To see the other types of publications on this topic, follow the link: Basalte olivine.

Journal articles on the topic 'Basalte olivine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Basalte olivine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shea, Joshua J., and Stephen F. Foley. "Evidence for a Carbonatite-Influenced Source Assemblage for Intraplate Basalts from the Buckland Volcanic Province, Queensland, Australia." Minerals 9, no. 9 (September 10, 2019): 546. http://dx.doi.org/10.3390/min9090546.

Full text
Abstract:
Eastern Australia contains a widespread suite of primitive (MgO ≥ 7.5 wt.%) intraplate basaltic provinces, including those sited along the longest continental hotspot track on Earth (≈2000 km), the Cosgrove track. The Buckland volcanic province is the most southerly basaltic province on the Cosgrove track before a >1600 km stretch that contains only sparse leucitite volcanism. Buckland is also situated just northeast of the edge of thick cratonic lithosphere where it transitions to a thinner continental lithosphere (<110 km) to the east, which may influence the production of plume-derived melts. Here, analysis of minor and trace elements in olivines in alkali basalts and basanites from the Buckland Province are combined with whole-rock compositions to elucidate the mantle source assemblages, and to calibrate minor and trace element indicators in olivine for application to source mineralogy. Olivine xenocrysts show element concentration ranges typical for peridotites; Mn and Al concentrations indicate that the ambient mantle is spinel, rather than garnet, peridotite. High modal pyroxene content is indicated by high Ni, Zn/Fe, and Fe/Mn in olivines, while high Ti/Sc is consistent with amphibole in the source. Residual phlogopite in the source of the basanites is indicated by low K/Nb in whole rocks, while apatite contains high P2O5 and low Rb/Sr (≥0.015) and Sr/La (≥13). The basanite source assemblage probably contains apatite, phlogopite, olivine, clinopyroxene and orthopyroxene, whereas the alkali basalt source assemblage is probably amphibole, olivine, orthopyroxene and clinopyroxene ± phlogopite ± apatite. Both source assemblages correspond broadly to olivine websterite, with the basanite source lying deeper than that for alkali basalt, explaining the occurrence of phlogopite in the source. This mineralogy, along with whole-rock Ti/Eu, Zr/Hf and P2O5/TiO2 values approaching those of natural carbonatites, provide evidence showing that the Buckland source consists of a peridotite that has interacted with a carbonate-rich melt whose origin may be in the deep lithosphere or asthenosphere beneath the craton. Similar enrichment processes are probably common throughout eastern Australia, controlling trace element characteristics in basaltic provinces. The topography of the underside of the lithosphere may play a significant role in determining mantle source assemblages by diverting and concentrating melt flow, and thus influence the location of basaltic provinces.
APA, Harvard, Vancouver, ISO, and other styles
2

Takebe, Mirai, Masao Ban, Motohiro Sato, and Yuki Nishi. "The Temporal Variation of Magma Plumbing System of the Kattadake Pyroclastics in the Zao Volcano, Northeastern Japan." Minerals 11, no. 4 (April 18, 2021): 430. http://dx.doi.org/10.3390/min11040430.

Full text
Abstract:
The geologic and petrologic study of the Kattadake pyroclastics (around 10 ka) from the Zao volcano (NE Japan) revealed the structure of the magma plumbing system and the mixing behavior of the shallow chamber. The Kattadake pyroclastic succession is divided into lower and upper parts by a remarkable discontinuity. All rocks belong to medium-K, calc-alkaline rock series and correspond to ol-cpx-opx basaltic-andesite to andesite with 20–28 vol% phenocrystic modal percentage. All rocks were formed by mixing between andesitic magma and near aphyric basalt. The petrologic features of andesites of lower and upper parts are similar, 59–61 wt% SiO2, having low-An plagioclase and low-Mg pyroxenes, with pre-eruptive conditions corresponding to 960–980 °C, 1.9–3.5 kb, and 1.9–3.4 wt% H2O. However, the basalts were ca. 49.4 wt% SiO2 with Fo~84 olivine in the lower part and 51.8 wt% SiO2 with Fo~81 olivine and high-An plagioclase the in upper one. The percentage of basaltic magma in the mixing process was lower, but the temperature of the basalt was higher in the lower part than the upper one. This means that the shallow magma chamber was reactivated more efficiently by the hotter basalts and that the mixed magma with a 70–80% of melt fraction was formed by a smaller percentage of the basaltic magma.
APA, Harvard, Vancouver, ISO, and other styles
3

Demidova, S. I., and D. D. Badyukov. "Peculiarities of the Extraterrestrial Basalts of the Solar System with Reference to the Exoplanet Science: a Brief Review." Геохимия 68, no. 5 (May 1, 2023): 437–53. http://dx.doi.org/10.31857/s0016752523050035.

Full text
Abstract:
The formation of basalts is a global stage in the evolution of differentiated cosmic body (planet or asteroid) of the Solar System. The paper presents the main chemical and mineralogical features of basaltic meteorites of the SNC, HED group, angrites and lunar mare basalts based on literature data. Despite the differences in the products of basaltic volcanism on different cosmic bodies and significant compositional variations in major minerals of basaltic rocks, most of them belong to low-alkaline basalts, suggesting the prevalence of this type of rocks at least among small bodies of the Solar System. All of them are characterized by the presence of such rock-forming minerals as pyroxene, olivine, and plagioclase, and their spectral characteristics can be used to search for basalts on exoplanets. The main factors affecting the spectral characteristics of atmosphere-free bodies and larger planets with an atmosphere are shown, and the possibility of searching for products of basalt volcanism on exoplanets during future missions is considered.
APA, Harvard, Vancouver, ISO, and other styles
4

Abdel-Karim, Abdel-Aal M., El-Nuri M. Ramadan, and Mohamed R. Embashi. "Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects." Journal of Geological Research 2013 (June 18, 2013): 1–12. http://dx.doi.org/10.1155/2013/805451.

Full text
Abstract:
Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5%) of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5%) and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.
APA, Harvard, Vancouver, ISO, and other styles
5

Hafidhah Nurul Haq, Mega Fatimah Rosana, Cipta Endyana, Katon Sena Ajie Nugraha, and Irpan Alamsyah. "Geochemistry of Igneous Rocks of Citirem Formation and Its Implications for the Tectonic Setting in Ciletuh – Palabuhanratu UNESCO Global Geopark Area." Journal of Geoscience, Engineering, Environment, and Technology 9, no. 1 (March 28, 2024): 58–68. http://dx.doi.org/10.25299/jgeet.2024.9.1.14367.

Full text
Abstract:
The igneous rocks of the Citirem Formation in the Ciletuh – Palabuhanratu UNESCO Global Geopark area petrographically not only consist of basalt, but also andesite, dacite, and gabbro. The characteristics of basalts Citirem Formation are composed of plagioclase 43% – 58% and olivine, mostly have amygdaloidal and aphanitic textures. Andesites are composed of 45% – 65% plagioclase, absence of olivine, mostly aphanitic and trachytic, some have intergranular textures. Dacite comprises 50% plagioclase, 20% quartz, and the absence of olivine, and aphanitic, intersertal textures. Gabbros are composed of 62% plagioclase, 6% – 12% olivine, with phaneritic texture. Based on the plot of the major elements vs SiO2 diagram, MgO, FeOt (Fe2O3+FeO), CaO, and TiO2 show a negative correlation with SiO2. In comparison, Na2O and K2O show a positive correlation with SiO2. The lithology of igneous rocks of Citirem Formation are basalt, trachybasalt, basaltic trachyandesite, trachyandesite, andesite, dacite and gabbro based on a plot of the Na2O+K2O vs SiO2 diagram for volcanic and plutonic rocks. The origin of magma type can be distinguished based on the plot of K2O vs SiO2 diagrams, the igneous rocks of Citirem Formation are divided into low-K, medium-K, high-K, and shoshonite magma series. Dacite STA 2, andesite STA 7, basaltic andesite STA 8, trachyandesite STA 10 and gabbro STA 14 are calc-alkaline based on triangular diagram Th-Hf-Ta-Zr-Nb. Gabbro STA 17 indicates IAT (island arc tholeiite), trachybasalt STA 19, basalt STA 20 and basaltic trachyandesite STA 27 are E-MORB, WPT (within plate tholeiitic), In contrast, trachybasalt STA 28 is WPA (within plate alkali). Primitive mantle long, NMORB-normalized REE patterns and chondrites-normalized show some rocks have distinctive patterns that have similarities with suprasubduction zone ophiolite rocks, MORB of Mirdita ophiolite, and some show similarities with patterns from OIB and E-MORB.
APA, Harvard, Vancouver, ISO, and other styles
6

Savelyev, D. P., N. V. Gorbach, M. V. Portnyagin, and V. D. Shcherbakov. "The origin of olivine basalts from Medvezhya Mount (Avachinsky group of volcanoes, Kamchatka): The evidence of assimilation of sulfide-bearing cumulates." Петрология 31, no. 3 (May 1, 2023): 221–37. http://dx.doi.org/10.31857/s086959032303007x.

Full text
Abstract:
The role and conditions of liquid immiscibility and crystallization of sulfide phase during evolution of subduction related magmas remains to be a debated topic, which bears relevance to mechanisms of porphyry copper deposit formation and evolution of the continental crust. We studied rare volcanic rocks with inclusions of magmatic sulfides in olivine – the basalts of Medvezhya Mount in the Avachinsky group of volcanoes. The rocks belong to primitive (Mg# = 66 mol. %) middle-K island arc olivine basalts. Olivine with normal zoning predominate (~98%) among phenocrysts. The olivine compositions are typical for Kamchatka basalts, except for an unusual trend of increase of MnO content from 0.20 to 0.55 wt. % and decrease of Fe/Mn from 60 to 35 with change of olivine composition from Fo87.8 to Fo78.2. Olivines of this group contain numerous inclusions of minerals of the spinel group varying in composition from chromium spinel to magnesian magnetite. Olivine phenocrysts with sulfide inclusions are characterized by the absence or weak reverse zoning and reduced contents of Ca, Ni, Mn, Cr, and Al. The estimated crystallization temperatures for olivines of the prevailing type are 1036–1241°C, for sulfide-bearing olivines – 1010–1062°C. The data suggest that crystallization of the main olivine population occurred under relatively shallow conditions and was accompanied by strong oxidation of the magmas. On the contrary, the zoning and composition features of sulfide-bearing olivine suggest its xenogenic origin and probable crystallization at conditions of deep crust from low temperature water-rich and/or low-Ca magmas. The results obtained confirm the possibility of saturation of oxidized island-arc magmas with sulfide phase at lower crustal conditions, but show that this process is rare and not typical for low-pressure crystallization stage.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Cheng, Jianping Chen, Yiwen Pan, Shuangshuang Wu, Jian Chen, Xiaoxia Hu, Yue Pang, Xueting Liu, and Ke Wang. "Geomorphology, Mineralogy, and Chronology of Mare Basalts in the Oceanus Procellarum Region." Remote Sensing 16, no. 4 (February 8, 2024): 634. http://dx.doi.org/10.3390/rs16040634.

Full text
Abstract:
Mare basalts on the lunar surface are tangible expressions of the complex thermal evolution and geological processes that have occurred within the lunar interior. These basaltic manifestations are highly important because they provide invaluable insights into lunar geological evolution. Notably, the Oceanus Procellarum region, which is renowned for its extensive and long-lasting basaltic volcanism, is a premier location to investigate late-stage lunar thermal evolution. The primary aim of this research is to elucidate the geomorphological, compositional, and temporal attributes that define the mare basalts within the Oceanus Procellarum region. To achieve this aim, we comprehensively analyzed the geomorphological features present within the region, leveraging Kaguya/SELENE TC images and digital elevation models. Specifically, these geomorphological features encompass impact craters, wrinkle ridges, sinuous rilles, and volcanic domes. Subsequently, we thoroughly examined the mineralogical attributes of basalts in the Oceanus Procellarum region, leveraging Kaguya/SELENE MI data and compositional map products. To more accurately reflect the actual ages of the mare basalts in the Oceanus Procellarum region, we carefully delineated the geological units within the area and employed the latest crater size-frequency distribution (CSFD) technique to precisely determine their ages. This refined approach allowed for a more comprehensive and accurate understanding of the basaltic rocks in the study area. Overall, our comprehensive study included an in-depth analysis of the volcanic activity and evolution of the Oceanus Procellarum region, along with an examination of the correlation between the mineralogical composition and ages of mare basalts. The findings from this exhaustive investigation reveal a definitive age range for basalt units within the Oceanus Procellarum region from approximately 3.69 Ga to 1.17 Ga. Moreover, the latest mare basalts that formed were pinpointed north of the Aristarchus crater. Significantly, the region has experienced at least five distinct volcanic events, occurring approximately 3.40 Ga, 2.92 Ga, 2.39 Ga, 2.07 Ga, and 1.43 Ga, leading to the formation of multiple basalt units characterized by their unique mineral compositions and elemental abundances. Through the application of remote sensing mineralogical analysis, three primary basalt types were identified: low-titanium, very-low-titanium, and intermediate-titanium basalt. Notably, the younger basalt units exhibit an elevated titanium proportion, indicative of progressive olivine enrichment. Consequently, these younger basalt units exhibit more intricate and complex mineral compositions, offering valuable insights into the dynamic geological processes shaping the lunar surface.
APA, Harvard, Vancouver, ISO, and other styles
8

Handini, Esti, Toshiaki Hasenaka, Nicholas D. Barber, Tomoyuki Shibata, Yasushi Mori, and I. Wayan Warmada. "Geochemistry of shield stage basalts from Baluran volcano, East Java, Sunda arc." Journal of Applied Geology 7, no. 2 (December 31, 2022): 64. http://dx.doi.org/10.22146/jag.73697.

Full text
Abstract:
We report petrography and geochemistry of basaltic lava flows from the shield stage of Baluran, a Quaternary volcanic center in the rear of East Java, Sunda Arc, Indonesia. These basalts contain abundant plagioclase, clinopyroxene, olivine, and minor magnetite. Geochemically, they resemble other medium-K calc alkaline basalts from eastern Java’s volcanoes, but they are less enriched in light ion lithophile elements (LILE) and Pb. The predicted primary basalt of Baluran lavas can be sourced to a more primitive primary melt composition which may also generate medium-K calc-alkaline magmas in the region. The fractionation trajectory of these primary magmas shows the importance of plagioclase, clinopyroxene, olivine, and magnetite phase removal from the melt. Regardless of the diverse composition of the derivatives, the calculated primary basalts from the eastern Java are all in the field of nepheline-normative. This finding suggests variably small degree of melting of clinopyroxene-rich mantle source is at play in the generation of these magmas. Our result further suggests that the clinopyroxene source rock is possibly present as veins in peridotite mantle which have experienced metasomatism by addition of slab-derived fluids at differing proportion.
APA, Harvard, Vancouver, ISO, and other styles
9

Gorbach, N. V., N. A. Nekrylov, M. V. Portnyagin, and K. Hoernle. "New Data on the Rock and Mineral Composition of Kharchinsky and Zarechny Volcanoes (Central Kamchatka depression): Heterogeneity of the Mantle Source and Peculiarities of Magma Evolution in Crust." Петрология 31, no. 3 (May 1, 2023): 281–99. http://dx.doi.org/10.31857/s0869590323030056.

Full text
Abstract:
The Kharchinsky and Zarechny volcanoes and the Kharchinsky Lake zone of monogenetic cones are unique eruptive centers of magnesian lavas located above the northern margin of the Pacific Plate subducting beneath Kamchatka. This work presents new geochemical data on the composition of rocks (55 samples) and minerals (over 900 analyses of olivine, pyroxenes, amphibole, and plagioclase) of these centers analyzed by XRF and LA-ICP-MS (rocks) and electron microprobe (minerals). Most of the studied rocks are represented by magnesian (Mg# = 60–75 mol. %), medium-K basalts and basaltic andesites. Moderate-magnesian (Mg# = = 52–59 mol. %) basaltic andesites are present among the monogenic cones of the Kharchinsky Lake. The rare rock varieties include high-K basalts-basaltic andesites of dikes in the center of the Kharchinsky volcano and magnesian andesites (Mg# = 58–61 mol. %) of the extrusions of Zarechnу volcano. The distribution of trace element contents in these samples demonstrates the enrichment of large-ion lithophile elements, light REEs and depletion of high field strength elements and heavy REEs typical of arc rocks. High-K basalts and basaltic andesites show anomalous enrichment in Ba (1000 ppm), Th (3.8 ppm), U (1.8 ppm), Sr (800 ppm, Sr/Y 50) and light REE (La 20 ppm); their compositions are close to those of low-Si adakites. Basalts and basaltic andesites contain high-Mg olivine phenocrysts (up to Fo92.6) and clinopyroxene (Mg# up to 91 mol. %). The rocks show petrographic and geochemical signs of fractional crystallization along with the processes of mineral accumulation and magma mixing. Some of the olivine phenocrysts show high NiO contents (up to 5000 ppm) and elevated Fe/Mn ratio (up to 80), interpreted as evidence of participation of the pyroxenite source in the magma generation processes. The use of Ca/Fe and Ni/Mg ratios allowed us to distinguish the composition fields and evolution trends of olivines associated with different sources – peridotite and pyroxenite, formed by the reaction of mantle wedge peridotites and high-Si melts of the subducted oceanic crust. The new data are consistent with other evidence of melting of the subducted Pacific plate edge beneath the northern part of the Central Kamchatka depression at the Kurile-Kamchatka and Aleutian subduction zone junction and testify to significant heterogeneity of the mantle in this area.
APA, Harvard, Vancouver, ISO, and other styles
10

Kimata, Mitsuyoshi, Norimasa Nishida, Masahiro Shimizu, Shizuo Saito, Tomoaki Matsui, and Yoji Arakawa. "Anorthite megacrysts from island arc basalts." Mineralogical Magazine 59, no. 394 (March 1995): 1–14. http://dx.doi.org/10.1180/minmag.1995.59.394.01.

Full text
Abstract:
AbstractAnorthite megacrysts are common in basalts from the Japanese Island Arc, and signally rare in other global fields. These anorthites are 1 to 3 cm in size and often contain several corroded Mg-olivine inclusions. The megacrysts generally range from An94Ab4Ot2 to An89Ab6Ot5 (Ot: other minor end-members, including CaFeSi3O8, CaMgSi3O8, AlAl3SiO8, □Si4O8) and show no chemical zoning. They often show parting. Redclouded megacrysts contain microcrystals of native copper with a distribution reminiscent of the shape of a planetary nebula. Hydrocarbons are also present, both in the anorthite megacrysts and in the olivines included within them. Implications of lateral variations in the Fe/Mg ratio of the included olivines, in Sr-content and in Sr-isotope ratio of the anorthite megacrysts with respect to the Japanese island arc, relate to mixing of crustal components and subducted slab-sediments into the basaltic magmas.
APA, Harvard, Vancouver, ISO, and other styles
11

Wilson, Alexander M., and James K. Russell. "Lillooet Glacier basalts, southwestern British Columbia, Canada: products of Quaternary glaciovolcanism." Canadian Journal of Earth Sciences 54, no. 6 (June 2017): 639–53. http://dx.doi.org/10.1139/cjes-2016-0201.

Full text
Abstract:
The retreat of Lillooet Glacier (LG) has exposed a succession of pillow basalt and subordinate amounts of breccia and hyaloclastite. The lithofacies and physiographic setting suggest that the deposits have a glaciovolcanic origin and represent a partially dissected basaltic pillow-dominated tindar. Chemically, the LG volcanic rocks are basalt to basaltic andesite, and, as a group, they represent the highest-silica, Quaternary mafic products in the Garibaldi volcanic belt (GVB). Like other northern GVB (alkaline) basalts, they lack the Nb–Ta depletion signature typically associated with subduction-related products. Geochemical and petrologic analysis indicates that the LG basalts are comagmatic and that chemical variations within the suite are consistent with sorting of the observed phenocryst assemblage: olivine + plagioclase. Thermodynamic modeling establishes shallow, crustal, pre-eruptive storage conditions at <2 kbar (1 kbar = 100 MPa; or 7.5 km) and an H2O content of 0.5–1 wt.%. We estimate that the LG basalts were erupted at the peak of, or during the waning stages of, Fraser glaciation (17–13 ka). The eruption produced an englacial lake that was >150 m deep and that appears to have been sustained throughout the entire eruption (i.e., no discernible passage zone). Using hydrostatic constraints, we calculate a minimum overlying paleo-ice thickness of >645 m and a paleo-ice surface elevation of >1895 m above sea level.
APA, Harvard, Vancouver, ISO, and other styles
12

Larsen, L. M., W. S. Watt, and M. Watt. "Geology and petrology of the Lower Tertiary plateau basalts of the Scoresby Sund region, East Greenland." Bulletin Grønlands Geologiske Undersøgelse 157 (January 1, 1989): 1–164. http://dx.doi.org/10.34194/bullggu.v157.6699.

Full text
Abstract:
The early Tertiary plateau basalts in East Greenland are situated on a continental margin and were erupted during continental break-up and initiation of sea-floor spreading in the North Atlantic. In the region stretching from Scoresby Sund southward to 69°N 40 000 km2of basalts with an average thickness of 1.5 km have been investigated by measuring and flow-to-flow sampling of 130 profiles, followed by major element geochemical analysis and microprobe analysis, trace element analysis and some Sr isotope data. The basalts rest on Mesozoic sediments in the east and on Precambrian gneiss in the west. Six basalt formations are defined: the Magga Dan, Milne Land and Geikie Plateau Formations form a lower regional sequence erupted in one volcanic episode from sites in the NW part of the region; the Rømer Fjord and Skrænterne Formations form an upper regional sequence erupted in a subsequent volcanic episode in which eruption sites moved SE to centres east of the present Atlantic coast; the Igtertivâ Formation and a coast-parallel dyke swarm formed in a third volcanic episode only recorded at the Atlantic coast. The lavas are essentially flat-lying; a narrow strip along the Atlantic coast is extensively block faulted. Single lava flows are extensive (max. 11 000 km2) and voluminous (max. 300 km3). They are well preserved, with metamorphism of the low zeolite facies. All the lavas and most of the dykes are fractionated tholeiitic basalts with Mg/(Mg+Fe2+) ratios of 0.66-0.39 and TiO2 = 1.2-4.5%. The major part (the 'main basalts', 96% by volume) have Mg ratios of 0.56-0.39, while only 4 vol.% are Mg-rich basalts with Mg ratios of 0.66-0.57. A nephelinitic tuff layer occurs at the base of the second sequence. A few dykes are alkaline. The Mg-rich basalts have microphenocrysts of olivine (FO90-70) and chromite, while the main basalts comprise both aphyric and porphyritic sequences. Phenocrysts of plagioclase (An88-37) are abundant, of olivine (FO80-57) are sparse but ubiquitous, and of augite (FS9-20) sparse and often absent. Groundmass phases are olivine (to FO3737), plagioclase (to An13, augite (to FS62), pigeonite (Fs26-50), titanomagnetite and ilmenite. All rocks contain several per cent fine-grained mesostasis. The phenocrysts frequently show disequilibrium textures and a wide range of compositions within one sample. Extrusion temperatures are calculated to 1280-1110°C, and densities to 2.68-2.78 g/cm3, increasing with fractionation. The volcanic episodes are demonstrated in systematic compositional variations with height in the basalt sequence. Each of the two major episodes started with a variety of lava compositions including Mg-rich basalts, followed by a thick sequence of 'main basalts' showing a systematic decrease of TiO2 and other incompatible elements with height, and ending with a reversal to higher TiO2 values. The third episode is not cyclic, and its products have changed incompatible element ratios. The Mg-rich basalts comprise depleted MORB type basalts, relatively enriched olivine tholeiites, and very enriched tholeiites (Mikis type basalt). Sr isotopes show 87Sr/86Sr ratios of 0.7034 in most basalts and 0.7045 in the Mikis type basalt, while some Si-rich basalts have ratios up to 0.7079. The East Greenland basalts are 'initial rifting' basalts very similar to those in Deccan. The magmas have equilibrated at low pressures in crustal magma chambers. The main basalts have fractionated ol + pl + cpx no matter whether they are aphyric or porphyritic. Simple crystal fractionation can account for sub-trends but not for the complete compositional variation of the main basalts. This is considered as resulting from fractionation in open magma chambers which were repeatedly filled, mixed and tapped. The decrease in TiO2 with height in each volcanic episode indicates increasing magma input rate and shorter residence time in the chamber, while the final reversal indicates the decline and cessation of activity. There is evidence for widespread crustal contamination (1-4%) in the magma chambers of the two lowest formations. Crustal contamination of magmas on the way to the surface occurred sporadically throughout both sequences. One case of magma mixing occurred when a Mg-rich basalt magma invaded the regional main basalt magma chamber. The Mg-rich basalts cannot be directly related to each other or to the main basalts. A petrogenetic scheme is suggested where the Mikis type basalt originated in, or contains an addition from, an undepleted or enriched mantle source. All the other magma types originated in a depleted mantle source by varying degrees and possibly depths of melting. Increasing degrees of melting are indicated for the types nephelinite - enriched olivine tholeiite – main basalt parent – MORB type basalt. The MORB type basalt may also be produced by melting of a residuum. The basalts of the third volcanic episode include another component of mantle or basaltic crust. The three recorded volcanic episodes are related to rifting events during the break-up of the North Atlantic continent, viewed as repeated attempts to straighten out a bend in the original line of opening. The two first rifting events failed while the third for a short while produced oceanic crust. Compared to other regions of the North Atlantic volcanic province the Scoresby Sund basalts are similar to basalts from Kangerdlugssuaq, northern East Greenland, West Greenland, the Faeroes, the Vøring Plateau and some basalts on lceland. The main magma source for the North Atlantic province was similar to that of the lceland hotspot, but enriched subcontinental lithosphere may also have participated in the stage of initial rifting. A correlation for the volcanic episodes throughout East Greenland and the Faeroes is proposed.
APA, Harvard, Vancouver, ISO, and other styles
13

Hussain, M. Faruque, Md Shofiqul Islam, and Mithun Deb. "Petrological and geochemical study of the Sylhet trap basalts, Shillong plateau, N.E. India: Implications for petrogenesis." European Journal of Geosciences 2, no. 1 (February 24, 2020): 01–18. http://dx.doi.org/10.34154/2020-ejgs-0201-1-18/euraass.

Full text
Abstract:
Sylhet Traps exposed along the southern margin of Shillong plateau, Northeast India are subalkaline tholeiitic basalts. The basalts are generally massive but occasionally contain large amygdules of zeolites and chalcedony. Microscopically, some basalts show porphyritic texture with olivine phenocrysts. Phenocryst assemblage of plagioclase ± clinopyroxene ± olivine implies crystallization at shallow level. SEM-EDX analysis shows occurrences of spinel with Ni and Cr within the basalts therefore indicating partial melting of the subcontinental lithospheric mantle as the possible source materials for the basalts. The multi-element plot for the basalts shows two distinct trends: one with significant enrichment of LILE and depletion of HFSE and plot similar to OIB (Type 1) while the other trends are chara cterized by slight enrichment of LILE and negative anomalies at Nb, P and Ti (Type 2). Chondrite-normalized REE patterns for Type 1 basalt shows very high enrichment of LREE and a strong right dip HREE pattern and also plots similar to typical OIB while Type 2 show a slight enrichment of LREE over HREE with small Eu anomaly. The geochemical signatures suggest crustal contamination by plume-derived magma produced by low degree of partial melting for Type 1 basalt. Type 2 basalt was produced by partial melting of subcontinental lithospheric mantle, which may be triggered by plume upwelling.
APA, Harvard, Vancouver, ISO, and other styles
14

Riehle, J. R., J. R. Budahn, M. A. Lanphere, and D. A. Brew. "Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska." Canadian Journal of Earth Sciences 31, no. 5 (May 1, 1994): 852–64. http://dx.doi.org/10.1139/e94-078.

Full text
Abstract:
Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Olivine basalt crops out farther inboard from the nearby Fairweather transform than plagioclase basalt. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. The olivine basalt has higher 87Sr/86Sr ratios than the plagioclase basalt.We model rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, by 10–15% partial melting of fertile spinel–plagioclase lherzolite followed by removal of 8–13% olivine. Normative mineralogy indicates melting in the spinel stability field. REE contents of an undersaturated basalt (sample 5L005) resemble those of Mauna Loa tholeiite and are modelled by 5–10% partial melting of fertile garnet lherzolite followed by 10% olivine removal. Plagioclase basalt resembles sample 5L005 in REE contents but is lower in other incompatible-element contents and 87Sr/86Sr ratios. Plagioclase basalt either originated in depleted garnet lherzolite or is a mixture of sample 5L005 and normal MORB; complex zoning of plagioclase and colinear Sc and Th contents are consistent with magma mixing.We conclude that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. Lithospheric melting seemingly requires vertical flow of mantle material, although there is no direct evidence at the MEF for crustal extension that might provide a mechanism for mantle advection. In any case, most MEF magmas are subalkaline because of moderately high degrees of partial melting at shallow depth.
APA, Harvard, Vancouver, ISO, and other styles
15

Agata, T., and I. Hattori. "Chromite in greenstone lavas from the Kanakasu area, Nanjo Massif of the Mesozoic Mino terrane, central Japan." Mineralogical Magazine 66, no. 4 (August 2002): 575–90. http://dx.doi.org/10.1180/0026461026640050.

Full text
Abstract:
AbstractChromite occurs together with olivine as phenocrysts in basalts of the Kanakasu greenstone body. Chromite forms inclusions within olivine phenocrysts; it also constitutes discrete phenocrystic grains scattered in the groundmass. The Cr and Ni contents of chromite-bearing olivine basalts are unusually high relative to the MgO content. This is probably due to the presence of phenocrystic chromite and olivine. The mineralogy suggests that the groundmass of the basalts is hawaiitic in composition. Chromite, generally, is unlikely to crystallize from differentiated magma such as hawaiite melt. The chromite and associated olivine phenocrysts are probably xenocrysts. Discrete chromite commonly shows compositional zoning that resulted from reaction with host magma; some chromite evidently changed in composition. Chromite embedded in olivine was shielded from reaction with host magma, and has preserved the original chemical composition. The composition of embedded chromite ranges: Mg/(Mg+Fe2+) 0.37–0.58, Cr/(Cr+Al) 0.47–0.64, Fe3+ 0.16–0.47 p.f.u., and Ti 0.034–0.13 p.f.u. The relatively high Ti and Al contents suggest that chromite crystallized from an alkalic basalt magma. The Cr/(Cr+Al) ratio is relatively high when compared to those of chromite in mid-oceanic ridge and island-arc alkalic basalts; the Kanakasu embedded chromite is chemically identical to chromite from Hawaiian alkalic basalts. The Kanakasu chromite was probably formed in an intraplate oceanic island.
APA, Harvard, Vancouver, ISO, and other styles
16

Gavrilenko, Maxim, Claude Herzberg, Christopher Vidito, Michael J. Carr, Travis Tenner, and Alexey Ozerov. "A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism." Journal of Petrology 57, no. 9 (November 25, 2016): 1811–32. http://dx.doi.org/10.1093/petrology/egw062.

Full text
Abstract:
High-precision electron microprobe analyses were obtained on olivine grains from Klyuchevskoy, Shiveluch and Gorely volcanoes in the Kamchatka Arc; Irazú, Platanar and Barva volcanoes of the Central American Arc; and mid-ocean ridge basalt (MORB) from the Siqueiros Transform. Calcium contents of these subduction zone olivines are lower than those for olivines from modern MORB, Archean komatiite and Hawaii. A role for magmatic H2O is likely for subduction zone olivines, and we have explored the suggestion of earlier workers that it has affected the partitioning of CaO between olivine and silicate melt. We provide a provisional calibration of DCaOOl/L as a function of magmatic MgO and H2O, based on nominally anhydrous experiments and minimally degassed H2O contents of olivine-hosted melt inclusions. Application of our geohygrometer typically yields 3–4 wt % magmatic H2O at the Kamchatka and Central American arcs for olivines having ∼1000 ppm Ca, which agrees with H2O maxima from melt inclusion studies; Cerro Negro and Shiveluch volcanoes are exceptions, with about 6% H2O. High-precision electron microprobe analyses with 10–20 μm spatial resolution on some olivine grains from Klyuchevskoy and Shiveluch show a decrease in Ca content from the core centers to the rim contacts, and a sharp increase in Ca in olivine rims. We suggest that the zoning of Ca in olivine from subduction zone lavas may provide the first petrological record of temporal changes that occur during hydration of the mantle wedge and dehydration during ascent, and we predict olivine H2O contents that can be tested by secondary ionization mass spectrometry analysis.
APA, Harvard, Vancouver, ISO, and other styles
17

Donaldson, Colin H. "The rates of dissolution of olivine, plagioclase, and quartz in a basalt melt." Mineralogical Magazine 49, no. 354 (December 1985): 683–93. http://dx.doi.org/10.1180/minmag.1985.049.354.07.

Full text
Abstract:
AbstractThe dissolution rates of spheres of two magnesian olivines, two plagioclases, and quartz in tholeiitic basalt have been determined at three super-liquidus temperatures and one-atmosphere pressure. There are considerable differences in the rates among the minerals, e.g. at 1210°, 12° above the liquidus temperature of the basalt, labradorite dissolves at 86µm/h. and the magnesian olivines at 9 and 14µm/h. The rates are not time dependent and this, coupled with the existence of concentration gradients in the composition of quenched melt adjacent to partially dissolved crystals, indicates that the dissolution rates are dictated by a combination of diffusion and convection of components to and from the crystal-liquid interface. Values for the activation enthalpy of dissolution are small for quartz and plagioclase (40–50 kcal mol−1) but large for olivine 73–118 kcal mol−1). Dissolution of plagioclase in rock melts seems to be a much more rapid process than crystal growth, whereas olivines apparently dissolve and grow at similar rates. Crystal dissolution is sufficiently slow that ascending, crystal-bearing magma may become superheated and yet fail to dissolve the crystal fraction before quenching; this may be the reason that olivine phenocrysts are often rounded.
APA, Harvard, Vancouver, ISO, and other styles
18

Zelenski, Michael, Vadim S. Kamenetsky, Nikolai Nekrylov, and Alkiviadis Kontonikas-Charos. "High Sulfur in Primitive Arc Magmas, Its Origin and Implications." Minerals 12, no. 1 (December 26, 2021): 37. http://dx.doi.org/10.3390/min12010037.

Full text
Abstract:
Sulfur contents in 98.5% of melt inclusions (MI) from calc-alkaline subduction basalts do not exceed 4000 ppm, whereas experimentally established limits of sulfur solubility in basaltic melts with high fO2 (characteristic of subduction zones, e.g., QFM + 2) surpass 14,000 ppm. Here we show that primitive (Mg# 62-64) subduction melts may contain high sulfur, approaching the experimental limit of sulfur solubility. Up to 11,700 ppm S was measured in olivine-hosted MI from primitive arc basalt from the 1941 eruption of the Tolbachik volcano, Kamchatka. These MI often contain magmatic sulfide globules (occasionally enriched in Cu, Ni, and platinum-group elements) and anhydrite enclosed within a brown, oxidized glass. We conclude that the ubiquitous low sulfur contents in MI may originate either from insufficient availability of sulfur in the magma generation zone or early magma degassing prior to inclusion entrapment. Our findings extend the measured range of sulfur concentrations in primitive calc-alkaline basaltic melts and demonstrate that no fundamental limit of 4000 ppm S exists for relatively oxidized subduction basalts, where the maximum sulfur content may approach the solubility limit determined by crystallization of magmatic anhydrite.
APA, Harvard, Vancouver, ISO, and other styles
19

Barker, Simon J., Michael C. Rowe, Colin J. N. Wilson, John A. Gamble, Shane M. Rooyakkers, Richard J. Wysoczanski, Finnigan Illsley-Kemp, and Charles C. Kenworthy. "What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions." Geology 48, no. 5 (February 27, 2020): 504–8. http://dx.doi.org/10.1130/g47422.1.

Full text
Abstract:
Abstract Understanding the origins of the mantle melts that drive voluminous silicic volcanism is challenging because primitive magmas are generally trapped at depth. The central Taupō Volcanic Zone (TVZ; New Zealand) hosts an extraordinarily productive region of rhyolitic caldera volcanism. Accompanying and interspersed with the rhyolitic products, there are traces of basalt to andesite preserved as enclaves or pyroclasts in caldera eruption products and occurring as small monogenetic eruptive centers between calderas. These mafic materials contain MgO-rich olivines (Fo79–86) that host melt inclusions capturing the most primitive basaltic melts fueling the central TVZ. Olivine-hosted melt inclusion compositions associated with the caldera volcanoes (intracaldera samples) contrast with those from the nearby, mafic intercaldera monogenetic centers. Intracaldera melt inclusions from the modern caldera volcanoes of Taupō and Okataina have lower abundances of incompatible elements, reflecting distinct mantle melts. There is a direct link showing that caldera-related silicic volcanism is fueled by basaltic magmas that have resulted from higher degrees of partial melting of a more depleted mantle source, along with distinct subduction signatures. The locations and vigor of Taupō and Okataina are fundamentally related to the degree of melting and flux of basalt from the mantle, and intercaldera mafic eruptive products are thus not representative of the feeder magmas for the caldera volcanoes. Inherited olivines and their melt inclusions provide a unique “window” into the mantle dynamics that drive the active TVZ silicic magmatic systems and may present a useful approach at other volcanoes that show evidence for mafic recharge.
APA, Harvard, Vancouver, ISO, and other styles
20

Xu, Yao, and Hongfu Zhang. "Secular evolution of the lithospheric mantle beneath the northern margin of the North China Craton: Insights from zoned olivine xenocrysts in Early Cretaceous basalts." GSA Bulletin 132, no. 11-12 (April 3, 2020): 2353–66. http://dx.doi.org/10.1130/b35443.1.

Full text
Abstract:
Abstract Abundant zoned olivine xenocrysts from Early Cretaceous basalts of the Yixian Formation in western Liaoning Province, China, contain critical information about the nature and evolution of the lithospheric mantle of the northern North China Craton. These olivine xenocrysts are large (600–1600 µm), usually rounded and embayed, with well-developed cracks. Their cores have high and uniform forsterite (Fo) contents (88–91), similar to the peridotitic olivine entrained by regional Cenozoic basalts. Their rims have much lower Fo contents (74–82), comparable to phenocrysts (72–81) in the host basalts. These characteristics reveal that the zoned olivine has been disaggregated from mantle xenoliths and thus can be used to trace the underlying lithospheric mantle at the time of basaltic magmatism. The olivine cores have high oxygen isotope compositions (δ18OSMOW = 5.9–7.0‰) relative to the normal mantle value, suggesting that the Early Cretaceous lithospheric mantle was enriched and metasomatized mainly by melts/fluids released from subducted oceanic crust that had experienced low-temperature hydrothermal alteration. Preservation of zoned olivine xenocrysts in the Early Cretaceous basalts indicates that olivine-melt/fluid reaction could have been prevalent in the lithospheric mantle as an important mechanism for the transformation from old refractory (high-Mg) peridotitic mantle to young, fertile (low-Mg), and enriched lithospheric mantle during the early Mesozoic.
APA, Harvard, Vancouver, ISO, and other styles
21

Tait, Stephen R. "Fluid dynamic and geochemical evolution of cyclic unit 10, Rhum, Eastern Layered Series." Geological Magazine 122, no. 5 (September 1985): 469–84. http://dx.doi.org/10.1017/s0016756800035391.

Full text
Abstract:
AbstractLithological, major element, trace element and Sr isotope data from cyclic unit 10 of the Rhum Eastern Layered Series are presented. The lower 65 metres of the unit are peridotite, subdivided on textural and geochemical grounds into a lower homogeneous portion approximately 50 metres thick and an upper heterogeneous portion approximately 15 metres thick. The uppermost 16.5 metres of the unit are allivalite. There are steep geochemical gradients across the peridotite-allivalite boundary in Ni content of olivine and whole-rock Sr isotope composition.Calculations are presented on the geochemical evolution of a Rhum picritic liquid undergoing olivine precipitation, both when the olivines remain suspended in the residual liquid as they precipitate, and when they are continuously fractionated. Quenched groundmass and olivine compositions from the Rhum dykes and the unit 10 peridotite olivines show good agreement with the suspension model but are inconsistent with the fractionation model. The Rhum chamber is thought to have been replenished with a picritic liquid from which olivine crystallized while held in suspension; however, replenishment by a highly olivine-phyric basalt is also possible. The peridotite probably accumulated rapidly as olivines were dumped out of suspension onto the chamber floor.The lower part of the peridotite is a poikilitic adcumulate; it is suggested that this formed by convective circulation of melt in the pores of the pile of cumulus olivines. In the latter stages of adcumulus growth, more Fe-rich and isotopically contaminated magma entered the top of the cumulus pile causing cumulus olivines to re-equilibrate and giving the intercumulus plagioclase a higher Sr isotope ratio than lower down. The olivines in the allivalite show steep stratigraphic gradients in major element composition but not in their Ni content. They also show substantial variation in major element composition laterally within the allivalite. It is suggested that these features are a consequence of postcumulus re-equilibration of olivine with migrating intercumulus magma.
APA, Harvard, Vancouver, ISO, and other styles
22

O'Reilly, Suzanne Y., D. Chen, W. L. Griffin, and C. G. Ryan. "Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry." Mineralogical Magazine 61, no. 405 (April 1997): 257–69. http://dx.doi.org/10.1180/minmag.1997.061.405.09.

Full text
Abstract:
AbstractThe proton microprobe has been used to determine contents of Ca, Ti, Ni, Mn and Zn in the olivine of 54 spinel lherzolite xenoliths from Australian and Chinese basalts. These data are compared with proton-probe data for Ni, Mn and Zn in the olivine of 180 garnet peridotite xenoliths from African and Siberian kimberlites. Fe, Mn, Ni and Zn contents are well-correlated; because the spinel lherzolite olivines have higher mean Fe contents than garnet peridotite olivines (average Fo89.6vs. Fo90–92) they also have lower Ni and higher Mn contents. Zn and Fe are well-correlated in garnet peridotite olivine, but in spinel peridotites this relationship is perturbed by partitioning of Zn into spinel. None of these elements shows significant correlation with temperature. Consistent differences in trace-element contents of olivines in the two suites is interpreted as reflecting the greater degree of depletion of Archean garnet peridotites as compared to Phanerozoic spinel lherzolites. Ca and Ti contents of spinel-peridotite olivine are well correlated with one another, and with temperature as determined by several types of geothermometer. However, Ca contents are poorly correlated with pressure as determined by the Ca-in-olivine barometer of Köhler and Brey (1990). This reflects the strong T-dependence of this barometer: the uncertainty in pressure (calculated by this method) which is produced by the ±50°C uncertainty expected of any geothermometer is ca ± 8 kbar, corresponding to the entire width of the spinel-lherzolite field at 900–1200°C.
APA, Harvard, Vancouver, ISO, and other styles
23

Hald, N., and R. Waagstein. "The dykes and sills of the Early Tertiary Faeroe Island basalt plateau." Transactions of the Royal Society of Edinburgh: Earth Sciences 82, no. 4 (1991): 373–88. http://dx.doi.org/10.1017/s0263593300004211.

Full text
Abstract:
ABSTRACTThe Early Tertiary basalt plateau of the Faeroe Islands is cut by dykes and sills. Chemical analyses show a two-fold division of the intrusive rocks into a group of low-TiO2 (0·73–1·93%), MORB-type tholeiitic basalts and a group of high-TiO2 (2·09–3·90%) tholeiitic basalts. The low-TiO2 group comprises about 15% picrites and olivine-phyric basalts and 85% plagioclase-phyric basalts, and shows a chemical range largely explicable in terms of low-pressure fractional crystallisation of olivine ± plagioclase ± clinopyroxene. The high-TiO2 group is strongly dominated by plagioclase-phyric basalts with only few olivine-phyric compositions. The chemical trends are less regular than those formed by the low-TiO2 basalt dykes and a number of subgroups may be identified on the basis of bulk rock chemistry. Dykes belonging to a specific subgroup were probably fed from the same magma chamber.Petrographically and chemically the dykes and sills are clearly related to the upper 2·5 km of the lava sequence. Field evidence suggests that some of the dykes were contemporaneous with the exposed lavas, while other dykes and the sills were intruded in response to a slight doming of the plateau during the final stages of volcanic activity. Our investigations demonstrate that high-TiO2 and low-TiO2 magmas were both emplaced until the very end of magmatism, with the latter being mainly concentrated in the northern part of the archipelago. We briefly sketch a possible relationship between the supposed NE-Atlantic mantle plume, the distribution of the various magma types and the location of the Early Tertiary continental splitting zone north of the islands.
APA, Harvard, Vancouver, ISO, and other styles
24

Okrugin, A. V. "Сhromite-Ulvöshpinel Series of Minerals from Alkaline Picrite-Basic Rocks of the North Siberian Platform and Their Oxythermobarometry." Zapiski RMO (Proceedings of the Russian Mineralogical Society) CLII, no. 6 (November 1, 2023): 80–94. http://dx.doi.org/10.31857/s0869605523060035.

Full text
Abstract:
The typochemical features of spinels forming continuous series from Al–Cr spinels to Ti-magnetite and ulvöshpinel from basic-ultrabasic rocks of the North Siberian platform are considered. Their comparative characteristics are carried out with similar minerals of alkaline basalts of oceanic islands and Lunar marine basalts on the modified 3D-diagram Al–Cr–(Fe3+ + 2Ti)–Fe2+ proposed by the author. The identification of a continuous isomorphous series from chromian spinel to ulvöspinel is one of the mineralogical indicators of a possible paragenetic relationship between picrite-basalt, alkaline olivine-basalt, alkaline-ultrabasic, and kimberlite formations in the North Siberian platform. Using the Ballhaus-Berry-Green olivine-chromespinel oxythermobarometer, it was shown that for the studied rocks of the North Siberian platform, the oxygen volatility lg fO2 is 2–4 orders of magnitude higher than that specified by the fayalite-magnetite-quartz (FMQ) buffer and corresponds to the oxidation state of platinum-bearing dunite-clinopyroxenite associations of rocks of the Ural-Alaskan and Aldan types.
APA, Harvard, Vancouver, ISO, and other styles
25

Anderson, Robert G., Jonah Resnick, James K. Russell, G. J. Woodsworth, Michael E. Villeneuve, and Nancy C. Grainger. "The Cheslatta Lake suite: Miocene mafic, alkaline magmatism in central British Columbia." Canadian Journal of Earth Sciences 38, no. 4 (April 1, 2001): 697–717. http://dx.doi.org/10.1139/e00-121.

Full text
Abstract:
New mapping, mineralogical, and geochemical studies help characterize late Tertiary primitive, alkaline, sodic basanite, alkali olivine basalt, transitional basalt, and diabase in the Nechako River, Whitesail Lake, and McLeod Lake map areas of central British Columbia and distinguish the Miocene Cheslatta Lake suite. The suite encompasses scattered erosional remnants of topographically distinct, columnar-jointed, olivine-phyric basalt and diabase volcanic necks, dykes, and associated lava flows north of the Anahim volcanic belt and west of the Pinchi Fault. Volcanic centres at Alasla Mountain and at Cutoff Creek, near Cheslatta Lake, are proposed as type areas. Olivine, plagioclase, and pyroxene phenocrysts, megacrysts, and (or) xenocrysts; common ultramafic xenoliths; and rare but significant plutonic and metamorphic xenoliths are characteristic. Basanite, transitional basalt, and alkali olivine basalt groundmass contain plagioclase, clinopyroxene, Fe-Ti oxides, feldspathoid, olivine, and apatite. The Cheslatta Lake suite is characterized by its alkaline character, olivine-rich (>10 wt.%) normative mineralogy, and silica-undersaturated nature (>1 wt.% normative nepheline; hypersthene-normative rocks are uncommon). Mg numbers vary between 72–42. Some samples encompass near-primitive mantle melt compositions. Cheslatta Lake suite rocks in the Nechako River area are distinguished from the underlying Eocene Endako and stratigraphically higher Neogene Chilcotin groups basaltic andesite lavas within the study area, and from the Chilcotin Group basalt in the type area south of the Anahim volcanic belt, by form, preserved thickness, phenocryst–xenocryst mineralogy, amygdule abundance, included xenoliths, isotopic age, and major and incompatible, high field strength, and rare-earth trace element contents.
APA, Harvard, Vancouver, ISO, and other styles
26

Zaccarini, Federica, Giorgio Garuti, Reinhard Moser, Constantinos Mavrogonatos, Panagiotis Voudouris, Adriano Pimentel, and Sabrina Nazzareni. "Mineral Chemistry of Olivine, Oxy-Spinel, and Clinopyroxene in Lavas and Xenoliths from the Canary, Azores, and Cape Verde Islands (Macaronesia, North Atlantic Ocean): New Data and Comparisons with the Literature." Minerals 14, no. 2 (February 1, 2024): 161. http://dx.doi.org/10.3390/min14020161.

Full text
Abstract:
An electron microprobe study was carried out on olivine, clinopyroxene, and oxy-spinel occurring in basalts and dunite xenoliths from the archipelagos of the Azores, the Canary Islands, and Cape Verde. By comparing our results with previously published data from the volcanic islands of Macaronesia, we confirmed the validity of the compositions of olivine, clinopyroxene, and oxy-spinel as geochemical tracers. The origin of olivine, i.e., crystallized in the lithospheric mantle or in volcanic rocks, was successfully discriminated. Olivine from Lanzarote dunite xenoliths, which represent fragments of the mantle transported to the surface by host magmas, exhibited higher Fo% values (Fo91.02 to Fo91.94) and a different distribution of minor elements Ca, Ni, and Mn (CaO up to 0.42 wt%, NiO 0.07–0.41 wt%, MnO 0.06–0.3 wt%) when compared with olivine occurring as phenocrysts in basaltic lavas from the Macaronesian islands. The highly variable forsterite contents (Fo75.1 to Fo94.4) in olivine from gabbro and peridotite xenoliths found across the islands of Macaronesia were attributed to fractional crystallization that started in a deep magma reservoir, suggesting that these xenoliths represent cumulate rocks and not mantle fragments. Alternatively, these xenoliths may have been affected by the interaction with metasomatic fluids. The composition of clinopyroxene phenocrysts was used to decipher formation conditions under extensional tectonics. Their composition suggests that the host lavas have an alkaline to calc-alkaline signature. Furthermore, clinopyroxene euhedral shapes and compositions suggest an origin by fractional crystallization in a closed magmatic system. The composition alone of oxy-spinel from Macaronesian basalts and xenoliths was not sufficient to draw conclusions about the geodynamic environment where they were formed. Nevertheless, the relationship between oxy-spinel and olivine crystallized in equilibrium was successfully used as oxybarometers and geothermometers. The oxy-spinel–olivine pairs show evidence that the basaltic lavas were crystallized from melts with higher oxygen fugacity and different cooling histories than those of the mantle xenoliths, as the latter crystallized and re-equilibrated much slower than the basalts.
APA, Harvard, Vancouver, ISO, and other styles
27

Cousens, Brian L., and Mary Lou Bevier. "Discerning asthenospheric, lithospheric, and crustal influences on the geochemistry of Quaternary basalts from the Iskut–Unuk rivers area, northwestern British Columbia." Canadian Journal of Earth Sciences 32, no. 9 (September 1, 1995): 1451–61. http://dx.doi.org/10.1139/e95-117.

Full text
Abstract:
Pleistocene- to Holocene-age basaltic rocks of the Iskut–Unuk rivers volcanic field, at the southern terminus of the Stikine Volcanic Belt in the northern Canadian Cordillera, provide information on the geochemical composition of the underlying mantle and processes that have modified parental magmas. Basaltic rocks from four of the six eruptive centres are moderately evolved (MgO = 5.7–6.8%) alkaline basalts with chondrite-normalized La/Sm = 1.6–1.8, 87Sr/86Sr = 0.70336–0.70361, εNd = +4.4 to +5.9, and 206Pb/204Pb = 19.07–19.22. The small range of isotopic compositions and incompatible element ratios imply a common "depleted" mantle source for the basalts, similar to the sources of enriched mid-ocean ridge basalts from northwest Pacific spreading centres or alkali olivine basalts from the western Yukon. Positive Ba and negative Nb anomalies that increase in size with increasing SiO2 and 87Sr/86Sr indicate that the basalts are contaminated by Mesozoic-age, arc-related, Stikine Terrane crust or lithospheric mantle through which the magmas passed. Lavas from a fifth volcanic centre, Cinder Mountain, have undergone greater amounts of fractional crystallization and are relatively enriched in incompatible elements, but are isotopically identical to least-contaminated Iskut–Unuk rivers basalts. Iskut–Unuk rivers lavas share many of the geochemical characteristics of volcanic rocks from other Stikine Belt and Anahim Belt centres, as well as alkali olivine basalts from the Fort Selkirk volcanic centres of the western Yukon.
APA, Harvard, Vancouver, ISO, and other styles
28

Lee, Cin-Ty, Chenguang Sun, Eytan Sharton-Bierig, Patrick Phelps, Jackson Borchardt, Boda Liu, Gelu Costin, and A. Dana Johnston. "Widespread phosphorous excess in olivine, rapid crystal growth, and implications for magma dynamics." Volcanica 5, no. 2 (November 18, 2022): 433–50. http://dx.doi.org/10.30909/vol.05.02.433450.

Full text
Abstract:
Trace element zoning is often used to unravel the crystallization history of phenocrysts in magmatic systems, but interpretation requires quantifying the relative importance of equilibrium versus disequilibrium. Published partition coefficients for phosphorous (P) in olivine vary by more than a factor of ten. After considering kinetic effects, a new equilibrium partition coefficient was extrapolated from a re-examination of natural and experimental systems, indicating that P partition coefficients in olivine are significantly over-estimated. These new partitioning constraints allow us to establish a theoretical P Equilibrium Fractionation Array (PEFA) for mid-ocean ridge basalts (MORBs), revealing that most olivines from MORBs have excess P (2–15 times PEFA) and are thus in disequilibrium. Using an independent case study of natural dendritic olivines, we show that such P enrichments can be explained by diffusion-limited incorporation of P during rapid crystal growth. If growth rate can be related to cooling, the rapid growth rates of olivines have implications for magma system dynamics, such as the size of magma bodies or where crystallization occurs within the body.
APA, Harvard, Vancouver, ISO, and other styles
29

RAY, DWIJESH, SAUMITRA MISRA, RANADIP BANERJEE, and DOMINIQUE WEIS. "Geochemical implications of gabbro from the slow-spreading Northern Central Indian Ocean Ridge, Indian Ocean." Geological Magazine 148, no. 3 (October 12, 2010): 404–22. http://dx.doi.org/10.1017/s001675681000083x.

Full text
Abstract:
AbstractGabbro samples (c. < 0.4 Ma old) dredged from close to the ‘Vityaz Megamullion’ on the slow-spreading Northern Central Indian Ridge (NCIR, 18–22 mm yr−1) include mostly olivine gabbro and Fe–Ti oxide gabbro. The cumulate olivine gabbro shows ophitic to subophitic texture with early formed plagioclase crystals in mutual contact with each other, and a narrow range of compositions of olivine (Fo80–81), clinopyroxene (magnesium number: 85–87) and plagioclase (An67–70). This olivine gabbro could be geochemically cogenetic with the evolved oxide gabbro. These gabbro samples are geochemically distinct from the CIR gabbro occurring along the Vema, Argo and Marie Celeste transform faults and can further be discriminated from the associated NCIR basalts by their clinopyroxene (augite in gabbro, and diopsidic in basalts) and olivine (gabbro: Fo80–81, basalts: Fo82–88) compositions. Our major oxide, trace element and REE geochemistry analyses suggest that the gabbro and the NCIR basalts are also not cogenetic and had experienced different trends of geochemical evolution. The clinopyroxenes of the present NCIR gabbros are geochemically similar to primitive melt that is in equilibrium with mantle peridotite, and do not show any poikilitic texture with resorbed plagioclase; these results negate the possibility of these gabbros being a pre-existing cumulate that has been brought up to the shallower oceanic crust and interacted with the NCIR basalt. The Sr, Pb and Nd isotopic data of the gabbro substantially differ from those of the NCIR basalts and suggest significant contamination of the depleted mantle source of the gabbro, most likely by the Indian Ocean pelagic sediments. The Pb-isotope data suggest that the proportion of pelagic sediment that mixed in the depleted mantle source of the NCIR gabbro is much higher than the level of contamination observed for the Indian Ocean MORBs.
APA, Harvard, Vancouver, ISO, and other styles
30

Demidovaa, S. I., M. O. Anosova, N. N. Kononkova, T. Ntaflos, and F. Brandstätter. "P-bearing olivines of lunar rocks: sources and localization in the lunar crust." Геохимия 64, no. 8 (September 3, 2019): 803–25. http://dx.doi.org/10.31857/s0016-7525648803-825.

Full text
Abstract:
Fragments of P-bearing olivine have been studied in lunar highland, mare and mingled meteorites and in «Apollo-14», «Luna-16, -20, -24» lunar samples. Olivine contains up to 0.5 wt.% P2O5 and has variable MG# number. It is associated with anorthite, pyroxene and accessory spinel group minerals, Ti and Zr oxides, phosphates, troilite and Fe-Ni metal. Three possible sources of P-bearing olivine were found in lunar material: 1) highland anorthositic-noritic-troctolitic rocks enriched in incompatible elements and thought to be related to high-Mg suite rocks: 2) late-stage products of mare basalts crystallization; 3) unusual olivine-orthopyroxene intergrowths either of meteoritic or lunar origin. Enrichment in incompatible elements may be resulted from both crystallization processes (source 2) and KREEP assimilation (sources 1 and 3). However following metasomatic processes can lead to some addition of phosphorus and other elements. The rarity of P-bearing olivines points either to the low abundance or local distribution of their sources in the lunar crust. Association with mare basalts specifies the highland-mare boundary. The presence of the evolved rocks in the studied breccias suggests possible connection of some sources with recently discovered granitic domes in Procellarum Ocean. That means the P-bearing sources are mainly localized on the visible side of the Moon.
APA, Harvard, Vancouver, ISO, and other styles
31

Sobolev, Alexander V., Albrecht W. Hofmann, Dmitry V. Kuzmin, Gregory M. Yaxley, Nicholas T. Arndt, Sun-Lin Chung, Leonid V. Danyushevsky, et al. "The Amount of Recycled Crust in Sources of Mantle-Derived Melts." Science 316, no. 5823 (April 20, 2007): 412–17. http://dx.doi.org/10.1126/science.1138113.

Full text
Abstract:
Plate tectonic processes introduce basaltic crust (as eclogite) into the peridotitic mantle. The proportions of these two sources in mantle melts are poorly understood. Silica-rich melts formed from eclogite react with peridotite, converting it to olivine-free pyroxenite. Partial melts of this hybrid pyroxenite are higher in nickel and silicon but poorer in manganese, calcium, and magnesium than melts of peridotite. Olivine phenocrysts' compositions record these differences and were used to quantify the contributions of pyroxenite-derived melts in mid-ocean ridge basalts (10 to 30%), ocean island and continental basalts (many >60%), and komatiites (20 to 30%). These results imply involvement of 2 to 20% (up to 28%) of recycled crust in mantle melting.
APA, Harvard, Vancouver, ISO, and other styles
32

Russell, J. K., G. T. Nixon, and T. H. Pearce. "Petrographic constraints on modelling the crystallization of basalt magma, Cow Lakes, southeast Oregon." Canadian Journal of Earth Sciences 25, no. 4 (April 1, 1988): 486–94. http://dx.doi.org/10.1139/e88-049.

Full text
Abstract:
Thermodynamic calculations and models of olivine zoning profiles are used to estimate the crystallization history of a basaltic magma from Cow Lakes, southeast Oregon. The lava is an alkali olivine basalt containing olivine and plagioclase phenocrysts and microphenocrysts. The geometry and range of chemical zoning in the olivine phenocrysts have been delineated by laser interference microscopy and electron microprobe analysis. The olivine phenocrysts are characterized by homogeneous cores and rims that exhibit strong, continuous, normal zoning (ΔFo = 7–19 mol%).Thermodynamic modelling has been used to estimate the magmatic crystallization path of the Cow Lakes basalt on the basis of the phenocryst assemblage and mineral compositions. The calculated crystallization path begins at 1290 °C and 0.5 GPa ([Formula: see text]) with equilibrium crystallization of the olivine to 1265 °C. Plagioclase appears at 1225 °C, followed by clinopyroxene at 1205 °C. Intratelluric crystallization was terminated prior to crystallization of the clinopyroxene, which is seen in the groundmass but not as phenocrysts.The thermodynamic modelling provides a means to numerically simulate the zoning patterns in olivine defined by the laser interference microscopy. Simulated and observed zoning patterns both have compositionally flat cores and strongly zoned rims. The extent of zoning observed in the olivine phenocrysts is, however, approximately twice the predicted extent, and it appears that a significant proportion of olivine phenocrysts crystallized during ascent or upon eruption.
APA, Harvard, Vancouver, ISO, and other styles
33

Kislov, Evgeniy V., Anna V. Aseeva, Vladislav V. Vanteev, Anton Yurievich Sinyov, and Olga A. Eliseeva. "Naryn-Gol Creek Sapphire Placer Deposit, Buryatia, Russia." Minerals 12, no. 5 (April 20, 2022): 509. http://dx.doi.org/10.3390/min12050509.

Full text
Abstract:
A new gem corundum occurrence has been discovered in the Naryn-Gol Creek placer of the Dzhida volcanic field (Russia). In this placer deposit, sapphire associates with large crystals of garnet, spinel, augite, olivine, enstatite, ilmenite, Ti-magnetite, and alkali feldspar. Such a combination of minerals is typical for the placer deposits associated with alkali basalts widely distributed in Southeastern Asia and Australia. We have also found sapphire crystals in phonotephrites of the nearby Cenozoic alkali-basalt paleovolcano Barun Khobol Pravyi, and in basalt sample and trachybasalt from the valley flood basalts. The chemical composition of sapphire is generally typical for ‘basalt’ corundum: it is rich in Fe, and depleted in Ti and Cr. The δ18O SMOW values of corundum and related megacrysts range from 4.6 to 6.8 ‰, thus corresponding to the isotopic signature of igneous rocks. Etched and corroded surfaces of sapphire and other megacrysts indicate that they are in non-equilibrium with their host alkali basalts. Volatile components, CO2 in particular, played a significant role during sapphire formation as gas inclusions reveal.
APA, Harvard, Vancouver, ISO, and other styles
34

Wu, Yangming, Feng Guo, Xuan-Ce Wang, Bo Zhang, Xiaobing Zhang, Melesse Alemayehu, and Guoqing Wang. "Generation of Late Cretaceous Ji’an basalts through asthenosphere-slab interaction in South China." GSA Bulletin 132, no. 5-6 (May 1, 2020): 1316–32. http://dx.doi.org/10.1130/b35196.1.

Full text
Abstract:
Abstract Recycled crustal components have been widely identified in the source of continental basalts with geochemical features similar to oceanic island basalts (OIBs). However, the mechanism of how these recycled materials are involved remains highly debatable. Here we conduct comprehensive geochemical analyses (including whole-rock, olivine, and melt inclusion) and numerical modeling on Late Cretaceous Ji’an basalts from South China interior, aiming to investigate the possible role of recycled crustal components in basalt petrogenesis driven by the subducted paleo-Pacific oceanic plate. The Ji’an basalts show geochemical characteristics akin to OIBs and have depleted asthenospheric mantle-like Sr-Nd-Pb-Hf isotopic compositions with moderately radiogenic Os. Their olivine-hosted melt inclusions have low H2O and highly negative δD values and olivine phenocrysts are mainly characterized by depletion of 18O with δ18O values lowering to 3.9‰. These features are consistent with positive Sr and Eu anomalies in some whole-rock samples. The combined geochemical data suggest that the primary magmas were derived from an asthenospheric mantle enriched by melts from an altered gabbroic oceanic crust, which had experienced intensive dehydration. Further numerical modeling shows that melting of the dehydrated oceanic crust can occur along the torn flank of the subducting lithosphere, in the case that the slab is strongly thinned and fractured. The low δ18O preserved in olivine and the estimated slab age (&lt;300 Ma) from the radiogenic whole-rock Os and Pb compositions also require the involvement of a recently recycled slab, probably represented by the subducted paleo-Pacific oceanic plate. Rollback of the subducting paleo-Pacific slab might create a slab window, in which melt from the torn/fractured slab reacted with the upwelling asthenosphere to form an enriched mantle source for the Ji’an basalts and similar counterparts.
APA, Harvard, Vancouver, ISO, and other styles
35

Harnois, Luc, and Ross K. Stevenson. "Major and trace elements geochemistry of basalts and trachyphonolites from Huahine Island, Society archipelago (French Polynesia)." Bulletin de la Société Géologique de France 177, no. 4 (July 1, 2006): 179–90. http://dx.doi.org/10.2113/gssgfbull.177.4.179.

Full text
Abstract:
Abstract Basalts and trachyphonolites from Huahine Island (Society archipelago) have been analyzed for major elements and several trace elements (including rare earth elements). Eight basalts from the nearby Bora Bora Island were also analyzed for comparison. Ni-MgO, Ni-Ba, and Ni-Rb modeling indicates that the abundances of these elements in Huahine basalts cannot be entirely the result of crystallization and/or accumulation of olivine and reflect a variability already present in a heterogeneous source, a conclusion supported by Pb and Ce data. The chemical variability of Huahine basalts, with respect to several trace elements, can be explained by contamination of the differentiating basaltic melt by a sedimentary reservoir. The same trace element data also suggest that Huahine trachyphonolites can be derived from basaltic magma by assimilation-fractional crystallization or from partial melting of a hawaiite.
APA, Harvard, Vancouver, ISO, and other styles
36

MOMME, PETER, and J. RICHARD WILSON. "The Kraemer Island macrodyke, East Greenland: solidification of a flood basalt conduit." Geological Magazine 139, no. 2 (March 2002): 171–90. http://dx.doi.org/10.1017/s0016756801006070.

Full text
Abstract:
The Kraemer Island macrodyke that is exclusively exposed on Kraemer Island about 7 km west of the Skaergaard Intrusion belongs to a regional dyke swarm termed the ‘Skaergaard-like dykes’ (or FG-1 dykes). Weakly modally layered olivine gabbros dominate the exposed parts of the intrusion that has a width of 650 m to 1000 m. Plagioclase (core An68±2) and Ca-rich pyroxene (core Mg no. 79±1) grains are normally zoned, whereas olivine grains (Fo50–65) are homogeneous. Calculated mineral–magma equilibria, based on experimentally determined Mg–Fe magma–olivine and magma–clinopyroxene partition coefficients, suggest that the observed olivine and clinopyroxene compositions in the gabbros cannot have formed from a common parental magma. The unzoned nature of olivine grains and their iron-rich com-positions relative to clinopyroxene suggest post-cumulus Mg–Fe exchange between olivine and interstitial melt. A gabbroic pegmatite is developed in the centre of the intrusion along its entire exposed 5 km strike length. Here, mineral zonation is limited and compositions are similar to rims of cumulus minerals in the enveloping olivine gabbros. The pegmatite could therefore represent interstitial melt mobilized from gabbroic cumulates that later accumulated and crystallized at its present stratigraphic location. Cumulus olivines in the gabbros are close to equilibrium with Ca-rich pyroxene in the pegmatite. This is interpreted as reflecting interstitial melt mobility during the late stages of solidification of the macrodyke. Chilled margins are well preserved at the intrusion margins and are rich in Fe (14–15.3% FeOTOT), Ti (3–3.3% TiO2) and light rare-earth elements ([La/Sm]N = 1.2–1.3), similar to magmas well represented in the overlying sequence of contemporaneous High-Ti Series flood basalts. It is therefore likely that extensive wall-rock melting adjacent to the macrodyke reflects continuous feeding of the overlying flood basalts through the Kraemer Island macrodyke.
APA, Harvard, Vancouver, ISO, and other styles
37

Arian, Mohammad Ali, Mostafa Baratian, and Abdollah Yazdi. "PETROLOGY AND PETROGENESIS OF SIAH KOOH VOLCANIC ROCKS IN THE EASTERN ALBORZ." Geosaberes 11 (May 18, 2020): 349. http://dx.doi.org/10.26895/geosaberes.v11i0.980.

Full text
Abstract:
Siah Kooh area is northeast of Shahroud city and is located in eastern Alborz. The lithologic composition of the volcanic rocks in the area consists of andesite, basalt, trachyandesite and quartztrachite. Plagioclase, olivine, and augite phenocrysts as the main minerals and apatite and magnetite, sericite, chlorite and apacite minerals are sub-minerals of volcanic rocks that are located in the glass slabs. Quartz is also found in fine-grained rock pulp and sometimes in phenocrysts. The dominant texture in these rocks are porphyritic, amygdaloidal and microlithic. According to geochemical studies of basaltic magmatic volcanic rocks, calc-alkaline potassium is high and negative Nb anomaly, Ce / Pb ratio and enrichment of rocks of light rare earth elements (LRRE) and high LREE / HREE ratio indicate contamination. The crust is an indicator of the presence of the garnet phase in the mantle source. On the other hand, the similarity of their trace elements to Oceanic Basalts (OIB) is a clear evidence of their relevance to this environment. Early basaltic magma originated from a mantle with a garnet-lherzolite composition with a partial melting rate of 15–12%. FeOtotal values in basalts and other structural evidence indicate the formation of these rocks in the early stages of intra-continental rifting which can be attributed to the pressure drop caused by intra-continental tidal phases associated with deep faults during the orogenic phases. Alpine attributed to Eocene time.
APA, Harvard, Vancouver, ISO, and other styles
38

Stolz, A. J. "Fluid activity in the lower crust and upper mantle: mineralogical evidence bearing on the origin of amphibole and scapolite in ultramafic and mafic granulite xenoliths." Mineralogical Magazine 51, no. 363 (December 1987): 719–32. http://dx.doi.org/10.1180/minmag.1987.051.363.13.

Full text
Abstract:
AbstractXenoliths in an olivine nephelinite from the McBride Province, North Queensland, include Cr-diopside lherzolites, spinel and garnet websterites, felsic, 2-pyroxene and garnet granulites, and hornblendites. The spinel and garnet websterites are interpreted as crystal segregations from olivine basalt or alkali olivine basalt magma at ∼ 12 kbar followed by isobaric cooling (to approximately 900–1000°C) and subsolidus reequilibration. Garnet and 2-pyroxene granulites are mineralogically and texturally distinct and are considered to represent relatively large degrees of crystallization of basaltic magmas at comparable or slightly lower pressures (8–12 kbar). Mafic and ultramafic xenoliths have been modified to varying degrees following the relatively recent influx of a H2O- and CO2-bearing fluid. Variable amounts of amphibole and mica developed in response to the introduced fluid and it is argued that some hornblendites are the end-products of this process acting on spinel websterites. Felsic and 2-pyroxene granulite xenoliths display only minor evidence of increased PH2O. Mineralogical and textural evidence indicates high-sulphur Ca-rich scapolite in several garnet granulites did not form in response to the increased fluid activities. It is proposed the scapolite was a primary cumulate phase precipitated from alkali basaltic magma under elevated fo2 and fso2 conditions.
APA, Harvard, Vancouver, ISO, and other styles
39

Huo, Yonglin, Guilu Qin, Jichuan Huo, Xingquan Zhang, and Yongchang Zhu. "Crystallization Kinetics of Basalt Glass-Ceramics Produced from Olivine Basalt Rock." Crystals 12, no. 7 (June 24, 2022): 899. http://dx.doi.org/10.3390/cryst12070899.

Full text
Abstract:
Glass-ceramics acquired from the melting of rocks have a vast application marketplace. In this study, an olivine basalt rock from Zhangjiakou in China was selected as a raw material to prepare basalt glass-ceramics, and the crystallization kinetics of olivine basalt glass was investigated using differential thermal analysis. Polarizing microscope and X-ray diffraction (XRD) analysis results revealed that the main mineral compositions of olivine basalt are plagioclase, pyroxene, olivine, and iron oxide(s). Three crystallization peaks were observed in the DSC curve of the olivine basalt glass. The Avrami exponent (n), apparent activation energies for the crystallization, and glass transition of basalt glass were determined using the Owaza method based on data obtained from isothermal measurements. The crystallization activation energies (E) of the three crystallization peaks of olivine basalt glass were 314.20 kJ/mol, 1232.49 kJ/mol, and 696.89 kJ/mol, respectively. In addition to this, the crystal growth index indicated that the crystallization mode in the olivine basalt glass was surface crystallization. The crystallization phases and microstructure of the olivine basalt glass heated at 860 °C, 1100 °C, and 1180 °C were also studied. The conclusions obtained offer some useful information for the preparation of basalt glass-ceramics from olivine basalt rocks.
APA, Harvard, Vancouver, ISO, and other styles
40

Panter, Kurt S., Jenna Reindel, and John L. Smellie. "Chapter 5.3b Mount Early and Sheridan Bluff: petrology." Geological Society, London, Memoirs 55, no. 1 (2021): 499–514. http://dx.doi.org/10.1144/m55-2019-2.

Full text
Abstract:
AbstractThis study discusses the petrological and geochemical features of two monogenetic Miocene volcanoes, Mount Early and Sheridan Bluff, which are the above-ice expressions of Earth's southernmost volcanic field located atc.87° S on the East Antarctic Craton. Their geochemistry is compared to basalts from the West Antarctic Rift System to test affiliation and resolve mantle sources and cause of melting beneath East Antarctica. Basaltic lavas and dykes are olivine-phyric and comprise alkaline (hawaiite and mugearite) and subalkaline (tholeiite) types. Trace element abundances and ratios (e.g. La/Yb, Nb/Y, Zr/Y) of alkaline compositions resemble basalts from the West Antarctic rift and ocean islands (OIB), while tholeiites are relatively depleted and approach the concentrations levels of enriched mid-ocean ridge basalt (E-MORB). The magmas evolved by fractional crystallization with contamination by crust; however, neither process can adequately explain the contemporaneous eruption of hawaiite and tholeiite at Sheridan Bluff. Our preferred scenario is that primary magmas of each type were produced by different degrees of partial melting from a compositionally similar mantle source. The nearly simultaneous generation of lower degrees of melting to produce alkaline types and higher degrees of melting forming tholeiite was most likely to have been facilitated by the detachment and dehydration of metasomatized mantle lithosphere.
APA, Harvard, Vancouver, ISO, and other styles
41

Cameron, B. I., and G. K. Muecke. "Permian alkaline basalts associated with formation of the Sverdrup Basin, Canadian Arctic." Canadian Journal of Earth Sciences 33, no. 10 (October 1, 1996): 1462–73. http://dx.doi.org/10.1139/e96-110.

Full text
Abstract:
Permian basaltic rocks of the Esayoo Formation attended lithospheric extension that formed the Sverdrup Basin in the Canadian Arctic. North of Greely Fiord, northern Ellesmere Island, subaerial flows of the Esayoo Formation attain a maximum thickness of 300 m, but thin rapidly westward, where pillow lavas, epiclastic basalt conglomerate, and associated marine sedimentary rocks indicate proximity to an ancient shoreline. Element-mobility studies demonstrate that modifications of many major elements and some of the large ion lithophile elements accompanied low-grade burial metamorphism. Discriminant diagrams involving only the relatively immobile trace elements reveal within-plate alkaline to transitional basalt affinities. Trace element data (mean Th/Ta = 1.7) do not register significant lower crustal contamination. Models utilizing rare earth clement ratios and Ni–Cr relations suggest that variable degrees of partial melting of an enriched garnet lherzolite and minor combined olivine–clinopyroxene fractional crystallization can account for the described compositional diversity. Nb–Ta peaks (mean La/Nb = 0.99) in spider diagrams identical to ocean-island basalts characterize magmas derived from the asthenospheric mantle with minimal subcontinental lithospheric contribution and continental contamination. Small rates of continental extension during the Carboniferous generated small-volume alkaline melts that passed unadulterated through the subcontinental lithosphere and crust during ascent from their asthenospheric mantle source.
APA, Harvard, Vancouver, ISO, and other styles
42

Bédard, Jean H., and Ross Stevenson. "The Caldwell Group lavas of southern Quebec: MORB-like tholeiites associated with the opening of Iapetus Ocean." Canadian Journal of Earth Sciences 36, no. 6 (June 21, 1999): 999–1019. http://dx.doi.org/10.1139/e99-018.

Full text
Abstract:
The Caldwell Group belongs to the Internal Nappe Domain of the Humber Zone and consists of basaltic lavas, quartzo-feldspathic sandstones, and mudslates. The lavas are clinopyroxene ± plagioclase ± olivine-phyric tholeiites, and are typically altered to epidote-, chlorite-, carbonate-, and (or) hematite-rich secondary assemblages. In most cases, the high field strength elements do not appear to have been perturbed by the alteration, and preserve magmatic signatures. Most Caldwell basalts exhibit coupled major and trace element variations compatible with low- to medium-pressure ([Formula: see text] 10 kbar, where 1 kbar = 100 MPa) fractional crystallization. Paleotectonic discriminants imply an ocean-floor or normal mid-ocean ridge basalt (N-MORB) affinity. Most basalts have flat N-MORB-normalized profiles, except for the highly incompatible elements (Ba, Th, Nb), which show slight relative enrichment. Melting models suggest that most of these lavas formed by about 20% melting from a mantle slightly less depleted than fertile MORB mantle (FMM). Subpopulations of Caldwell lavas (types 1b and 1a) are characterized by slightly higher incompatible element abundances, with similarly shaped N-MORB-normalized profiles, and can be modeled by slightly smaller degrees of melting (6-15%) of a similar source mantle. The Caldwell basalts erupted in the final stages of Iapetus rifting, when the predominant mantle source involved in melting was the depleted asthenosphere. Isotopic data preclude significant crustal contamination, yet the basalts are associated with sandstones, implying that a mature continental crust was present nearby. Nd isotopic data on the sandstones suggest erosion of an ancient Archean-Proterozoic composite terrane.
APA, Harvard, Vancouver, ISO, and other styles
43

Emeleus, C. H. "The Tertiary lavas and sediments of northwest Rhum, Inner Hebrides." Geological Magazine 122, no. 5 (September 1985): 419–37. http://dx.doi.org/10.1017/s0016756800035342.

Full text
Abstract:
AbstractSeveral small outliers of Tertiary lavas and sediments rest with strong unconformity on a buried landscape eroded from Torridonian sediments and Tertiary granophyre. Erosion continued during the period of sediment and lava accumulation. Four formations are recognized; these are, in order of increasing age, the Orval Formation (hawaiite and basaltic hawaiite lavas), the Guirdil Formation (icelandite lavas, interbedded conglomerates), the Upper Fionchra Formation (tholeiitic basaltic andesite lavas, hyaloclastite deposits, basal conglomerate) and the Lower Fionchra Formation (alkali and transitional basalt, basaltic hawaiite and hawaiite lava flows, basal conglomerate); each is separated by an erosional interval. Clasts in the conglomerates reveal a history of erosion of a terrain exposing gneisses, Torridonian sediments, igneous rocks derived from the Rhum Tertiary Central Complex (including allivalites), and Tertiary lavas of local origin but also including, in the oldest conglomerates, tholeiitic basalts not now preserved on or near Rhum. Prior to and during lava and sediment accumulation, erosion on Rhum had cut down to a level similar to that of the present day, although not to the extent that high-grade thermally altered rocks, which are a marked feature of the Central Complex, were being eroded in any quantity. A sequence of east–west trending valleys, possibly initiated on the line of the earlier Main Ring Fault, drained the area of the Central Complex which then, as now, must have been high ground. Small lakes occasionally formed in the valleys allowing the accumulation of fine-grained sediment with plant remains, and promoting the formation of hyaloclastite deposits when buried by later flows. No source for any of the lava formations is preserved on Rhum; they are thought to have come from feeders north of Rhum, possibly near Canna, and to have ponded against the hills and valleys near and in the Central Complex.The oldest tholeiitic lavas, not now found in situ, were followed by alkali and transitional flows compositionally similar to the Skye Main Lava Series but characteristically feldsparphyric; the most mafic also contain phenocrysts of magnesian olivine (with included Cr-Al-rich spinels) and aluminous spinel. Both the early alkalic/transitional basalts and the youngest hawaiites and basaltic hawaiites equilibrated at pressures < 9 kb; the tholeiitic basaltic andesites and icelandites equilibrated at relatively shallows depths.Apart from a few N–S to NW–SE-trending basalt dykes, the lava formations represent the youngest Tertiary igneous event on Rhum.
APA, Harvard, Vancouver, ISO, and other styles
44

Berlie, Getie, Dereje Dereje, and Mohammed Assen. "Petrology and geochemistry of bimodal volcanic rocks of Southern Lake Hayk area, northwestern Ethiopian plateau: implication for their petrogenesis." SINET: Ethiopian Journal of Science 45, no. 2 (August 30, 2022): 143–64. http://dx.doi.org/10.4314/sinet.v45i2.3.

Full text
Abstract:
This study presents and integrates field, petrological, and whole-rock geochemical (major and trace elements) data of the volcanic rocks from the Lake Hayk area to understand their petrogenesis. The study area's major lithological components include lower and upper basalt, rhyolitic lava, rhyolitic tuff, rhyolitic ignimbrite, and unwelded tuff. Petrographic analysis suggests that felsic rocks are dominated by quartz and well-developed sanidine (K-feldspar) phenocrysts with glassy groundmass, whereas mafic volcanic products are characterized by aphyric to porphyritic textures with the olivine and plagioclase dominant phenocryst. The area constitutes bimodal composition of flood basaltic to rhyolitic rock with scarce intermediate composition. Basalts have low Rb/Nb = 0.5-0.58, La/Nb = 0.88-1.06 and high TiO2 = 2.08-3.04, basaltic andecite have higher Rb/Nb =2.7, La/Nb = 1.81 and low TiO2= 1.96 and rhyolite Rb/Nb = 0.97-1.69, La/Nb = 0.51-1.08 and lower TiO2 = 0.41- 0.71.The positive Ba and negative K anomalies testify amphibole mantle source. The basalts are characterized by low CaO/Al2O3 ratios (0.71–0.97) and relatively less fractionated and flat hree patterns with (TbN/YbN = 1.75-2.33) chondritic values. This suggests a mantle source mostly containing spinel rather than garnet. Rhyolites are characterized by a steep negative correlation in bivariate plots of MgO, Fe2O3, TiO, and CaO against SiO2 and positive anomaly of Ta with slight Nb trough. This suggests that Fractional Crystallization is the major process for the genesis of rhyolitic rocks, rather than crustal contribution, partial melting, and assimilation, producing rhyolitic rocks.
APA, Harvard, Vancouver, ISO, and other styles
45

Dostal, J., G. D. Jackson, and A. Galley. "Geochemistry of Neohelikian Nauyat plateau basalts, Borden rift basin, northwestern Baffin Island, Canada." Canadian Journal of Earth Sciences 26, no. 11 (November 1, 1989): 2214–23. http://dx.doi.org/10.1139/e89-188.

Full text
Abstract:
Subaerial basalt flows of the Neohelikian Nauyat Formation from northwestern Baffin Island, Northwest Territories, constitute an approximately 360 m thick unit that overlies an Archean–Aphebian metamorphic basement. The lavas have undergone a low-grade regional metamorphism that affected the abundances of Na, K, and related trace elements. The basalts are continental tholeiites possessing some characteristics of mid-ocean-ridge basalts. They underwent fractional crystallization of clinopyroxene, plagioclase, and olivine. Mantle-normalized patterns show an enrichment of the lithophile elements, including Th and light rare-earth elements, relative to the high-field-strength elements and a distinct depletion of Nb and Sr. The parental magma of the basalts was derived either from oceanic-type mantle and subsequently affected by lower crustal contamination or from the subcontinental lithospheric mantle. The Nauyat basalts are probably related to the initial stage of the opening of the Poseidon (Proto-Arctic) Ocean.
APA, Harvard, Vancouver, ISO, and other styles
46

Kitchen, D. E. "The partial melting of basalt and its enclosed mineral-filled cavities at Scawt Hill, Co. Antrim." Mineralogical Magazine 49, no. 354 (December 1985): 655–62. http://dx.doi.org/10.1180/minmag.1985.049.354.04.

Full text
Abstract:
AbstractPartially melted basalts enclosing amygdales which have been completely melted formed at Scawt Hill adjacent to a Tertiary dolerite plug. Melting of the basalts commenced in a clay-rich mesostasis to produce a feldspathic liquid which then crystallized to an assemblage of dendritic olivine, skeletal hypersthene, opaque oxide and Mg-hercynite in a microcrystalline plagioclase matrix. An original mineral assemblage of zeolite, calcite, and saponite-nontronite in the amygdales melted and quenched to a brown glass now containing complexly zoned pyroxenes with plagioclase and opaque oxide. Melting commenced between 700–800°C, reaching a maximum temperature of 1168°C, and was followed by rapid cooling. The assimilation of remelted basalt may alter the course of crystallization of contaminated magmas.
APA, Harvard, Vancouver, ISO, and other styles
47

Ngounouno Yamgouot, Fadimatou, Isaac Bertrand Gbambie Mbowou, Ismaïla Ngounouno, Azizi Abdoul Youpoungam, Isaac Daama, and Bernard Déruelle. "Insight into geochemistry of basaltic rocks from Mt Cameroon and characterization of the mantle source." International Journal of Advanced Geosciences 6, no. 2 (June 27, 2018): 151. http://dx.doi.org/10.14419/ijag.v6i1.10738.

Full text
Abstract:
Alkaline volcanic activities occurred in the Mt Cameroon at the ocean-continent boundary of the Cameroon Line. It is characterized by a volcanic association of alkali basalts and hawaiites extruded during the late Miocene to Recent times. The major and trace element geochemistry of the Mt Cameroon are consistent with the fractional crystallization of olivine ± clinopyroxene ± plagioclase (± amphibole). Petrographical and mineralogical study reveals the presence of xenocryts (olivine, clinopyroxene and spinel) in Mt Cameroon basalts. Their composition are similar to xenoliths and rocks crystals and they come from cumulates formed in the upper lithospheric mantle. Mt Cameroon magmas were generated near the boundary of garnet and spinel mantle stability domains (60–75 km depth), at the base of the lithospheric mantle that the compositions of the Mt Cameroon magmas are consistent with derivation from a infralithospheric mantle that was metasomatised by carbonatite melts. Basaltic volcanism in the Mt Cameroon occurred probably as a result of minor plume activity coupled with lithospheric extension.
APA, Harvard, Vancouver, ISO, and other styles
48

Intasopa, Suporn, Todd Dunn, and Richard StJ Lambert. "Geochemistry of Cenozoic basaltic and silicic magmas in the central portion of the Loei–Phetchabun volcanic belt, Lop Buri, Thailand." Canadian Journal of Earth Sciences 32, no. 4 (April 1, 1995): 393–409. http://dx.doi.org/10.1139/e95-034.

Full text
Abstract:
Cenozoic volcanic rocks outcrop in the central portion of the Loei–Phetchabun volcanic belt in central Thailand in the Lop Buri area. The volcanic rocks range in composition from basalt to high-silica rhyolite. In general, the volcanic rocks decrease in age from south to north. The oldest rocks studied are 55–57 Ma rhyolites that are isotopically and geochemically distinct from younger (13–24 Ma) rhyolites that occur farther north. Intermediate rocks (andesite and dacite) are less voluminous than rhyolite. Basalt occurs in the central and northern parts of the area and ranges in composition from olivine tholeiites to nepheline normative alkali basalts. The isotopic, major, and trace element compositions of the andesites, dacites, and younger rhyolites are consistent with an origin for these rocks by variable degrees of partial melting of metabasaltic crustal rocks, themselves derived from a depleted mantle source at approximately 530 ± 100 Ma. The apparent extent of partial melting of metabasalt increases from rhyolite to andesite. The isotopic and trace element systematics of the basalts are consistent with a refertilized depleted mantle source with characteristics of a mixture of normal mid-ocean ridge basalt source mantle and enriched mantle II type mantle.
APA, Harvard, Vancouver, ISO, and other styles
49

Wilson, Matthew Coffie, Geoffrey Chiri Amedjoe, and Simon Kafui Yao Gawu. "PETROGRAPHIC AND GEOCHEMICAL CONSTRAINTS ON TECTONIC SETTINGS OF THE BIRIMIAN SUPERGROUP VOLCANIC ROCKS, EVIDENCE FROM NEW DROBO ENVIRONS SOUTH OF JAMAN DISTRICT IN THE BONO REGION OF GHANA." Malaysian Journal of Geosciences 6, no. 2 (2022): 73–83. http://dx.doi.org/10.26480/mjg.02.2022.73.83.

Full text
Abstract:
The petrographic and geochemical studies of Birimian Supergroup meta-volcanic rocks in the New Drobo environs in Ghana help to decipher the tectonic settings at the study area. Twenty thin sections were prepared with rock samples from the field at the KNUST Geological Engineering Laboratory and petrographic microscope used to determine the different types of minerals in the samples and also the rock type. Whole rock geochemical analysis was done, using both X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometer methods at Australian Laboratory Services in Canada. The main volcanic rock types at the study area comprise of basalt, andesite, dacite and rhyo-dacite with porphyritic mineralogical composition such as plagioclase feldspar, augite, olivine, hornblende, biotite, quartz, rutile, chlorite. The average concentrations of Zr < 150 ppm, TiO2 < 1.5 % and P2O5 < 0.25 % and the ratios of Nb/Y < 1.2 and Y/Nb > 1 reveal the magma type in the study area to be continental tholeiitic basalt in nature. The mafic volcanic basalt is from a plate margin tectonic setting and thus of normal MORB and volcanic arc basalts. Also, the low basaltic values of the ratios of Ti/Y and Nb/Y confirm the tectonic setting of the area to be of plate margin. Zr is highly incompatible with respect to Ti and renders the ratio of Zr/TiO2 to be influenced by partial melting and causes heterogeneity in the mantle. The heterogeneity in the source of the mantle can be confirmed with the high value of the ratio of Zr/Y.
APA, Harvard, Vancouver, ISO, and other styles
50

Khubunaya, S. A., V. S. Khubunaya, and A. P. Maksimov. "Mixing of High Alumina and Magnesium Magmas at Klyuchevskoy Volcano (Kamchatka)." Вулканология и сейсмология 17, no. 1 (January 1, 2023): 21–31. http://dx.doi.org/10.31857/s020303062270002x.

Full text
Abstract:
Geochemical features of impurity elements and the analysis of mineral composition during crystallization allowed us to reveal traces of mixing of moderately potassic magnesium and high alumina magmas at Klyuchevskoy Volcano. Mineralogical features and distribution of Mg, Fe, Cr, Ni, Co, Al in olivines and clinopyroxenes in magnesium basalts and high alumina andesite basalts from the 1938, 1945, 1966 and 1994 flank and summit eruptions at Klyuchevskoy Volcano give evidence for injection of magnesium basaltic melts into high alumina magma.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography