Journal articles on the topic 'Basal ganglia model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Basal ganglia model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Barker, Roger. "Model for basal ganglia disorders." Trends in Neurosciences 13, no. 3 (March 1990): 93. http://dx.doi.org/10.1016/0166-2236(90)90181-9.
Full textGonzalo, N. "The parafascicular thalamic complex and basal ganglia circuitry: further complexity to the basal ganglia model." Thalamus & Related Systems 1, no. 4 (June 2002): 341–48. http://dx.doi.org/10.1016/s1472-9288(02)00007-9.
Full textGonzalo, N., J. L. Lanciego, M. Castle, A. Vázquez, E. Erro, and J. A. Obeso. "The parafascicular thalamic complex and basal ganglia circuitry: further complexity to the basal ganglia model." Thalamus and Related Systems 1, no. 04 (June 2002): 341. http://dx.doi.org/10.1017/s1472928802000079.
Full textHallett, Mark. "Physiology of Basal Ganglia Disorders: An Overview." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 20, no. 3 (August 1993): 177–83. http://dx.doi.org/10.1017/s0317167100047909.
Full textYin, Henry H. "How Basal Ganglia Outputs Generate Behavior." Advances in Neuroscience 2014 (November 18, 2014): 1–28. http://dx.doi.org/10.1155/2014/768313.
Full textFéger, J. "Updating the functional model of the basal ganglia." Trends in Neurosciences 20, no. 4 (May 13, 1997): 152–53. http://dx.doi.org/10.1016/s0166-2236(96)01016-8.
Full textSuri, R. E., C. Albani, and A. H. Glattfelder. "A dynamic model of motor basal ganglia functions." Biological Cybernetics 76, no. 6 (July 22, 1997): 451–58. http://dx.doi.org/10.1007/s004220050358.
Full textLepora, Nathan F., and Kevin N. Gurney. "The Basal Ganglia Optimize Decision Making over General Perceptual Hypotheses." Neural Computation 24, no. 11 (November 2012): 2924–45. http://dx.doi.org/10.1162/neco_a_00360.
Full textPlotkin, Joshua L., and Joshua A. Goldberg. "Thinking Outside the Box (and Arrow): Current Themes in Striatal Dysfunction in Movement Disorders." Neuroscientist 25, no. 4 (October 31, 2018): 359–79. http://dx.doi.org/10.1177/1073858418807887.
Full textYin, Henry H. "The Basal Ganglia in Action." Neuroscientist 23, no. 3 (June 15, 2016): 299–313. http://dx.doi.org/10.1177/1073858416654115.
Full textCrossley, Matthew J., Jon C. Horvitz, Peter D. Balsam, and F. Gregory Ashby. "Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning." Journal of Neurophysiology 115, no. 1 (January 1, 2016): 240–54. http://dx.doi.org/10.1152/jn.00473.2015.
Full textMoustafa, Ahmed A., and Mark A. Gluck. "A Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinson Patients." Journal of Cognitive Neuroscience 23, no. 1 (January 2011): 151–67. http://dx.doi.org/10.1162/jocn.2010.21420.
Full textBogacz, Rafal, and Tobias Larsen. "Integration of Reinforcement Learning and Optimal Decision-Making Theories of the Basal Ganglia." Neural Computation 23, no. 4 (April 2011): 817–51. http://dx.doi.org/10.1162/neco_a_00103.
Full textTan, Xiaolong, Hudong Zhang, Yan Xie, and Yuan Chai. "Electromagnetic radiation and electrical stimulation controls of absence seizures in a coupled reduced corticothalamic model." Electronic Research Archive 31, no. 1 (2022): 58–74. http://dx.doi.org/10.3934/era.2023004.
Full textCaiola, Michael, and Mark H. Holmes. "Model and Analysis for the Onset of Parkinsonian Firing Patterns in a Simplified Basal Ganglia." International Journal of Neural Systems 29, no. 01 (January 10, 2019): 1850021. http://dx.doi.org/10.1142/s0129065718500211.
Full textLipski, Witold J., Thomas A. Wozny, Ahmad Alhourani, Efstathios D. Kondylis, Robert S. Turner, Donald J. Crammond, and Robert Mark Richardson. "Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement." Journal of Neurophysiology 118, no. 3 (September 1, 2017): 1472–87. http://dx.doi.org/10.1152/jn.00964.2016.
Full textDorval, Alan D., Alexis M. Kuncel, Merrill J. Birdno, Dennis A. Turner, and Warren M. Grill. "Deep Brain Stimulation Alleviates Parkinsonian Bradykinesia by Regularizing Pallidal Activity." Journal of Neurophysiology 104, no. 2 (August 2010): 911–21. http://dx.doi.org/10.1152/jn.00103.2010.
Full textParent, André, and Francesca Cicchetti. "The current model of basal ganglia organization under scrutiny." Movement Disorders 13, no. 2 (March 1998): 199–202. http://dx.doi.org/10.1002/mds.870130202.
Full textHanssen, Henrike, Jannik Prasuhn, Marcus Heldmann, Cid C. Diesta, Aloysius Domingo, Martin Göttlich, Anne J. Blood, et al. "Imaging gradual neurodegeneration in a basal ganglia model disease." Annals of Neurology 86, no. 4 (August 23, 2019): 517–26. http://dx.doi.org/10.1002/ana.25566.
Full textDarbin, Olivier, Daniel Dees, Anthony Martino, Elizabeth Adams, and Dean Naritoku. "An Entropy-Based Model for Basal Ganglia Dysfunctions in Movement Disorders." BioMed Research International 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/742671.
Full textKahan, Joshua, Laura Mancini, Guillaume Flandin, Mark White, Anastasia Papadaki, John Thornton, Tarek Yousry, et al. "Deep brain stimulation has state-dependent effects on motor connectivity in Parkinson’s disease." Brain 142, no. 8 (June 20, 2019): 2417–31. http://dx.doi.org/10.1093/brain/awz164.
Full textParent, André. "The brain in evolution and involution." Biochemistry and Cell Biology 75, no. 6 (December 1, 1997): 651–67. http://dx.doi.org/10.1139/o97-094.
Full textBogacz, Rafal, and Kevin Gurney. "The Basal Ganglia and Cortex Implement Optimal Decision Making Between Alternative Actions." Neural Computation 19, no. 2 (February 2007): 442–77. http://dx.doi.org/10.1162/neco.2007.19.2.442.
Full textMagdoom, K. N., D. Subramanian, V. S. Chakravarthy, B. Ravindran, Shun-ichi Amari, and N. Meenakshisundaram. "Modeling Basal Ganglia for Understanding Parkinsonian Reaching Movements." Neural Computation 23, no. 2 (February 2011): 477–516. http://dx.doi.org/10.1162/neco_a_00073.
Full textYamamoto, Kazumi, Toshiki Yoshimine, and Takehiko Yanagihara. "Cerebral Ischemia in Rabbit: A New Experimental Model with Immunohistochemical Investigation." Journal of Cerebral Blood Flow & Metabolism 5, no. 4 (December 1985): 529–36. http://dx.doi.org/10.1038/jcbfm.1985.80.
Full textBerns, Gregory S., and Terrence J. Sejnowski. "A Computational Model of How the Basal Ganglia Produce Sequences." Journal of Cognitive Neuroscience 10, no. 1 (January 1998): 108–21. http://dx.doi.org/10.1162/089892998563815.
Full textLieberman, Philip. "Why we can talk, debate, and change our minds: Neural circuits, basal ganglia operations, and transcriptional factors." Behavioral and Brain Sciences 37, no. 6 (December 2014): 561–62. http://dx.doi.org/10.1017/s0140525x13004093.
Full textJing, Chen, and Li Zongshuai. "Basal Ganglia Behaviour Cognitive Model Based on Operant Conditioning Reflex." Open Automation and Control Systems Journal 6, no. 1 (December 31, 2014): 1570–77. http://dx.doi.org/10.2174/1874444301406011570.
Full textTortolero, Ivan Carmona, Deepak Kumbhare, Jayasimha Atulasimha, Mark Baron, and Ravi Hadimani. "A computational basal ganglia-thalamocortical circuitry model for Parkinson’s disease." Brain Stimulation 14, no. 6 (November 2021): 1617. http://dx.doi.org/10.1016/j.brs.2021.10.095.
Full textYu, Ying, and Qingyun Wang. "Oscillation dynamics in an extended model of thalamic-basal ganglia." Nonlinear Dynamics 98, no. 2 (September 19, 2019): 1065–80. http://dx.doi.org/10.1007/s11071-019-05249-2.
Full textPorenta, Gerold. "A computer model of neuronal pathways in the basal ganglia." Computer Methods and Programs in Biomedicine 22, no. 3 (June 1986): 325–31. http://dx.doi.org/10.1016/0169-2607(86)90008-8.
Full textGangadhar, Garipelli, Denny Joseph, and V. Srinivasa Chakravarthy. "Understanding Parkinsonian Handwriting Through a Computational Model of Basal Ganglia." Neural Computation 20, no. 10 (October 2008): 2491–525. http://dx.doi.org/10.1162/neco.2008.03-07-498.
Full textAvecillas-Chasin, Josué M., Fernando Rascón-Ramírez, and Juan A. Barcia. "Tractographical model of the cortico-basal ganglia and corticothalamic connections." Clinical Anatomy 29, no. 4 (February 13, 2016): 481–92. http://dx.doi.org/10.1002/ca.22689.
Full textPena-Casanova, Jordi, and Jorge Sigg-Alonso. "Functional Systems and Brain Functional Units Beyond Luria, With Luria: Anatomical Aspects." Lurian Journal 1, no. 1 (July 16, 2020): 48–76. http://dx.doi.org/10.15826/lurian.2020.1.1.6.
Full textNAHVI, ALIREZA, FARIBA BAHRAMI, and SAMIRA HEMMATI. "INVESTIGATING DIFFERENT TARGETS IN DEEP BRAIN STIMULATION ON PARKINSON'S DISEASE USING A MEAN-FIELD MODEL OF THE BASAL GANGLIA-THALAMOCORTICAL SYSTEM." Journal of Mechanics in Medicine and Biology 12, no. 02 (April 2012): 1240004. http://dx.doi.org/10.1142/s0219519412400040.
Full textDorval, Alan D., and Warren M. Grill. "Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism." Journal of Neurophysiology 111, no. 10 (May 15, 2014): 1949–59. http://dx.doi.org/10.1152/jn.00713.2013.
Full textScholl, Carolin, Javier Baladron, Julien Vitay, and Fred H. Hamker. "Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model." Brain Structure and Function 227, no. 3 (February 3, 2022): 1031–50. http://dx.doi.org/10.1007/s00429-021-02446-x.
Full textHouk, J. C., C. Bastianen, D. Fansler, A. Fishbach, D. Fraser, P. J. Reber, S. A. Roy, and L. S. Simo. "Action selection and refinement in subcortical loops through basal ganglia and cerebellum." Philosophical Transactions of the Royal Society B: Biological Sciences 362, no. 1485 (April 11, 2007): 1573–83. http://dx.doi.org/10.1098/rstb.2007.2063.
Full textBaston, Chiara, and Mauro Ursino. "A Biologically Inspired Computational Model of Basal Ganglia in Action Selection." Computational Intelligence and Neuroscience 2015 (2015): 1–24. http://dx.doi.org/10.1155/2015/187417.
Full textLörincz, A. "Static and Dynamic State Feedback Control Model of Basal Ganglia-Thalamocortical Loops." International Journal of Neural Systems 08, no. 03 (June 1997): 339–57. http://dx.doi.org/10.1142/s0129065797000343.
Full textVitek, Jerrold L., and Luke A. Johnson. "Understanding Parkinson’s disease and deep brain stimulation: Role of monkey models." Proceedings of the National Academy of Sciences 116, no. 52 (December 23, 2019): 26259–65. http://dx.doi.org/10.1073/pnas.1902300116.
Full textLeasure, Audrey C., Kevin N. Sheth, Mary Comeau, Chad Aldridge, Bradford B. Worrall, Anastasia Vashkevich, Jonathan Rosand, et al. "Identification and Validation of Hematoma Volume Cutoffs in Spontaneous, Supratentorial Deep Intracerebral Hemorrhage." Stroke 50, no. 8 (August 2019): 2044–49. http://dx.doi.org/10.1161/strokeaha.118.023851.
Full textChakravarthy, V. Srinivasa. "Do Basal Ganglia Amplify Willed Action by Stochastic Resonance? A Model." PLoS ONE 8, no. 11 (November 26, 2013): e75657. http://dx.doi.org/10.1371/journal.pone.0075657.
Full textParent, A., M. Lévesque, and M. Parent. "A re-evaluation of the current model of the basal ganglia." Parkinsonism & Related Disorders 7, no. 3 (July 2001): 193–98. http://dx.doi.org/10.1016/s1353-8020(00)00058-4.
Full textPrescott, Tony J., Fernando M. Montes González, Kevin Gurney, Mark D. Humphries, and Peter Redgrave. "A robot model of the basal ganglia: Behavior and intrinsic processing." Neural Networks 19, no. 1 (January 2006): 31–61. http://dx.doi.org/10.1016/j.neunet.2005.06.049.
Full textHumphries, Mark D., and Kevin N. Gurney. "A pulsed neural network model of bursting in the basal ganglia." Neural Networks 14, no. 6-7 (July 2001): 845–63. http://dx.doi.org/10.1016/s0893-6080(01)00060-0.
Full textConnolly, Christopher I., and J. Brain Burns. "A new striatal model and its relationship to basal ganglia diseases." Neuroscience Research 16, no. 4 (May 1993): 271–74. http://dx.doi.org/10.1016/0168-0102(93)90037-q.
Full textNjap, Felix, Jens Christian Claussen, Andreas Moser, and Ulrich G. Hofmann. "Modeling effect of GABAergic current in a basal ganglia computational model." Cognitive Neurodynamics 6, no. 4 (May 4, 2012): 333–41. http://dx.doi.org/10.1007/s11571-012-9203-3.
Full textFederti, Enrica, Alessandro Matte, Veronica Riccardi, Kevin Peikert, Seth L. Alper, Adrian Danek, Ruth H. Walker, et al. "Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis." Antioxidants 11, no. 1 (December 29, 2021): 76. http://dx.doi.org/10.3390/antiox11010076.
Full textSchmidt, Robert, and Joshua D. Berke. "A Pause-then-Cancel model of stopping: evidence from basal ganglia neurophysiology." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1718 (February 27, 2017): 20160202. http://dx.doi.org/10.1098/rstb.2016.0202.
Full text