Journal articles on the topic 'Base semisimple'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 22 journal articles for your research on the topic 'Base semisimple.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
McDougall, Robert. "The base semisimple class." Communications in Algebra 28, no. 9 (January 2000): 4269–83. http://dx.doi.org/10.1080/00927870008827089.
Full textMCDOUGALL, R. G., and L. K. THORNTON. "ON BASE RADICAL OPERATORS FOR CLASSES OF FINITE ASSOCIATIVE RINGS." Bulletin of the Australian Mathematical Society 98, no. 2 (July 18, 2018): 239–50. http://dx.doi.org/10.1017/s0004972718000461.
Full textOkniński, Jan, and Mohan S. Putcha. "Embedding finite semigroup amalgams." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 51, no. 3 (December 1991): 489–96. http://dx.doi.org/10.1017/s1446788700034650.
Full textMcConnell, N. R., R. G. McDougall, and T. Stokes. "On base radical and semisimple classes defined by class operators." Acta Mathematica Hungarica 138, no. 4 (August 1, 2012): 307–28. http://dx.doi.org/10.1007/s10474-012-0249-9.
Full textBICHON, JULIEN. "GALOIS AND BIGALOIS OBJECTS OVER MONOMIAL NON-SEMISIMPLE HOPF ALGEBRAS." Journal of Algebra and Its Applications 05, no. 05 (October 2006): 653–80. http://dx.doi.org/10.1142/s0219498806001934.
Full textMcconnell, N. R., R. G. Mcdougall, and T. Stokes. "Erratum to: On base radical and semisimple classes defined by class operators." Acta Mathematica Hungarica 144, no. 1 (September 5, 2014): 266–68. http://dx.doi.org/10.1007/s10474-014-0444-y.
Full textThornton, L. K. "On base radical and semisimple operators for a class of finite algebras." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, no. 2 (December 6, 2017): 361–74. http://dx.doi.org/10.1007/s13366-017-0371-5.
Full textChaput, Pierre-Emmanuel, and Matthieu Romagny. "On the adjoint quotient of Chevalley groups over arbitrary base schemes." Journal of the Institute of Mathematics of Jussieu 9, no. 4 (April 16, 2010): 673–704. http://dx.doi.org/10.1017/s1474748010000125.
Full textLosev, Ivan, and Victor Ostrik. "Classification of finite-dimensional irreducible modules over -algebras." Compositio Mathematica 150, no. 6 (April 7, 2014): 1024–76. http://dx.doi.org/10.1112/s0010437x13007604.
Full textZhang, Zhirang, and Xuemei Li. "The Upper Radical Property and Lower Radical Property of Groups." Algebra Colloquium 18, no. 04 (December 2011): 693–700. http://dx.doi.org/10.1142/s100538671100054x.
Full textErnst, Thomas. "Further results on q-Lie groups, q-Lie algebras and q-homogeneous spaces." Special Matrices 9, no. 1 (January 1, 2021): 119–48. http://dx.doi.org/10.1515/spma-2020-0129.
Full textPlymen, R. J. "REPRESENTATION THEORY OF SEMISIMPLE GROUPS: An Overview Based on Examples." Bulletin of the London Mathematical Society 21, no. 2 (March 1989): 202–3. http://dx.doi.org/10.1112/blms/21.2.202.
Full textJAFARIZADEH, M. A., F. NAZERI, and A. KESHISHI. "CALCULATION OF MADELUNG CONSTANT OF VARIOUS IONIC STRUCTURES BASED ON THE SEMISIMPLE LIE ALGEBRAS." Modern Physics Letters B 10, no. 11 (May 10, 1996): 475–85. http://dx.doi.org/10.1142/s0217984996000523.
Full textSFETSOS, KONSTADINOS. "EXACT STRING BACKGROUNDS FROM WZW MODELS BASED ON NON-SEMISIMPLE GROUPS." International Journal of Modern Physics A 09, no. 27 (October 30, 1994): 4759–66. http://dx.doi.org/10.1142/s0217751x94001916.
Full textVogan Jr., David A. "Book Review: Representation theory of semisimple groups. An overview based on examples." Bulletin of the American Mathematical Society 17, no. 2 (October 1, 1987): 392–97. http://dx.doi.org/10.1090/s0273-0979-1987-15612-6.
Full textSogami, I. S. "Sum Rules for Elements of Flavor-Mixing Matrices Based on a Non-Semisimple Symmetry." Progress of Theoretical Physics 115, no. 2 (February 1, 2006): 461–65. http://dx.doi.org/10.1143/ptp.115.461.
Full textDong, Qixiang. "Projection-based commuting solutions of the Yang–Baxter matrix equation for non-semisimple eigenvalues." Applied Mathematics Letters 64 (February 2017): 231–34. http://dx.doi.org/10.1016/j.aml.2016.09.013.
Full textNikmehr, M. J., and S. Khojasteh. "A generalized ideal-based zero-divisor graph." Journal of Algebra and Its Applications 14, no. 06 (April 21, 2015): 1550079. http://dx.doi.org/10.1142/s0219498815500796.
Full textEdwards, S. A., and M. D. Gould. "A projection based approach to the Clebsch-Gordan multiplicity problem for compact semisimple Lie groups: I. General formalism." Journal of Physics A: Mathematical and General 19, no. 9 (June 21, 1986): 1523–29. http://dx.doi.org/10.1088/0305-4470/19/9/022.
Full textGould, M. D., and S. A. Edwards. "A projection based approach to the Clebsch-Gordan multiplicity problem for compact semisimple Lie groups. III. The classical limit." Journal of Physics A: Mathematical and General 19, no. 9 (June 21, 1986): 1537–44. http://dx.doi.org/10.1088/0305-4470/19/9/024.
Full textEdwards, S. A., and M. D. Gould. "A projection based approach to the Clebsch-Gordan multiplicity problem for compact semisimple Lie groups. II. Application to U(n)." Journal of Physics A: Mathematical and General 19, no. 9 (June 21, 1986): 1531–36. http://dx.doi.org/10.1088/0305-4470/19/9/023.
Full textJONES, PETER R. "THE SEMIGROUPS B2 AND B0 ARE INHERENTLY NONFINITELY BASED, AS RESTRICTION SEMIGROUPS." International Journal of Algebra and Computation 23, no. 06 (September 2013): 1289–335. http://dx.doi.org/10.1142/s0218196713500264.
Full text