Academic literature on the topic 'Base semisimple'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Base semisimple.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Base semisimple"
McDougall, Robert. "The base semisimple class." Communications in Algebra 28, no. 9 (January 2000): 4269–83. http://dx.doi.org/10.1080/00927870008827089.
Full textMCDOUGALL, R. G., and L. K. THORNTON. "ON BASE RADICAL OPERATORS FOR CLASSES OF FINITE ASSOCIATIVE RINGS." Bulletin of the Australian Mathematical Society 98, no. 2 (July 18, 2018): 239–50. http://dx.doi.org/10.1017/s0004972718000461.
Full textOkniński, Jan, and Mohan S. Putcha. "Embedding finite semigroup amalgams." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 51, no. 3 (December 1991): 489–96. http://dx.doi.org/10.1017/s1446788700034650.
Full textMcConnell, N. R., R. G. McDougall, and T. Stokes. "On base radical and semisimple classes defined by class operators." Acta Mathematica Hungarica 138, no. 4 (August 1, 2012): 307–28. http://dx.doi.org/10.1007/s10474-012-0249-9.
Full textBICHON, JULIEN. "GALOIS AND BIGALOIS OBJECTS OVER MONOMIAL NON-SEMISIMPLE HOPF ALGEBRAS." Journal of Algebra and Its Applications 05, no. 05 (October 2006): 653–80. http://dx.doi.org/10.1142/s0219498806001934.
Full textMcconnell, N. R., R. G. Mcdougall, and T. Stokes. "Erratum to: On base radical and semisimple classes defined by class operators." Acta Mathematica Hungarica 144, no. 1 (September 5, 2014): 266–68. http://dx.doi.org/10.1007/s10474-014-0444-y.
Full textThornton, L. K. "On base radical and semisimple operators for a class of finite algebras." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, no. 2 (December 6, 2017): 361–74. http://dx.doi.org/10.1007/s13366-017-0371-5.
Full textChaput, Pierre-Emmanuel, and Matthieu Romagny. "On the adjoint quotient of Chevalley groups over arbitrary base schemes." Journal of the Institute of Mathematics of Jussieu 9, no. 4 (April 16, 2010): 673–704. http://dx.doi.org/10.1017/s1474748010000125.
Full textLosev, Ivan, and Victor Ostrik. "Classification of finite-dimensional irreducible modules over -algebras." Compositio Mathematica 150, no. 6 (April 7, 2014): 1024–76. http://dx.doi.org/10.1112/s0010437x13007604.
Full textZhang, Zhirang, and Xuemei Li. "The Upper Radical Property and Lower Radical Property of Groups." Algebra Colloquium 18, no. 04 (December 2011): 693–700. http://dx.doi.org/10.1142/s100538671100054x.
Full textDissertations / Theses on the topic "Base semisimple"
Chin, Melanie Soo, and m. chin@cqu edu au. "Towards a Reinterpretation of the Radical Theory of Associative Rings Using Base Radical and Base Semisimple Class Constructions." Central Queensland University. Computer Science, 2004. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20050411.102928.
Full textAthapattu, Mudiyanselage Chathurika Umayangani Manike Athapattu. "Chevalley Groups." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/1986.
Full textBooks on the topic "Base semisimple"
Knapp, Anthony W. Representation theory of semisimple groups: An overview based on examples. Princeton, N.J: Princeton University Press, 2001.
Find full textRepresentation theory of semisimple groups, an overview based on examples. Princeton, N.J: Princeton University Press, 1986.
Find full textKnapp, Anthony W. Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, 2016.
Find full textGaitsgory, Dennis, and Jacob Lurie. Weil's Conjecture for Function Fields. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691182148.001.0001.
Full textBook chapters on the topic "Base semisimple"
Mitzman, David. "3. Chevalley bases for the remaining semisimple and affine Lie algebras." In Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras, 38–110. Providence, Rhode Island: American Mathematical Society, 1985. http://dx.doi.org/10.1090/conm/040/03.
Full textMitzman, David. "2. Chevalley bases for semisimple and type 1 affine Lie algebras of types A, D, E." In Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras, 9–37. Providence, Rhode Island: American Mathematical Society, 1985. http://dx.doi.org/10.1090/conm/040/02.
Full textBismut, Jean-Michel. "The displacement function and the return map." In Hypoelliptic Laplacian and Orbital Integrals (AM-177). Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691151298.003.0004.
Full text