Academic literature on the topic 'Barley Genetics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Barley Genetics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Barley Genetics"
Ren, Xifeng, Yonggang Wang, Songxian Yan, Dongfa Sun, and Genlou Sun. "Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley." Genome 57, no. 4 (April 2014): 239–44. http://dx.doi.org/10.1139/gen-2014-0039.
Full textJana, S., and L. N. Pietrzak. "Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity." Genetics 119, no. 4 (August 1, 1988): 981–90. http://dx.doi.org/10.1093/genetics/119.4.981.
Full textNeale, D. B., M. A. Saghai-Maroof, R. W. Allard, Q. Zhang, and R. A. Jorgensen. "Chloroplast DNA diversity in populations of wild and cultivated barley." Genetics 120, no. 4 (December 1, 1988): 1105–10. http://dx.doi.org/10.1093/genetics/120.4.1105.
Full textTsuchiya, T. "Barley Genetics Newsletter." Hereditas 73, no. 1 (February 12, 2009): 162. http://dx.doi.org/10.1111/j.1601-5223.1973.tb01079.x.
Full textLukina, K. A., O. N. Kovaleva, and I. G. Loskutov. "Naked barley: taxonomy, breeding, and prospects of utilization." Vavilov Journal of Genetics and Breeding 26, no. 6 (October 9, 2022): 524–36. http://dx.doi.org/10.18699/vjgb-22-64.
Full textSreenivasulu, Nese, Andreas Graner, and Ulrich Wobus. "Barley Genomics: An Overview." International Journal of Plant Genomics 2008 (March 13, 2008): 1–13. http://dx.doi.org/10.1155/2008/486258.
Full textRamakrishna, Wusirika, Jorge Dubcovsky, Yong-Jin Park, Carlos Busso, John Emberton, Phillip SanMiguel, and Jeffrey L. Bennetzen. "Different Types and Rates of Genome Evolution Detected by Comparative Sequence Analysis of Orthologous Segments From Four Cereal Genomes." Genetics 162, no. 3 (November 1, 2002): 1389–400. http://dx.doi.org/10.1093/genetics/162.3.1389.
Full textKünzel, Gottfried, Larissa Korzun, and Armin Meister. "Cytologically Integrated Physical Restriction Fragment Length Polymorphism Maps for the Barley Genome Based on Translocation Breakpoints." Genetics 154, no. 1 (January 1, 2000): 397–412. http://dx.doi.org/10.1093/genetics/154.1.397.
Full textCho, Seungho, David F. Garvin, and Gary J. Muehlbauer. "Transcriptome Analysis and Physical Mapping of Barley Genes in Wheat–Barley Chromosome Addition Lines." Genetics 172, no. 2 (December 1, 2005): 1277–85. http://dx.doi.org/10.1534/genetics.105.049908.
Full textKonishi, T., and S. Matsuura. "Geographic differentiation in isozyme genotypes of Himalayan barley (Hordeum vulgare)." Genome 34, no. 5 (October 1, 1991): 704–9. http://dx.doi.org/10.1139/g91-108.
Full textDissertations / Theses on the topic "Barley Genetics"
Collins, Nicholas C. "The genetics of barley yellow dwarf virus resistance in barley and rice." Title page, table of contents and summary only, 1996. http://hdl.handle.net/2440/46063.
Full textThesis (Ph.D.) -- University of Adelaide, Dept. of Plant Science, 1996
Jenkin, Mandy Jane. "Genetics of boron tolerance in barley /." Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phj514.pdf.
Full textHarvey, Andrew John. "Isolation, characterization and differential expression of Barley B-Glucan Exohydrolase genes." Title page, abstract and table of contents only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phh399.pdf.
Full textCaldwell, Katherine Selby. "An evaluation of the patterns of nucleotide diversity and linkage disequilibrium at the regional level in Hordeum vulgare /." Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phc1471.pdf.
Full textJefferies, Stephen P. "Marker assisted backcrossing for gene introgression in barley (Hordeum vulgare L.)." Title page, contents and chapter 1 only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspj45.pdf.
Full textEglinton, Jason Konrad. "Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.) /." Title page, abstact and table of contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phe313.pdf.
Full textPatil, Vrushali. "Molecular developmental genetics of the barley internode." Thesis, University of Dundee, 2016. https://discovery.dundee.ac.uk/en/studentTheses/a7e7046a-3615-40c4-b678-200299cd0d12.
Full textJenkin, Mandy Jane. "Genetics of boron tolerance in barley / by Mandy Jane Jenkin." Thesis, Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://hdl.handle.net/2440/21652.
Full textLiu, Shaolin 1968. "Oligonucleotides applied in genomics, bioinformatics and development of molecular markers for rice and barley." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85569.
Full textSmith, Ryan Anthony. "Germination and growth responses of Hordeum Vulgare SV13 cultivated as a green fodder crop for African conditions." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2790.
Full textThis study evaluated the effects of 5 different soaking treatments in conjunction with 5 varying irrigation intervals on the germination, growth and nutritional values of seed of Hordeum vulgare Sv13. The 5 different soaking times consisted of 1, 3, 8, 16 and 24 hours. The barley seed was first cleaned and then placed in a vessel containing 500 ml of distilled water with a 20 % solution of sodium hypochlorite (bleach) at room temperature. Thereafter the pre-soaked seeds were transferred to a perforated container, containing no medium and placed into a growing chamber equipped with drip irrigation. The seed was then irrigated with 1245 ml of water at 5 different intervals namely every 2, 4, 8 10 and 12 hours. The temperature of the hydroponic growing room was kept at a constant 23 °C using a hotoperiod of 16-hour day/ 8-hour darkness. The seed was allowed to germinate and grow for a period of 8 days before being harvested. The objectives of this study were to determine the most beneficial combination of soaking treatment in conjunction with the most beneficial irrigation interval on the germination rate of the seed allowing for radicle emergence and coleoptile production. It was also used to determine which combination of treatments was most beneficial to the growth and nutritional values of the seed post-harvest. Another objective was to ascertain the shortest soaking time for application in a small-scale, hydroponic growing unit as well as the frequency of irrigation required to grow seedlings, thereby determining the amount of water required to produce a seedling mat for a small-scale, subsistence farmer, with the emphasis being on water reduction. Each treatment was replicated 10 times and consisted of 500 grams of seed, which when placed into its container measured 2 centimetres in depth, totalling 25 treatments in all. Germination was measured by observing radicle emergence in the first 2 days of the growing period first after a 24-hour cycle and again after 48 hours. The numbers of leaves present at harvest after an 8-day growing period were also counted to determine germination rate of the seeds. Growth was determined by average leaf height as well as the tallest leaf on day 8 of the growing cycle. Root mat expansion was also measured, post-harvest, which was compared to the initial 2 cm planting depth of seed. Wet and dry weights of the plant material were measured post-harvest. Samples of the harvested material were also sent for nitrogen and protein analysis. It was discovered that most of the results favoured a shorter soaking time and an increase in irrigation frequency, bar a few exceptions. Most favoured a pre-soaking time of only 1 hour together with an irrigation frequency of between 2 and 4 hours. This shows that small-scale farmers would be able to reduce the time spent on soaking of their seed. Although the frequency of the irrigation interval remained high further testing would be required to determine if the amount of water applied at each irrigation interval could be reduced and still produce favourable results. It would also remain to be seen if no irrigation during the 8-hour dark photoperiod would have any negative impact on germination, growth and nutritional values of the seedlings.
Books on the topic "Barley Genetics"
ll, Torbjo rn Sa. Genetic variation for recombination in barley. Svalo v: Swedish University of Agricultural Sciences, Dept. of Crop Genetics and Breeding, 1989.
Find full textUllrich, Steven E. Barley, production, improvement, and uses. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Find full textZhang, Guoping. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Find full textZhang, Guoping, and Chengdao Li, eds. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01279-2.
Full textInternational, Barley Genetics Resources Workshop (1991 Helsingborg Sweden). Barley genetic resources: Report of an international barley genetic resources workshop held at Helsingborg Kongresscenter Helsingborg, Sweden, 20-21 July 1991. Rome: International Board for Plant Genetic Resources, 1992.
Find full textKhodʹkov, L. E. Golozernye i bezostye i͡a︡chmeni. Leningrad: Izd-vo Leningradskogo universiteta, 1985.
Find full textGrant, Bailey L., Thompson B. K, and Canada Agriculture Canada, eds. Barley register =: Registre des variétés d'orge. Ottawa: Agriculture Canada, 1985.
Find full textSaskatchewan), International Oats Conference (5th 1996 University of. V International Oat Conference & VII International Barley Genetics Symposium: Proceedings. Saskatoon: University Extension Press, 1996.
Find full textThörn, Eva C. Selective chromosome elimination in barley: The "bulbosum-system" : possibilities and limitations in plant breeding. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Find full textSveriges lantbruksuniversitet. Institutionen för växtförädling., ed. Mutation research in barley. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Find full textBook chapters on the topic "Barley Genetics"
von Wettstein-Knowles, Penny. "Barley Raincoats: Biosynthesis and Genetics." In Plant Molecular Biology, 305–14. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_28.
Full textEversole, Kellye, Andreas Graner, and Nils Stein. "Wheat and Barley Genome Sequencing." In Genetics and Genomics of the Triticeae, 713–42. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_24.
Full textLangridge, Peter, Yang Qingwen, Dong Chongmei, and Ken Chalmers. "From Genome Structure to Pragmatic Breeding of Wheat and Barley." In Stadler Genetics Symposia Series, 197–209. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_15.
Full textLundqvist, U. "Barley Mutants - Diversity, Genetics and Plant Breeding Value." In Current Options for Cereal Improvement, 115–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0893-2_11.
Full textBrown, James K. M. "Molecular and Population Genetics of Barley Powdery Mildew." In Advances in Molecular Genetics of Plant-Microbe Interactions, 191–98. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_29.
Full textKrattinger, Simon, Thomas Wicker, and Beat Keller. "Map-Based Cloning of Genes in Triticeae (Wheat and Barley)." In Genetics and Genomics of the Triticeae, 337–57. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_12.
Full textGenc, Y., G. K. McDonald, Z. Rengel, and R. D. Graham. "Genotypic Variation in the Response of Barley to Zinc Deficiency." In Plant Nutrition — Molecular Biology and Genetics, 205–21. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_24.
Full textForster, B. P., R. P. Ellis, A. C. Newton, R. Tuberosa, D. This, A. S. El-Gamal, M. H. Bahri, and M. Ben Salem. "Molecular Breeding of Barley for Droughted Low Input Agricultural Conditions." In Plant Nutrition — Molecular Biology and Genetics, 359–63. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_40.
Full textWray, J. L., S. M. Ip, E. Duncanson, A. F. Gilkes, and D. W. Kirk. "Biochemistry, Regulation and Genetics of Nitrite Reduction in Barley." In Inorganic Nitrogen in Plants and Microorganisms, 203–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75812-6_31.
Full textSmith, Frank W., Daisy H. Cybinski, and Anne L. Rae. "Regulation of Expression of Genes Encoding Phosphate Transporters in Barley Roots." In Plant Nutrition — Molecular Biology and Genetics, 145–50. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_19.
Full textConference papers on the topic "Barley Genetics"
"The variability of organelle genomes in barley." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-190.
Full text"Targeted knockout of the NUD gene in Siberian barley." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-107.
Full text"Barley alloplasmic lines – the spectra of peculiar plasmon types." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-175.
Full text"Molecular genetic methods for assessing drought resistance of spring barley." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-142.
Full text"Transcriptomic changes underlying partial albinism in barley nearly isogenic line." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-169.
Full text"Genetics of resistance of spring barley to the agent Ustilago nuda." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-017.
Full text"Generation of haploidy inducers for Cas endonuclease-mediated mutagenesis in barley." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-178.
Full text"Comparative characteristics of barley hybrids by the anthocyanins content in grain." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-114.
Full text"Targeted modification of regulatory genes associated with barley grain color formation." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-047.
Full text"Identification and characterization of a barley gene controlling cuticle wax formation." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-061.
Full textReports on the topic "Barley Genetics"
Delmer, Deborah, Nicholas Carpita, and Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Full textMawassi, Munir, Baozhong Meng, and Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Full textAbbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg, and George J. Vandemark. Winter chickpea; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7597909.bard.
Full textHorwitz, Benjamin, and Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, January 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Full textTel-Zur, Neomi, and Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Full text