao Qiu, Peng Zhang, Xiongwen Xu, Jian Tu, Jian Xie, and Xinbing Zhao. "Lithiated carbon cloth as a dendrite-free anode for high-performance lithium batteries." Sustainable Energy & Fuels 4, no. 11 (2020): 5773–82. http://dx.doi.org/10.1039/d0se01096k.
Full textVaran, Narcis, Petru Merghes, Nicoleta Plesu, Lavinia Macarie, Gheorghe Ilia, and Vasile Simulescu. "Phosphorus-Containing Polymer Electrolytes for Li Batteries." Batteries 10, no. 2 (February 4, 2024): 56. http://dx.doi.org/10.3390/batteries10020056.
Full textChen, Zheng. "(Invited) Electrolyte Design for Wide-Temperature Li-Ion and Li-Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 5 (October 9, 2022): 581. http://dx.doi.org/10.1149/ma2022-025581mtgabs.
Full textRibeiro, A. L. Z., and T. M. Souza. "DETERMINATION LI-ION BATTERIES STATE OF CHARGE, AN ANALYSIS OF DIFFERENT METHODS." Revista Sodebras 18, no. 211 (July 2023): 88–93. http://dx.doi.org/10.29367/issn.1809-3957.18.2023.211.88.
Full textKushwaha, Lt Col Pankaj. "Review: Li-ion Batteries: Basics, Advancement, Challenges & Applications in Military." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 3009–21. http://dx.doi.org/10.22214/ijraset.2021.37905.
Full text