Academic literature on the topic 'Basal radial glia cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Basal radial glia cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Basal radial glia cell"
Pereida-Jaramillo, Elizabeth, Gabriela B. Gómez-González, Angeles Edith Espino-Saldaña, and Ataúlfo Martínez-Torres. "Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development." International Journal of Molecular Sciences 22, no. 24 (December 16, 2021): 13509. http://dx.doi.org/10.3390/ijms222413509.
Full textLi, Zhen, William A. Tyler, Ella Zeldich, Gabriel Santpere Baró, Mayumi Okamoto, Tianliuyun Gao, Mingfeng Li, Nenad Sestan, and Tarik F. Haydar. "Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex." Science Advances 6, no. 45 (November 2020): eabd2068. http://dx.doi.org/10.1126/sciadv.abd2068.
Full textMoore, Rachel, and Paula Alexandre. "Delta-Notch Signaling: The Long and The Short of a Neuron’s Influence on Progenitor Fates." Journal of Developmental Biology 8, no. 2 (March 26, 2020): 8. http://dx.doi.org/10.3390/jdb8020008.
Full textKullmann, Jan A., Sophie Meyer, Fabrizia Pipicelli, Christina Kyrousi, Felix Schneider, Nora Bartels, Silvia Cappello, and Marco B. Rust. "Profilin1-Dependent F-Actin Assembly Controls Division of Apical Radial Glia and Neocortex Development." Cerebral Cortex 30, no. 6 (December 20, 2019): 3467–82. http://dx.doi.org/10.1093/cercor/bhz321.
Full textPenisson, Maxime, Mingyue Jin, Shengming Wang, Shinji Hirotsune, Fiona Francis, and Richard Belvindrah. "Lis1 mutation prevents basal radial glia-like cell production in the mouse." Human Molecular Genetics 31, no. 6 (October 12, 2021): 942–57. http://dx.doi.org/10.1093/hmg/ddab295.
Full textZhang, Sanguo, Huanhuan Joyce Wang, Jia Li, Xiao-Ling Hu, and Qin Shen. "Radial Glial Cell-Derived VCAM1 Regulates Cortical Angiogenesis Through Distinct Enrichments in the Proximal and Distal Radial Processes." Cerebral Cortex 30, no. 6 (January 6, 2020): 3717–30. http://dx.doi.org/10.1093/cercor/bhz337.
Full textShohayeb, Belal, Uda Ho, Yvonne Y. Yeap, Robert G. Parton, S. Sean Millard, Zhiheng Xu, Michael Piper, and Dominic C. H. Ng. "The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development." Human Molecular Genetics 29, no. 2 (December 9, 2019): 248–63. http://dx.doi.org/10.1093/hmg/ddz281.
Full textGolden, J. A., J. C. Zitz, K. McFadden, and C. L. Cepko. "Cell migration in the developing chick diencephalon." Development 124, no. 18 (September 15, 1997): 3525–33. http://dx.doi.org/10.1242/dev.124.18.3525.
Full textLi, Xiaosu, Guoping Liu, Lin Yang, Zhenmeiyu Li, Zhuangzhi Zhang, Zhejun Xu, Yuqun Cai, et al. "Decoding Cortical Glial Cell Development." Neuroscience Bulletin 37, no. 4 (February 19, 2021): 440–60. http://dx.doi.org/10.1007/s12264-021-00640-9.
Full textSawada, Kazuhiko. "Tracking of neurons derived from basal radial glia experiencing multiple cell division in the developing neocortex of ferrets." IBRO Reports 6 (September 2019): S84. http://dx.doi.org/10.1016/j.ibror.2019.07.272.
Full textDissertations / Theses on the topic "Basal radial glia cell"
Pilaz, Louis-Jan. "Role of G1 phase regulators during corticogenesis." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10277.
Full textIn the cerebral cortex, area‐specific differences in neuron number and phenotype are distinguishing features both within and across species. The developmental mechanisms that specify the number of neurons and their laminar fate are instrumental in specifying cortical cytoarchitecture. Neuron number in layers and areas correlate with changes in the rate of neuron production, largely determined by the balance between proliferative and differentiative divisions in cortical precursors. Key observations suggest a concerted regulation between the duration of the G1 phase (TG1) and mode of division and have led to the hypothesis that TG1 could be an integral part of a cellular mechanism regulating the mode of division of cortical precursors. To test this hypothesis we experimentally accelerated TG1 in mouse cortical precursors in vivo, via the forced expression of cyclinE1 and cyclinD1. At E15, TG1 reduction promoted cell‐cycle re‐entry at the expense of differentiation and led to cytoarchitectural modifications. Modeling confirms that the TG1‐induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. Forced expression of G1 cyclins was also applied to early cortical precursors. The effects of cyclinD1 and cyclinE1 up‐regulation at E13 were milder than those observed at E15, pointing to intrinsic differences between early and late cortical precursors. The used of various techniques to measure cell‐cycle kinetics in distinct precursor populations underlined the necessity of taking the full diversity of neural precursors co‐existing in the GZ of the telencephalon into account when performing cellcycle kinetics analysis
Penisson, Maxime. "Mécanismes de LIS1 dans les progéniteurs neuraux contribuant aux malformations de développement du cortex." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS415.
Full textHuman cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Basal radial glia (bRGs), a type of progenitor cells, are limited in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 overexpression in WT brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Lis1 depletion changed mitotic spindle orientations at the ventricular surface, increased the proportion of abventricular mitoses, and altered N-Cadherin expression, altering TBC1D3 function. We conclude that perturbation of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis
Wong, Fong Kuan. "Generation of basal radial glia in the embryonic mouse dorsal telencephalon." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149631.
Full textWong, Fong Kuan [Verfasser], Wieland [Akademischer Betreuer] Huttner, and Frank [Akademischer Betreuer] Buchholz. "Generation of basal radial glia in the embryonic mouse dorsal telencephalon / Fong Kuan Wong. Gutachter: Wieland Huttner ; Frank Buchholz." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/1068447850/34.
Full textDa, Fonte Dillon. "Transcriptomic and Proteomic Characterizations of Goldfish (Carassius auratus) Radial Glia Reveal Complex Regulation by the Neuropeptide Secretoneurin." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35681.
Full textUzquiano, López Ana. "Progenitor cell mechanisms contributing to cortical malformations : studying the role of the heterotopia gene Eml1/EML1 in radial glia." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS392.pdf.
Full textCerebral cortical development is a finely regulated process, depending on diverse progenitor cells. Abnormal behavior of the latter can give rise to cortical malformations. Mutations in Eml1/EML1 were identified in the HeCo mouse, as well as in three families presenting severe subcortical heterotopia (SH). SH is characterized by the presence of mislocalized neurons in the white matter. At early stages of corticogenesis, abnormally positioned apical radial glia progenitors (aRG) were found cycling outside the proliferative ventricular zone (VZ) in the HeCo cortical wall. I focused my research on characterizing aRG in the VZ to assess why some cells leave this region and thus to further understand SH mechanisms. Combining confocal and electron microscopy (EM), I uncovered abnormalities of centrosomes and primary cilia in Eml1-mutant aRGs: primary cilia are shorter, and often remain basally oriented within vesicles. Searching for Eml1-interacting partners using mass spectrometry (MS), combined with exome sequencing of SH patient DNAs, allowed us to identify a ciliary Eml1-interacting partner, RPGRIP1L, showing mutations in a SH patient. Gene ontology analyses of MS data pointed to Golgi apparatus and protein transport as enriched categories. Indeed, Golgi abnormalities were identified in HeCo aRGs. Altogether, these data indicate that the Golgi-to-primary cilium axis is perturbed in Eml1mutant conditions, pointing to new intracellular pathways involved in severe neurodevelopmental disorders
Belmonte, Mateos Carla 1992. "Unveiling the molecular and behavioral properties of hindbrain rhombomere centers." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2022. http://hdl.handle.net/10803/673433.
Full textLa regulació precisa de la neurogènesi s’aconsegueix localitzant la competència neurogènica de manera diferencial al llarg del territori. Al cervell posterior, l’expressió de gens proneurals es restringeix a les zones adjacents a les cèl·lules de les fronteres, i per tant és absent als centres així doncs assenyalant els centres dels rombòmers com una població no neurogènica. En aquest treball, hem revelat el seu perfil molecular espai-temporal així com un dels mecanismes que manté aquestes cèl·lules com a no neurogèniques. Mitjançant imatges 4D hem aportat llum per primera vegada a l’enteniment del seu comportament cel·lular en viu, i proposem que aquesta població dels centres dels rombòmers és de fet heterogènia ja que conté cèl·lules amb diferent capacitat proliferativa.
Kadoshima, Taisuke. "Self-organization of axial polarity, inside-out layer pattern and species-specific progenitor dynamics in human ES cell-derived neocortex." Kyoto University, 2014. http://hdl.handle.net/2433/188695.
Full textThan, Trong Emmanuel. "Le rôle de la signalisation Notch3 dans le maintien des cellules souches neurales du télencéphale adulte Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signaling cascade in the vertebrate adult brain her4-expressing neural stem cells are maintained through population asymmetry and embedded into a hierarchy of progenitors responsible for their life-long expansion Radial Glia and Neural Progenitors in the Adult Zebrafish Central Nervous System." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS541.
Full textNew neurons continue to be added into discrete brain regions of most adult vertebrate species, including humans. Adult born neurons arise from precursor cells, called neural stem cells (NSCs), endowed with self-renewal potential and mostly found in a state of reversible cell cycle arrest, named quiescence. Currently, the molecular, cellular and population rules allowing NSC to balance maintenance and differentiation remain incompletely understood. At the single cell level, several factors and signalling pathways were demonstrated to be essential for NSC homeostasis. Among them, the Notch signalling pathway is critically involved in the control of NSC quiescence and stemness. However, whether these two properties represent molecularly distinct or overlapping outputs of the Notch signalling pathway remains unknown. At the cellular level, current models state that NSCs divide rarely and mostly asymmetrically, allowing both self-renewal and the generation of a more committed progeny that ultimately exits the cell cycle and fulfils neuronal differentiation. The adult zebrafish pallium harbours NSCs, called radial glia (RG), which share with their mammalian counterparts the same basic properties. Previously, our laboratory demonstrated that Notch3 was necessary to maintain RG quiescence. Here, in two different and complementary works, we took advantage of the widespread neurogenic ventricular zone (VZ) of the adult zebrafish pallium to (1) explore further the role of Notch3 signalling in RG homeostasis and (2) investigate the division pattern and dynamics allowing the RG population to be maintained on the long run. In the first study, we demonstrate that the role of Notch3 signalling extends beyond the simple maintenance of RG quiescence and that Notch3 also contributes to RG stemness. By overlapping the transcriptomic profiles of both notch3 mutant RG and adult pallial VZ progenitors, we identified different sets of Notch3 target genes potentially responsible for its pleitropic effect in RG. Notably, we show that the Notch3 signalling contribution to RG stemness critically relies on the transcriptional activation of its canonical target gene hey1 and this, independently of Notch3 action on RG quiescence. In the second study, we performed a quantitative analysis of the fates of individual her4.1(Hes5)-expressing RG. We demonstrate that these cells adopt balanced stochastic fates, which allows their population to reach homeostasis. We also report that the overall RG population of the zebrafish pallium continues to grow during adulthood and that this expansion is very likely driven by a yet undefined upstream population of progenitors. As a consequence, we propose that the adult zebrafish is organised into a hierarchy of progenitors dominated by an unknown population that fuels the ongoing production of an intrinsically homeostatic population of RG which, itself, follows neutral drift dynamics
Najas, Sales Sònia 1985. "Role of DYRK1A in the development of the cerebral cortex : Implication in Down Syndrome." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/380895.
Full textEn aquest treball s'ha avaluat la possible contribució del gen DYRK1A, localitzat en el cromosoma humà 21, en les alteracions del desenvolupament de l’escorça cerebral associades a la Síndrome de down (SD) mitjançant l’estudi de dos models murins: el ratolí mBACTgDyrk1a, el qual conté 3 còpies de Dyrk1a, i el ratolí Ts65Dn, un dels models trisòmics de la SD més ben caracteritzats. Els nostres resultats mostren que la trisomia de Dyrk1A altera alguns paràmetres del cicle cel•lular i el tipus de divisió dels progenitors neurals del telencèfal dorsal, donant lloc a un dèficit de neurones glutamatèrgiques que persisteix fins l’edat adulta. Hem demostrat que Dyrk1a és el gen triplicat responsable del dèficit inicial en la generació de neurones glutamatèrgiques corticals observat en el ratolí Ts65Dn. A més a més, hem proporcionat evidències de que la degradació de Ciclina D1 induïda per DYRK1A és el mecanisme molecular subjacent a les alteracions de cicle cel•lular observades en els progenitors neuronals dels embrions mBACTgDyrk1a i Ts65Dn. Per altra banda, hem demostrat que la neurogènesis inicial està incrementada en l’eminència ganglionar medial dels embrions mBACTgDyrk1a, fet que altera la proporció de subtipus específics d’interneurones GABAèrgiques en l’escorça cerebral adulta. En conclusió, els nostres resultats indiquen que la sobreexpressió de DYRK1A contribueix significativament a la formació dels circuits cortical en la SD.
Book chapters on the topic "Basal radial glia cell"
Gierdalski, Marcin, and Sharon L. Juliano. "Influence of Radial Glia and Cajal-Retzius Cells in Neuronal Migration." In Results and Problems in Cell Differentiation, 75–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-46006-0_4.
Full textLeprince, Pierre, and Grazyna Chanas-Sacré. "Regulation of radial glia phenotype." In Glial cell function, 13–22. Elsevier, 2001. http://dx.doi.org/10.1016/s0079-6123(01)32061-7.
Full textMcGrat, Barbara, Corey McCann, Scott Eisenhuth, and E. S. Anton. "Molecular mechanisms of interactions between radial glia and neurons." In Glial cell function, 197–202. Elsevier, 2001. http://dx.doi.org/10.1016/s0079-6123(01)32076-9.
Full textGomes∗, Flávia Carvalho Alcantara, and Stevens Kastrup Rehen. "Role of neuron–glia interactions in nervous system development: highlights on radial glia and astrocytes." In Advances in Molecular and Cell Biology, 97–125. Elsevier, 2003. http://dx.doi.org/10.1016/s1569-2558(03)31004-5.
Full textV. Pushchina, Evgeniya, Anatoly A. Varaksin, and Dmitry K. Obukhov. "Hydrogen Sulfide as a Factor of Neuroprotection during the Constitutive and Reparative Neurogenesis in Fish Brain." In Neuroprotection - New Approaches and Prospects. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90547.
Full text