Academic literature on the topic 'Bar Fuel Injection System'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bar Fuel Injection System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bar Fuel Injection System"

1

Shatrov, Mikhail, Leonid Golubkov, Andrey Dunin, Andrey Yakovenko, and Pavel Dushkin. "Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process." Thermal Science 19, no. 6 (2015): 2245–53. http://dx.doi.org/10.2298/tsci151109192s.

Full text
Abstract:
In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar) on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar) and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.
APA, Harvard, Vancouver, ISO, and other styles
2

Simpson, Tyler, and Christopher Depcik. "Multiple Fuel Injection Strategies for Compression Ignition Engines." Energies 15, no. 14 (July 19, 2022): 5214. http://dx.doi.org/10.3390/en15145214.

Full text
Abstract:
Until the early 1990s, the predominant method of fuel delivery for compression ignition engines was the mechanical pump-line-nozzle system. These systems typically consisted of a cam-driven pump that would send pressurized fuel to the fuel injectors where injection timing was fixed according to the pressure needed to overcome the spring pressure of the injector needle. These configurations were robust; however, they were limited to a single fuel injection event per thermodynamic cycle and respectively low injection pressures of 200–300 bar. Due to their limited flexibility, a poorly mixed and highly stratified air fuel mixture would result in and produce elevated levels of both nitrogen oxides and particulate matter. The onset of stringent emissions standards caused the advancement of fuel injection technology and eventually led to the proliferation of high-pressure common rail electronic fuel injection systems. This system brought about two major advantages, the first being operation at fuel pressures up to 2500 bar. This allowed better atomization and fuel spray penetration that improves mixing and the degree of charge homogenization of the air fuel mixture. The second is that the electronic fuel injector allows for flexible and precise injection timing and quantity while allowing for multiple fuel injection events per thermodynamic cycle. To supply guidance in this area, this effort reviews the experimental history of multiple fuel injection strategies involving both diesel and biodiesel fuels through 2019. Summaries are supplied for each fuel highlighting literature consensus on the mechanisms that influence noise, performance, and emissions based on timing, amount, and type of fuel injected during multiple fuel injection strategies.
APA, Harvard, Vancouver, ISO, and other styles
3

Karim, Zailan, M. A. Jusoh, A. R. Bahari, Mohd Zaki Nuawi, Jaharah Abd Ghani, and S. Abdullah. "Preliminary Study of Fuel Injector Monitoring System by I-KazTM Multilevel Analysis." Applied Mechanics and Materials 471 (December 2013): 229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.471.229.

Full text
Abstract:
Fuel injector in automotive engine is a very important component in injecting the correct amount of fuel into the combustion chamber. The injection system need to be in a very safe and optimum condition during the engine operation. The mulfunction of the injection system can be avoided if the current working condition is known and a proper maintenence procedure is implemented. This paper proposes the development of a fuel injector monitoring method using strain signals captured by a single-channel strain gage attached on the fuel injector body. The fuel injector was operated under three main sets of parameters; pulse width (ms), frequency (Hz) and pressure (bar) which were varried from 5 ms to 15 ms, 17 Hz to 25 Hz and 10 bar to 70 bar respectively. The settings produce 27 different engine operations and the strain signal will be captured at each operation. The captured strain signals will be analyzed using I-kazTM Multilevel technique and will be correlated with the main parameters. The relationship between the I-kazTM Multilevel coefficient and the main parameters indicate good correlations which can be used as the guidance for fuel injector monitoring during actual operation. The I-kaz Multilevel technique was found to be very suitable in this study since it is capable of showing consistence pattern change at every parameter change during the engine operation. This monitoring system has a big potential to be developed and improved for the optimization of fuel injector system performance in the automotive industry.
APA, Harvard, Vancouver, ISO, and other styles
4

Basavarajappa, D. N., N. R. Banapurmath, S. V. Khandal, and G. Manavendra. "Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME)." International Journal of Renewable Energy Development 4, no. 1 (February 15, 2015): 1–10. http://dx.doi.org/10.14710/ijred.4.1.1-10.

Full text
Abstract:
For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.
APA, Harvard, Vancouver, ISO, and other styles
5

Gopalan, Kesavan, Christopher R. Smith, Simon G. Pickering, Christopher J. Chuck, and Christopher D. Bannister. "Factors affecting diesel fuel degradation using a bespoke high-pressure fuel system rig." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, no. 1 (August 19, 2017): 106–17. http://dx.doi.org/10.1177/0954407017723796.

Full text
Abstract:
Recently, there has been automotive-industry-wide impetus to reduce the overall diesel vehicle emissions and the fuel consumption by increasing the fuel injection pressure within common-rail systems. Many production fuel injection systems are now capable of delivering rail pressures of 1800–2000 bar, with those able to achieve 3000 bar under development. In addition, there has been a gradual increase in the permitted fatty acid methyl ester content in EN 590 diesel from 5% to 7% with further increases to 10% proposed. With these changes, there has been mounting speculation that increasing the injection pressure, particularly with an elevated biodiesel content, can contribute to fuel degradation, deposit formation, fuel filter blocking and corresponding vehicle reliability issues. In this investigation, a bespoke high-pressure fuel injection rig was designed and commissioned to mimic conditions representative of those experienced within a modern vehicle engine. The impacts of the rail pressure, the biodiesel content and the accelerated testing conditions on the stability of the diesel fuel and deposit formation leading to filter blocking were assessed. Despite the abundance of literature on laboratory-based biodiesel degradation, in these more realistic operating conditions it was found that biodiesel did not increase the likelihood of deposit formation within the high-pressure fuel system, with the same level of filter blocking observed for both the baseline diesel B0 (i.e. no biodiesel) and the B10 blend (which contains 10% biodiesel). This implies that the filter-blocking problem caused by onboard fuel degradation has the potential to occur broadly in a wide range of different fuel compositions. B10 fuel tested with a rail pressure of 2000 bar resulted in a pressure drop across the fuel filter of 0.5 bar within 12,000 min (approximately 8.3 days), whereas the corresponding experiment at a rail pressure of 1000 bar showed no increase in the filter pressure. When using model (B10) fuel, filter blocking was observed at rail pressures of both 2000 bar and 1000 bar, but with a lower pressure at a much reduced rate, leading to the belief that the increases in the rail pressure towards 2000 bar has a significant effect on the propensity of vehicle diesel filters to block. Measures taken to increase the severity of the test, such as recirculating injected fuel to simulate shear effects, were found to increase the rate of degradation but did not change the chemical composition of the solids formed, thus implying that they were valid methods of reducing the test duration without introducing new degradation mechanisms. The rig presented here is therefore a suitable accelerated testing system for assessing the behaviour of fuels at higher pressures that will be common throughout the global diesel fleet in the near future.
APA, Harvard, Vancouver, ISO, and other styles
6

Mohammed A. Fayad, Amera A. Radhi, Salman Hussien Omran, and Farag Mahel Mohammed. "Influence of Environment-Friendly Fuel Additives and Fuel Injection Pressure on Soot Nanoparticles Characteristics and Engine Performance, and NOX Emissions in CI Diesel Engine." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 88, no. 1 (October 11, 2021): 58–70. http://dx.doi.org/10.37934/arfmts.88.1.5870.

Full text
Abstract:
Next generation of fuels and injection technology system are growing attention in the transportation sector. The effects of castor oil of biodiesel (C30D) and two conditions (500 bar and 1000 bar) of fuel injection pressure (FIP) on soot nanoparticles characteristics and NOX emissions were performed in a direct injection (DI) diesel engine. The results showed that size distributions of soot particulate decreased from C30D combustion by 43.62% compared to the diesel combustion for different FIP. Furthermore, the soot particle number concentration decreased more with 1000 bar of FIP compared with 500 bar for both fuels tests. The combustion of C30D decreased the average number of primary particles (npo) by 44.35% compared with diesel. For an injection pressure, it was observed that high injection pressure (1000 bar) significantly decreased the npo by 11.6 nm and 25.4 nm compared to the 500 bar by 22.4 nm and 33.2 from C30D and diesel, respectively. In addition, the average diameter of soot primary particle (dpo) was smaller by 47.68% during C30D combustion than to the diesel combustion for all conditions of injection pressure. In case of engine performance, the BTE, BSFC increased from the C30D combustion compared with diesel under different FIP. It is indicated that increasing injection pressure improved the engine performance for C30D and diesel. In contrast, the high injection pressure and C30D increased the NOX emissions by 21.37% compared with diesel fuel.
APA, Harvard, Vancouver, ISO, and other styles
7

Sechenyh, Vitaliy, Daniel J. Duke, Andrew B. Swantek, Katarzyna E. Matusik, Alan L. Kastengren, Christopher F. Powell, Alberto Viera, Raul Payri, and Cyril Crua. "Quantitative analysis of dribble volumes and rates using three-dimensional reconstruction of X-ray and diffused back-illumination images of diesel sprays." International Journal of Engine Research 21, no. 1 (July 15, 2019): 43–54. http://dx.doi.org/10.1177/1468087419860955.

Full text
Abstract:
Post-injection fuel dribble is known to lead to incomplete atomisation and combustion due to the release of slow-moving, and often surface-bound, liquid fuel after the end of injection. This can have a negative effect on engine emissions, performance and injector durability. To better quantify this phenomenon, we developed an image-processing approach to measure the volume of ligaments produced during the end of injection. We applied our processing approach to an Engine Combustion Network ‘Spray B’ 3-hole injector, using datasets from 220 injections generated by different research groups, to decouple the effect of gas temperature and pressure on the fuel dribble process. High-speed X-ray phase-contrast images obtained at room temperature conditions (297 K) at the Advanced Photon Source at Argonne National Laboratory, together with diffused back-illumination images captured at a wide range of temperature conditions (293–900 K) by CMT Motores Térmicos were analysed and compared quantitatively. We found a good agreement between image sets obtained by Argonne National Laboratory and CMT Motores Térmicos using different imaging techniques. The maximum dribble volume within the field of view of the imaging system and the mean rate of fuel dribble were considered as characteristic parameters of the fuel dribble process. Analysis showed that the absolute mean dribble rate increases with temperature when injection pressure is higher than 1000 bar and slightly decreases at high injection pressures (>500 bar) when temperature is close to 293 K. Larger maximum volumes of the fuel dribble were observed at lower gas temperatures (∼473 K) and low gas pressures (<30 bar), with a slight dependence on injection pressure.
APA, Harvard, Vancouver, ISO, and other styles
8

Tsai, Wen Chang, and Zong Hua Wu. "Use of Taguchi Method to Optimize the Operating Parameters of a High-Pressure Injector Driving Circuit." Applied Mechanics and Materials 130-134 (October 2011): 2795–99. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2795.

Full text
Abstract:
This paper develops a superior injector driving circuit for a 500c.c. motorcycle GDI engine. The POWER MOSFET component is introduced in the design of the three-pulse injector driving circuit. Experiments for the designed electric driving circuit are investigated to verify its feasibility. The experiments of the H.P. injector driving circuit are conducted for the fuel injection quantity of the H.P. injector under 80~100 bar fuel pressure, 1200~2000 μs injection pulse duration and DC 55~65V power supply voltage. PWM control is introduced to the last pulse 3A holding current for fast cut-off response time of the H.P. injector. Next, Taguchi method was used to lead the design of experiments (DOE). The fuel injection quantities were measured in the various control parameters as engine speeds, power supply voltages, injector driving currents, and fuel supply pressures by the designed injector driving circuit. Effect of these control parameters of the high-pressure (H.P.) injector driving circuit on the fuel injection quantity are analyzed in the paper. Taguchi orthogonal array optimizes the operating parameters of the H.P. fuel injecting system. Results show that the three-pulse POWER MOSFET injector driving circuit is capable of operating stably and assure the accurate injection quantity of the H.P. injector.
APA, Harvard, Vancouver, ISO, and other styles
9

Tuccar, Gökhan, Göktürk Memduh Özkan, and Kadir Aydın. "Determınatıon of Atomızatıon Characterıstıcs of a Dıesel Injector." Applied Mechanics and Materials 799-800 (October 2015): 826–30. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.826.

Full text
Abstract:
Atomization of liquid fuels is very important topic for combustion studies since it enhances air/ fuel mixing process and therefore ensures perfect combustion. With today’s common diesel injectors, fuel is directly injected into the combustion chamber with extremely high pressures which exceed 1300 bar in order to obtain perfect atomization. However, these high injection pressures unfortunately create some problems in the injection system such as cavitation erosion which may lead to mechanical failure. Introducing of air into the injector prior to combustion will increase fuel atomization, provide more complete combustion, enhance fuel economy and results in lower engine emissions. The aim of this study is to investigate atomization behaviour of a newly introduced diesel engine which mixes air and fuel prior to combustion chamber.
APA, Harvard, Vancouver, ISO, and other styles
10

Mohd Sabri, Mohd Anas, Mohd Zaki Nuawi, Mohd Faizal Bin Mat Tahir, Shahrum Abdullah, Abdul Rahim Bahari, and Firdaus Mohd Hamzah. "Monitoring System of Fuel Injector Using Piezoelectric Sensors." Applied Mechanics and Materials 471 (December 2013): 223–28. http://dx.doi.org/10.4028/www.scientific.net/amm.471.223.

Full text
Abstract:
The performance of a fuel injector greatly influences the performance of a vehicle engine. An effective monitoring system is capable of detecting damage, instability, and even the life of fuel injector. In this study, a test rig on fuel injector using piezoelectric film sensor has been developed. Three parameters, namely, pulse width at 5, 10, and 15 ms; frequency at 17, 20, and 25 Hz; and pressure at 10, 50, and 70 bar were used for observation. These parameters were set at different combinations to obtain the different injection patterns of the fuel injector. Statistical methods were used to analyze the data, with the aid of the Matlab software. The injection pattern was described using a new I-kaz (Ƶ) statistical parameter, which is intended to provide a simple explanation of the corresponding correlations between the coefficient of I-kaz and the statistical parameters, such as root mean square, Skewness, and Kurtosis, to obtain effective information on the operation state of the fuel injector. The results showed that higher pulse width results in a higher I-kaz coefficient, which also increases with an increase in frequency and varies with pressure; however, the pattern depends on the pulse width. The I-kaz scatter graph against skewness showed a clear pattern among the statistical parameters. The corresponding correlation was useful for monitoring the fuel injector and can be used as a reference for future studies.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bar Fuel Injection System"

1

Källkvist, Kurt. "Fuel Pressure Modelling in a Common-Rail Direct Injection System." Thesis, Linköpings universitet, Fordonssystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70264.

Full text
Abstract:
The fuel pressure is one of the central control variables of a modern common-rail injection system. It influences the generation of nitrous oxide and particulate matter emissions, the brake specific fuel consumption of the engine and the power consumption of the fuel pump. Accurate control of the fuel pressure and reliable diagnostics of the fuel system are therefore crucial components of the engine management system. In order to develop for example control or diagnostics algorithms and aid in the understanding of how hardware changes affect the system, a simulation model of the system is desirable.  A Simulink model of the XPI (Xtra high Pressure Injection) system developed by Scania and Cummins is developed. Unlike the previous models of the system available, the new model is geared towards fast simulations by modelling only the mean flow and pressure characteristics of the system, instead of the momentary flow and pressure variations as the engine rotates. The model is built using a modular approach where each module represents a physical component of the system. The modules themselves are based to a large extent on the physical properties of the components involved, making the model of the system adaptable to different hardware configurations whilst also being easy to understand and modify.
Bränsletrycket är en av de centrala styrvariablerna i ett modernt common-rail insprutningssystem. Det påverkar utsläppen av kväveoxider och partiklar, motorns specifika bränsleförbrukning och bränslepumpens effektförbrukning. Nogrann reglering och tillförlitliga diagnoser av bränslesystemet är därför mycket viktiga funktioner i motorstyrsystemet. Som ett hjälpmedel vid utveckling av dessa algoritmer samt för att öka förståelsen för hur hårdvaruförändringar påverkar systemet är det önskvärt med en simuleringsmodel av bränslesystemet.  En Simulink modell av XPI (Xtra high Pressure Injection) systemet som utvecklats av Scania och Cummins har utvecklats. Till skillnad från de redan tillgängliga modellerna av systemet fokuserar denna modell på snabba simuleringsförlopp genom att enbart modellera medeltryck och medelflöden istället för de momentana trycken och flödena i systemet när motorn roterar. Modellen är uppbyggd av moduler som var och en representerar en fysisk komponent i systemet. Modulerna är mestadels uppbyggda kring de fysikaliska egenskaperna hos komponenten de försöker modellera vilket gör modellen av systemet anpassningsbar till olika hårdvarukonfigurationer och samtidigt lätt att förstå.
APA, Harvard, Vancouver, ISO, and other styles
2

Lagimoniere, Ernest Eugene Jr. "The Design and Construction of a High Bandwidth Proportional Fuel Injection System for Liquid Fuel Active Combustion Control." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/34693.

Full text
Abstract:
This last decade experienced a sudden increase of interest in the control of thermo-acoustic instabilities, in particular through the use of fuel modulation techniques. The primary goal of this research was to design, construct and characterize a high bandwidth proportional fuel injection system, which could be used to study the effect of specific levels of fuel modulation on the combustion process and the reduction of thermo-acoustic instabilities. A fuel injection system, incorporating the use of a closed loop piston and check valve, was designed to modulate the primary fuel supply of an atmospheric liquid-fueled swirl stabilized combustor operating at a mean volumetric fuel flow rate of 0.4 GPH. The ability of the fuel injection system to modulate the fuel was examined by measuring the fuel line pressure and the flow rate produced during operation. The authority of this modulation over the combustion process was investigated by examining the effect of fuel modulation on the combustor pressure and the heat release of the flame. Sinusoidal operation of the fuel injection system demonstrated: a bandwidth greater that 800 Hz, significant open loop authority (averaging 12 dB) with regards to the combustor pressure, significant open loop authority (averaging 33 dB) with regards to the unsteady heat release rate and an approximate 8 dB reduction of the combustor pressure oscillation present at 100 Hz, using a phase shift controller. It is possible to scale the closed loop piston and check valve configuration used to create the fuel injection system discussed in this work to realistic combustor operating conditions for further active combustion control studies.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
3

Cross, Brenainn A. "An investigation into the effects of diesel fuel properties on the injection characteristics of a common rail injection system." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11990.

Full text
Abstract:
Includes abstract.
This study set out to investigate the effects of diesel fuel properties on the behaviour of a common rail fuel injection system, with particular emphasis on the injection rate shape characteristics. The investigation included the design and commissioning of experimental equipment for the measurement of fuel properties at typical common rail pressures, as well as the measurement of instantaneous fuel flow rate by a modified Bosch Indicator method. Data was then collected for two different diesel fuels, operating in two different fuel injector designs. The two fuels were EN590 (a European reference fuel) and GTL (a fuel derived from natural gas). The two injectors were a Bosch solenoid type injector, and a Bosch piezo type injector.
APA, Harvard, Vancouver, ISO, and other styles
4

Boyd, Michael. "Development of a fuel injection system for an opposed piston two stroke HCCI engine." Thesis, KTH, Maskinkonstruktion (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143615.

Full text
Abstract:
HCCI combustion engines can provide high fuel efficiencies with low NOx emissions compared to SI and CI engines due to their lean combustion, high compression ratios and low combustion temperatures. The disadvantage of HCCI is that it is inherently difficult to control. The need for an optimized fuel injection system is crucial in the design of an HCCI engine to achieve desirable and controllable performance. The aim of this thesis was to develop and optimize the fuel injection system for a 2- stroke, opposed piston gasoline engine thus continuing the development of the engine towards achieving stable HCCI combustion. The engine and the components that make up the fuel supply and injection system characteristics were analyzed using experimental and theoretical methods. The mathematical ideal mass of fuel and point of injection was found (when exhaust ports are closed). Injector delay, mass vs. electrical on-time and voltage sensitivity was found. Deflector designs used to divert the fuel flow laterally along the cylinder were studied and prototypes manufactured and tested. The engine was then run with new settings and deflector and the results analyzed. It was found that an L-cut design gave the best spray properties in this situation. An Lcut design with two internal seals gave the most favorable spray angle and atomization. A mass equation was formed that linked the mass injected to on-time in the ECU with consideration of the varying supply voltage. Using this mass equation and taking into account the delay, an ideal injection point was found. Implementing the new deflector and with improved injection timing, the engine was able to run smoothly with the theoretical mass required for λ=1 at 6000rpm and produce 0.28 kW of power. This was a noticeable improvement over previous engine tests which required more fuel mass for stable combustion. In conclusion, information was gained which allowed improvement of the injection timing and fuel control. The engine was run with much more accurate masses of fuel injected and injection times. The deflector improved atomization and optimized the spray angle. The data gained from the tests and analysis can be implemented into the engines ECU code for automated injection timing and fuel mass. This, coupled with the improved spray profile has aided in the continuing development of the engine towards stable, efficient HCCI combustion.
HCCI förbränningsmotorer kan ge hög verkningsgrad med låga NOx-utsläpp jämfört med SI och CI-motorer på grund av sin magra förbränning, högt kompressionsförhållande och låg förbränningstemperatur. Nackdelen med HCCI är att den är svår att kontrollera. Behovet av ett optimerat bränsleinsprutningssystem är avgörande för utformningen av en HCCI motor för att uppnå önskvärt och kontrollerbart resultat. Syftet med detta examensarbete var att utveckla och optimera bränsleinsprutningssystemet för en 2-takts, motkolvs bensinmotor och därmed fortsätta utvecklingen av motorn för att uppnå en stabil HCCI förbränning. Motorn och de komponenter som utgör bränsletillförseln analyserades med hjälp av experimentella och teoretiska metoder. Den matematiska ideala massan bränsle och den ideala insprutningsvinkeln bestämdes (när både insugs-och avgas portarna var stängda). Insprutningsfördröjning kontra ”electrical on-time” och spänningskänslighet bestämdes. Olika utformningar av deflektorn som används för att avleda bränsleflödet i sidled längs cylindern studerades, prototyper tillverkas och testades. Motorn kördes därefter med nya inställningar och ny deflektor och resultaten analyserades. Det visade sig att ”L-cut ”designen gav de bästa spray egenskaperna i denna situation. En ”L-cut” design med två inre tätningar gav den mest fördelaktiga sprayvinkeln och finfördelningen. En massekvation skapades som länkade den insprutade massan till ”elektrical on-time” i ECUn med hänsyn till den varierande matningsspänningen. Genom att använda massekvationen och samtidigt ta hänsyn till fördröjningen kunde en ideal insprutningsvinkel hittas. Implementering av den nya deflektorn tillsammans med förbättrad insprutningsvinkel gjorde att motorn kunde köras jämnt med den teoretiska massan som krävs för λ = 1 vid 6000rpm, och samtidigt producera effekt om 0,28 kW. Det var en märkbar förbättring jämfört med tidigare motortester som krävde dubbla bränslemängden för stabil förbränning. Sammanfattningsvis erhölls data som gjorde förbättringarna av insprutningsvinkel och bränslekontrollen möjlig. Motorn kördes med mycket mer exakt insprutad bränslemassa och insprutningsvinkel. Deflektorn förbättrade finfördelningen och optimerade sprayvinkeln. De data som insamlas från tester och analyser kan implementeras i motorns ECU kod för automatiserad insprutningstidpunkt och bränsle massa. Detta har tillsammans med den förbättrade sprayprofilen bidragit till den fortsatta utvecklingen av motorn mot en stabil, effektiv HCCI förbränning.
APA, Harvard, Vancouver, ISO, and other styles
5

Applegate, Brian Charles. "Development of a liquid injection propane system for spark-ignited engines via fuel temperature control." Diss., Rolla, Mo. : University of Missouri-Rolla, 2007. http://scholarsmine.umr.edu/thesis/pdf/Applegate_09007dcc803c5c35.pdf.

Full text
Abstract:
Thesis (M.S.)--University of Missouri--Rolla, 2007.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 29, 2007) Includes bibliographical references (p. 153-155).
APA, Harvard, Vancouver, ISO, and other styles
6

DeCastro, Jonathan Anthony. "Design and Validation of a High-Bandwidth Fuel Injection System for Control of Combustion Instabilities." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/31839.

Full text
Abstract:
The predictive design of fuel injection hardware used for active combustion control is not well established in the gas turbine industry. The primary reason for this is that the underlying mechanisms governing the flow rate authority downstream of the nozzle are not well understood. A detailed investigation of two liquid fuel flow modulation configurations is performed in this thesis: a piston and a throttle-valve configuration. The two systems were successfully built with piezoelectric actuation to drive the prime movers proportionally up to 800 Hz.

Discussed in this thesis are the important constituents of the fuel injection systemthat affect heat release authority: the method of fuel modulation, uncoupled dynamics of several components, and the compressibility of air trapped in the fuel line. Additionally, a novel technique to model these systems by way of one-dimensional, linear transmission line acoustic models was developed to successfully characterize the principle of operation of the two systems. Through these models, insight was gained on the modes through which modulation authority was dissipated and on methods through which successful amplitude scaling would be possible. At high amplitudes, it was found that the models were able to successfully predict the actual performance reasonably well for the piston device.

A proportional phase shifting controller was used to test the authority on a 40-kW rig with natural longitudinal modes. Results show that, under limited operating conditions, the sound pressure level at the limit cycle frequency was reduced by about 26 dB and the broadband energy was reduced by 23 dB. Attenuation of the fuel pulse at several combustor settings was due to fluctuating vorticity and temporal droplet distribution effects.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
7

Pettersson, Eric. "Modelling of high-pressure fuel system for controller development." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-386130.

Full text
Abstract:
This master thesis treats the modelling of a common-rail direct fuel injection system where pressure generation is decoupled from the injection process. It has been shown that the fuel pressure plays a vital role for the general performance of the engine, affecting both emissions and efficiency, and it is carefully regulated to achieve optimal performance at different operating points. In an attempt to facilitate the development of the responsible control algorithms, a simulation framework has been requested. A model describing the complete work cycle of the high-pressure fuel system is developed and implemented in a Simulink environment. It is to a large extent based on the underlying physics and constructed in a modular manner, which allows for different engine configurations to be simulated. The modelled pressure signal is compared to experimental data at different operating points with promising results in capturing the transient behaviour from a low-level perspective. Additionally, it manages to replicate some of the pressure oscillations which has been observed in the real system and it shows good response to changes in the input signals. However, there are some areas which are subject to improvement since capturing the static pressure levels over longer drive cycles has proved to be a difficult task. Overall, the developed model serves as a starting point for future development and validation of control algorithms.
APA, Harvard, Vancouver, ISO, and other styles
8

Schiller, Noah Harrison. "Design and Validation of a Proportional Throttle Valve System for Liquid-Fuel Active Combustion Control." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9843.

Full text
Abstract:
High-bandwidth fuel modulation is currently one of the most promising methods for active combustion control. To attenuate the large pressure oscillations in the combustion chamber, the fuel is pulsed so that the heat release rate fluctuations damp the pressure oscillations in the combustor. This thesis focuses on the development and implementation of a high-bandwidth, proportional modulation system for liquid-fuel active combustion control. The throttle valve modulation system, discussed in this thesis, uses a 500-um piezoelectric stack coupled with an off-the-shelf valve. After comparing three other types of actuators, the piezoelectric stack was selected because of its compact size, bandwidth capabilities, and relatively low cost. Using the acoustic resonance of the fuel line, the system is able to achieve 128% pressure modulation, relative to the mean pressure, and is capable of producing more than 75% flow modulation at 115 Hz. Additionally, at 760 Hz the system produces 40% pressure modulation and 21% flow modulation with flow rates between 0.4 and 10 gph. Control authority was demonstrated on a single-nozzle kerosene combustor which exhibits a well-pronounced instability at ~115 Hz. Using the modulation system, the fundamental peak of the combustion instability was reduced by 30 dB, and the broadband sound pressure levels inside the combustor were reduced by 12 dB. However, the most important conclusion from the combustion control experiments was not the system?s accomplishments, but rather its inability to control the combustor at high global equivalence ratios. Our work indicates that having the ability to modulate a large percentage of the primary fuel is not always sufficient for active combustion control.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Platts, Kieron Charles. "Investigation into the feasibility of a four valve per cylinder lean burn port fuel injected stratified charge combustion system." Thesis, Birmingham City University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rivas, Perea Manuel Eduardo. "Assessment of fuel consumption reduction strategies on a gasoline turbocharged direct injection engine with a cooled EGR system." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/68497.

Full text
Abstract:
[EN] This research work presents the study of a low pressure EGR loop influence on a SI gasoline turbocharged direct injection engine in steady and transient testing conditions, with an optimization process of the original engine calibration in order to minimize the engine fuel consumption when cooled EGR is introduced in steady testing conditions. The cooled EGR strategy was also evaluated operating in synergy with other fuel consumption reduction strategies, such as: lean burn, multi-injection, higher coolant temperature and in-cylinder induced swirl motion. To fulfill the main objectives of this research work, firstly, a methodical process was followed, where a global methodology was first developed in order to obtain high accuracy engine tests, based on the experimental tools chosen that could comply with the requirements of the testing conditions, and the appropriate theoretical tools and procedure to post-process the tests performed. Secondly, a specific methodology was developed for each stage of the study and testing conditions, taking into account optimization processes or parametric tests in order to study the effect of a single parameter on engine's outputs or optimize an engine parameter in order to minimize the engine fuel consumption. As a first stage of the study, a basic analysis of the impact of cooled EGR on the engine combustion, performance, air management and exhaust emissions is presented. Afterwards, an optimization of the combustion phasing in order to minimize the fuel consumption was performed, and therefore the potential of cooled EGR in order to reduce the engine fuel consumption was observed for low load, part load and full load engine conditions, for two different engine speeds. In addition, a study in transient conditions of the engine operating with cooled EGR was performed. NEDC cycles were performed with different EGR valve openings and therefore a comparison of different cooled EGR rates influence on the engine performance, air management and accumulated exhaust emissions was presented. The second stage, consisted in a methodology developed to optimize the VVT setting and injection timing, for part load engine conditions, in order to maximize the cooled EGR potential to reduce engine fuel consumption. After this optimization, a synergy analysis of the optimum engine condition operating with cooled EGR and three other engine fuel consumption reduction strategies was performed. These strategies were tested to investigate and evaluate the potential of increasing the cooled EGR operational range to further decrease the engine fuel consumption. Furthermore, a basic study of the potential to reduce the engine fuel consumption and impact on combustion, air management and exhaust emissions of a lean burn strategy, in part load engine conditions, was presented as introduction of the final study of the cooled EGR strategy operating in synergy with the lean burn strategy in order to investigate the potential to control the exhaust emissions and reduce the engine fuel consumption.
[ES] El objetivo de este trabajo de investigación es estudiar la influencia de un lazo de baja presión de EGR en las prestaciones de un motor de gasolina de encendido provocado turbosobrealimentado e inyección directa, en condiciones de ensayos estacionarios y transitorios, con un proceso de optimización de la calibración original del motor para minimizar el consumo de combustible del motor. La estrategia de "cooled EGR" fue también evaluada operando en sinergia con otras estrategias usadas para reducir el consumo de combustible del motor, entre ellas: mezcla pobre, múltiples inyecciones, operación a alta temperatura del fluido refrigerante del motor y movimiento de "swirl" inducido en el cilindro. Para cumplir con los objetivos mencionados, se siguió un proceso metódico donde previamente se desarrolló una metodología global para obtener resultados de indudable calidad, basados en el uso de herramientas experimentales que cumplieran con los requerimientos de las condiciones de ensayo, y las apropiadas herramientas teóricas y procedimiento para post-procesar los ensayos realizados. En segundo lugar, se desarrolló una metodología específica para cada etapa del estudio, teniendo en cuenta los procesos de optimización o estudios paramétricos que se pudieran realizar. Como primera etapa, se presenta un estudio básico del impacto del "cooled EGR" en la combustión, prestaciones, renovación de la carga y emisiones contaminantes del motor. Seguidamente, se procedió a la optimización del centrado de la combustión con la finalidad de minimizar el consumo de combustible del motor y poder analizar el potencial del "cooled EGR" como estrategia de reducción de consumo de combustible. El estudio presentado se realizó para baja, media y alta carga del motor con dos diferentes regímenes de giro del motor. Adicionalmente, se llevó a cabo un estudio del motor operando en condiciones transitorias con "cooled EGR". Se realizaron una serie de ensayos usando el ciclo NEDC como base y se probaron diferentes estrategias sencillas de control de la apertura de la válvula de EGR para analizar la influencia del "cooled EGR" en condiciones transitorias. La segunda etapa consiste en el desarrollo de una metodología para optimizar los parámetros del diagrama de distribución (VVT) y el inicio de inyección, para cargas medias del motor, con la finalidad de maximizar el potencial de reducción de consumo de combustible de la estrategia "cooled EGR". Una vez realizada la optimización, se llevó a cabo un estudio usando la configuración óptima encontrada, operando en sinergia con otras tres estrategias usadas para reducir el consumo de combustible del motor. Estas estrategias fueron evaluadas con la finalidad de incrementar el rango de operación de la estrategia "cooled EGR" para lograr reducir aún más el consumo de combustible del motor. Adicionalmente, se llevó a cabo un estudio básico sobre la influencia de operar con mezcla pobre en la combustión, prestaciones, renovación de la carga y emisiones contaminantes del motor, como introducción al último estudio llevado a cabo sobre la posibilidad de usar la estrategia de mezcla pobre en conjunto con la estrategia de "cooled EGR", con la finalidad de analizar el potencial de controlar las emisiones contaminantes y reducir el consumo de combustible del motor al mismo tiempo.
[CAT] L'objectiu d'este treball d'investigació és estudiar la influència d'un llaç de baixa pressió d'EGR en les prestacions d'un motor de gasolina d'encesa provocat turbosobrealimentat i injecció directa, en condicions d'assajos estacionaris i transitoris, amb un procés d'optimització del calibratge original del motor per a minimitzar el consum de combustible del motor. L'estratègia de "cooled EGR" va ser també avaluada operand en sinergia amb altres estratègies usades per a reduir el consum de combustible del motor, entre elles: mescla pobra, múltiples injeccions, operació a alta temperatura del fluid refrigerant del motor i moviment de `"swirl" induït en el cilindre. Per a complir amb els objectius mencionats, es va seguir un procés metòdic on prèviament es va desenrotllar una metodologia global per a obtindre resultats d'indubtable qualitat, basats en l'ús de ferramentes experimentals que compliren amb els requeriments de les condicions d'assaig, i les apropiades ferramentes teòriques i procediment per a post- processar els assajos realitzats. En segon lloc, es va desenrotllar una metodologia específica per a cada etapa de l'estudi, tenint en compte els processos d'optimització o estudis paramètrics que es pogueren realitzar. Com a primera etapa, es presenta un estudi bàsic de l'impacte del "cooled EGR" en la combustió, prestacions, renovació de la càrrega i emissions contaminants del motor. A continuació, es va procedir a l'optimització del centrat de la combustió amb la finalitat de minimitzar el consum de combustible del motor i poder analitzar el potencial del "cooled EGR" com a estratègia de reducció de consum de combustible. L'estudi presentat es va realitzar per a baixa, mitja i alta càrrega del motor amb dos diferents règims de gir del motor. Addicionalment, es va dur a terme un estudi del motor operand en condicions transitòries amb "cooled EGR". Es van realitzar una sèrie d'assajos usant el cicle NEDC com a base i es van provar diferents estratègies senzilles de control de l'obertura de la vàlvula d'EGR per a analitzar la influència del "cooled EGR" en condicions transitòries. La segona etapa consistix en el desenrotllament d'una metodologia per a optimitzar els paràmetres del diagrama de distribució (VVT) i l'inici d'injecció, per a càrregues mitges del motor, amb la finalitat de maximitzar el potencial de reducció de consum de combustible de l'estratègia "cooled EGR". Una vegada realitzada l'optimització, es va dur a terme un estudi usant la configuració òptima trobada, operant en sinergia amb altres tres estratègies usades per a reduir el consum de combustible del motor. Estes estratègies van ser avaluades amb la finalitat d'incrementar el rang d'operació de l'estratègia "cooled EGR" per a aconseguir reduir encara més el consum de combustible del motor. Addicionalment, es va dur a terme un estudi bàsic sobre la influència d'operar amb mescla pobra en la combustió, prestacions, renovació de la càrrega i emissions contaminants del motor, com a introducció a l'últim estudi dut a terme sobre la possibilitat d'usar l'estratègia de mescla pobra en conjunt amb l'estratègia de "cooled EGR", amb la finalitat d'analitzar el potencial de controlar les emissions contaminants i reduir el consum de combustible del motor al mateix temps.
Rivas Perea, ME. (2016). Assessment of fuel consumption reduction strategies on a gasoline turbocharged direct injection engine with a cooled EGR system [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68497
TESIS
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bar Fuel Injection System"

1

GmbH, Robert Bosch, ed. Gasoline fuel-injection system L-jetronic. 5th ed. Stuttgart: Robert Bosch, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Publishers, Crown, ed. Mort Schultz's electronic fuel injection repair manual: Troubleshooting and repairing electronic fuel injection system. New York: Crown Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

GmbH, Robert Bosch. KE-Jetronic: Electronically controlled gasoline fuel-injection system with Lambda closed-loopcontrol. Stuttgart: Bosch, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

GmbH, Robert Bosch, ed. Gasoline fuel-injection: System mono-jetronic : engine management for spark-ignition engines. 2nd ed. Stuttgart: Robert Bosch, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

GmbH, Robert Bosch, ed. Gasoline fuel-injection: System KE-jetronic : engine management for spark-ignition engines. 3rd ed. Stuttgart: Robert Bosch, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

GmbH, Robert Bosch, ed. Gasoline fuel-injection: System KE-jetronic : engine management for spark-ignition engines. 3rd ed. Stuttgart: Robert Bosch, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

GmbH, Robert Bosch, ed. Gasoline fuel-injection: System L-Jetronic : engine management for spark-ignition engine. 4th ed. Stuttgart: Robert Bosch, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

GmbH, Robert Bosch. L-Jetronic: Electronic gasoline fuel-injection system with Lambda closed-loop control. 2nd ed. Stuttgart: Bosch, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Firm), Motor Information Systems. Eagle Industries, fuel injection service guide, for vehicle model years, 1998-2008: Fuel system cleaning, injector cleaning, valve cleaning, decarbonizing. Strongsville, OH: Eagle Industries, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

J, Mack, Mount R, and United States. National Aeronautics and Space Administration., eds. Two rotor stratified charge rotary engine (SCRE) engine system technology evaluation. [Washington, D.C: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bar Fuel Injection System"

1

Zhang, Yajun, Chuanhui Cheng, and Zheng Xu. "Experimental Research of 500 bar Ultra-high-pressure Fuel Injection System for Gasoline Direct Injection Engine." In Lecture Notes in Electrical Engineering, 850–61. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3842-9_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hilgers, Michael. "The Fuel System and Fuel Injection." In Commercial Vehicle Technology, 31–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65102-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hilgers, Michael, and Wilfried Achenbach. "The Fuel System and Fuel Injection." In The Diesel Engine, 25–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-60857-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Projahn, Ulrich, Helmut Randoll, Erich Biermann, Jörg Brückner, Karsten Funk, Thomas Küttner, Walter Lehle, and Joachim Zuern. "Fuel Injection System Control Systems." In Handbook of Diesel Engines, 175–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89083-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuppuraj, R., and S. A. Pasupathy. "A Novel Beetle-Inspired Fuel Injection System for Improved Combustion Efficiency." In Lecture Notes in Mechanical Engineering, 467–75. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2718-6_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fiengo, Giovanni, Alessandro di Gaeta, Angelo Palladino, and Veniero Giglio. "Synthesis and Experimental Validation of a Fuel Injection Pressure Controller in a Common Rail System." In Common Rail System for GDI Engines, 57–78. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4468-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Hong, Tadashi Matsunaga, and Hua-Tay Lin. "Characterization of Poled Single-Layer PZT for PIEZO Stack in Fuel Injection System." In Mechanical Properties and Performance of Engineering Ceramics and Composites V, 127–36. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944127.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pal, Manojit, Vikram Kumar, Ankur Kalwar, Nalini Kanta Mukherjee, and Avinash Kumar Agarwal. "Prospects of Fuel Injection System for Dimethyl Ether Applications in Compression Ignition Engines." In Energy, Environment, and Sustainability, 11–36. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1513-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hammer, Jürgen, Dirk Naber, Michael Raff, and Dietmar Zeh. "Bosch Diesel Fuel Injection System – with modularity from entry up to High-End Segment." In Proceedings, 1–15. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-07650-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tripathi, Ayush, Suhan Park, Sungwook Park, and Avinash Kumar Agarwal. "Prospects of Dual-Fuel Injection System in Compression Ignition (CI) Engines Using Di-Methyl Ether (DME)." In Energy, Environment, and Sustainability, 223–59. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-8344-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bar Fuel Injection System"

1

Gao, Tongyang, Kelvin Xie, Shui Yu, Xiaoye Han, Meiping Wang, and Ming Zheng. "Characterization of N-Butanol High Pressure Injection From Modern Common Rail Injection System." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1129.

Full text
Abstract:
Increasing attention has being paid to alternative fuels that have the potential to reduce overall greenhouse gas emissions and fossil fuel dependence. The alcohol fuel n-butanol, as one of the advanced biofuels, can be potentially utilized as a partial or complete substitute for the diesel fuel in diesel engines. Experimental results from literature, as well as from the authors’ previous research, have shown promising trend of low soot and nitrogen oxides emissions from the combustion with n-butanol high pressure direct injection. However, due to the significant fuel property differences between n-butanol and diesel, the fuel delivery mechanism and combustion control algorithm need to be optimized for n-butanol use. A better understanding of the high pressure n-butanol injection characteristics, such as the injector opening/closing delays and spray droplet sizes, can provide the guidance for the control optimization and insights to the empirical observations of engine combustion and emissions. Meanwhile, the experimental data could be used for the model development of the n-butanol high pressure fuel injection events. In this work, injection rate measurement, high-speed video direct imaging, and phase Doppler anemometry (PDA) analysis of neat n-butanol and diesel fuel have been conducted with a light-duty high pressure common-rail fuel injection system. The injection rate measurement was performed with an offline injection rate analyzer at 20 bar backpressure to obtain the key parameters of the injector opening/closing delays, and the instantaneous pressure rise. The spray direct imaging was carried out in a pressurized chamber, and the PDA measurement was conducted on a test bench at ambient temperature and pressure. The injector dynamics and spray behavior with respect to the different fuels, variation of injection pressures, and variation of injection durations are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Wickman, D. D., K. V. Tanin, P. K. Senecal, Rolf D. Reitz, K. Gebert, R. L. Barkhimer, and N. J. Beck. "Methods and Results from the Development of a 2600 Bar Diesel Fuel Injection System." In SAE 2000 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-0947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, Samuel E., Jaclyn E. Nesbitt, and Jeffrey D. Naber. "Mass and Momentum Flux Measurements With a High Pressure Common Rail Diesel Fuel Injector." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35171.

Full text
Abstract:
The combined optimization of diesel engine power, fuel consumption, and emissions output significantly drives the development and tuning of engines. One leading subsystem that continues to receive major development and advancement is the fuel system. High pressure common rail systems lead fuel injection technology and utilize both solenoid and piezoelectric actuated injectors with a wide range of pressure and injection scheduling control. To optimize engine operation the fuel system’s capability is implemented through complex fuel scheduling coupled with charge preparation. With the number of parameters to control, fuel delivery (including dynamic flow characteristics) is one that must be well understood. Most rate of injection systems provide mass flow rate; however, studies have shown that momentum flux is a critical parameter controlling spray entrainment and penetration. To obtain the mass flow rate and momentum flux for a high pressure common rail diesel fuel injector, a rate of injection meter was designed, constructed, and tested allowing for the dynamic measurement of fuel injection with the capability of in-situ operation in a combustion vessel. Measurements were obtained by recording the force signal from a fuel spray jet impinging on the anvil of a force transducer. Combining the force signal with a measure of cumulative injected mass enables calculation of mass and momentum dynamics. The injection system consisted of a Bosch Generation 2 CRIP 2.2 solenoid controlled fuel injector with a single hole 0.129 mm diameter injector nozzle, driven by a custom programmable injector driver from Southwest Research Institute. Testing control variables were injection pressure and injection duration while using #2 ULSD fuel. Initial results showed high repeatability with a COV of less than 1.1 percent for all injection parameters with an average Cd of 0.92 and Ca of 0.97 for a mean injection pressure of 852 bar. A six point injection pressure sweep from 1000 to 1810 bar showed a 1.74 mg/ms overall increase in injection rate and a 0.16 ms overall decrease in fuel discharge duration. A six point injection duration sweep from 0.25 ms to 1.50 ms showed a 3.36 mg/ms total injection rate increase and a 0.68 ms overall increase in fuel discharge time while maintaining a consistent start-of-injection delay. The results show that this injection rate apparatus provides needed information on injection characteristics to assist engine manufacturers with achieving goals of high power with minimal emissions. Furthermore, it has been shown that this system is versatile for future injector characterizations over a wide range of pressures and durations, along with fuel type and injector parameters including nozzle hole diameter.
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Christopher J., Rajat Arora, Jaclyn E. Nesbitt, Seong-Young Lee, and Jeffrey D. Naber. "Characterization of Gasoline and E85 Direct Injection Sprays in a Constant Volume Vessel Under Late Cycle Engine Conditions." In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60009.

Full text
Abstract:
Spray characteristics of a high pressure gasoline direct injector were studied in a constant volume optical combustion vessel over a range of charge gas composition, pressure and temperature conditions for gasoline and E85. The fuel injector was a Bosch GDI injector, with fuel delivery provided through a high pressure accumulator supply system. The conditions were selected to match those for late injection timing during the compression stroke. To simulate the in-cylinder conditions, the combustion chamber temperatures and pressures were varied from 30°C to 305°C and from 1.8 bar to 9.2 bar respectively. Injection pressure was held constant at 30 bar. Injector and thus initial fuel temperature was controlled independently of the ambient conditions at 50°C. Simultaneous images were taken using Schlieren, laser luminescence and Mie scattering diagnostics. It was found that penetration and spray angle are primarily dependent on charge density, and vaporization is dependent on both charge density and charge temperature. The gasoline sprays are shown to have increased vaporization and higher penetration in comparison to E85.
APA, Harvard, Vancouver, ISO, and other styles
5

Dwivedi, U., C. D. Carpenter, E. S. Guerry, A. C. Polk, S. R. Krishnan, and K. K. Srinivasan. "Performance and Emissions Characteristics of Diesel-Ignited Gasoline Dual Fuel Combustion in a Single Cylinder Research Engine." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19108.

Full text
Abstract:
Diesel-ignited gasoline dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar IMEP, and a constant gasoline energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. Advancing SOI from 30 DBTDC to 60 DBTDC reduced ISNOx from 14 g/kWhr to less than 0.1 g/kWhr; further advancement of SOI did not yield significant ISNOx reduction. A fundamental change was observed from heterogeneous combustion at 30 DBTDC to “premixed enough” combustion at 50–80 DBTDC and finally to well-mixed diesel-assisted gasoline HCCI-like combustion at 170 DBTDC. Smoke emissions were less than 0.1 FSN at all SOIs, while ISHC and ISCO were in the range of 8–20 g/kWhr, with the earliest SOIs yielding very high values. Indicated fuel conversion efficiencies were ∼ 40–42.5%. An injection pressure sweep from 200 to 1300 bar at 50 DBTDC SOI and 1.5 bar intake boost showed that very low injection pressures lead to more heterogeneous combustion and higher ISNOx and ISCO emissions, while smoke and ISHC emissions remained unaffected. A boost pressure sweep from 1.1 to 1.8 bar at 50 DBTDC SOI and 500 bar rail pressure showed very rapid combustion for the lowest boost conditions, leading to high pressure rise rates, higher ISNOx emissions, and lower ISCO emissions, while smoke and ISHC emissions remained unaffected by boost pressure variations.
APA, Harvard, Vancouver, ISO, and other styles
6

Soloiu, Valentin, Remi Gaubert, Jose Moncada, Spencer Harp, Kyle Flowers, and Marcel Ilie. "Partially Premixed Compression Ignition of Fischer Tropsch Synthetic Paraffinic Kerosene (S8) With PFI of N-Butanol." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3674.

Full text
Abstract:
The combustion in an experimental medium duty direct injected engine was investigated in a dual mode process known as partially premixed compression ignition (PPCI). Both a common rail fuel injection system and port fuel injection (PFI) system have been custom designed and developed for the experimental single cylinder engine in order to research the combustion and emissions characteristics of Fischer Tropsch synthetic paraffinic kerosene (S8) with PFI of n-butanol in a low temperature combustion mode (LTC). Baseline results in single fuel (ULSD) combustion were compared to dual fuel strategies coupling both the low and high reactivity fuels. The low reactivity fuel, n-butanol, was port fuel injected in the intake manifold at a constant 30% fuel mass and direct injection of a high reactivity fuel initiated the combustion. The high reactivity fuels are ULSD and a gas to liquid fuel (GTL/S8). Research has been conducted at a constant speed of 1500 RPM at swept experimental engine loads from 3.8 bar to 5.8 bar indicated mean effective pressure (IMEP). Boost pressure and exhaust gas recirculation (EGR) were added at constant levels of 3 psi and 30% respectively. Dual fuel combustion with GTL advanced ignition timing due to the high auto ignition quality and volatility of the fuel. Low temperature heat release (LTHR) was also experienced for each dual-fuel injection strategy prior to the injection of the high reactivity fuel. Peak in-cylinder gas temperatures were similar for each fueling strategy, maintaining peak temperatures below 1400°C. Combustion duration increased slightly in ULSD-PPCI compared to single fuel combustion due to the low reactivity of n-butanol and was further extended with GTL-PPCI from early ignition timing and less premixing. The effect of the combustion duration and ignition delay increased soot levels for dual fuel GTL compared to dual fuel ULSD at 5.8 bar IMEP where the combustion duration is the longest. NOx levels were lowest for GTL-PPCI at each load, with up to a 70% reduction compared to ULSD-PPCI. Combustion efficiencies were also reduced for dual fuel combustion, however the atomization quality of GTL compared to ULSD increased combustion efficiency to reach that of single fuel combustion at 5.8 bar IMEP.
APA, Harvard, Vancouver, ISO, and other styles
7

James, Kemar C., Jin Wang, Zackery B. Morris, Michael C. Maynard, and Brian T. Fisher. "Development of a High-Pressure, High-Temperature, Optically Accessible Continuous-Flow Vessel for Fuel-Injection Experiments." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19102.

Full text
Abstract:
The focus of this work was to develop a continuous-flow vessel with extensive optical access for characterization of engine-relevant fuel-injection and spray processes. The spray chamber was designed for non-reacting experiments at pressures up to 1380 kPa (200 psi) and temperatures up to 200°C. Continuous flow of inert “sweep gas” enables acquisition of large statistical data samples and thus potentially enables characterization of stochastic spray processes. A custom flange was designed to hold a common-rail diesel injector, with significant flexibility to accommodate other injectors and injector types in the future. This flexibility, combined with the continuous flow through the chamber, may enable studies of gas-turbine direct-injection spray processes in the future. Overall, the user can control and vary: injection duration, injection pressure, sweep-gas temperature, sweep-gas pressure, and sweep-gas flow rate. The user also can control frequency of replicate injections. There are four flat windows installed orthogonally on the vessel for optical access. Optical data, at present, include global spray properties such as liquid-phase fuel penetration and cone angle. These measurements are made using a high-speed spray-visualization system (up to 100 kHz) consisting of a fast-pulsed LED (light emitting diode) source and a high-speed camera. Experimental control and data acquisition have been set up and synchronized using custom LabVIEW programs. The culmination of this development effort was an initial demonstration experiment to capture high-speed spray-visualization movies of n-heptane injections to determine liquid-phase fuel penetration length (i.e., liquid length) and spray cone angle. In this initial experiment, fuel-injection pressure was ∼120 MPa (1200 bar) and the injection command-pulse duration was 800 μs. At room conditions, liquid length and nominal spray cone angle were ∼170 mm and ∼14.5°, respectively. In contrast, with air flow in the chamber at 100 psi and 100°C, liquid length was considerably shorter at ∼92 mm and spray cone angle was wider at ∼16.5°. Future experiments will include the continuation of these measurements for a wider range of conditions and fuels, extension of high-speed imaging to vapor-phase fuel penetration using schlieren imaging techniques, and detailed characterization of spray properties near the injector nozzle and near the liquid length.
APA, Harvard, Vancouver, ISO, and other styles
8

Kar, Tanmay, Toluwalase Fosudo, Bret Windom, Daniel Olsen, Jensen Hoke, and Jeff Rogers. "Development of a Liquid-Phase LPG Delivery System for Direct Injection, Spark-Ignited Engines." In ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-91081.

Full text
Abstract:
Abstract Liquefied petroleum gas (LPG) is a promising diesel fuel alternative for heavy-duty vehicle applications due to its CO2 reduction potential, high knock resistance, easy liquefication capability, and lower fuel cost. Direct injection (DI) of liquid-phase LPG has emerged as a promising technology in spark-ignited (SI) engines due to the benefits from the in-cylinder charge cooling effect in comparison to external mixture formation systems. But this DI LPG technology requires a fuel delivery system that can supply the desired amount of LPG fuel in the liquid state at high pressure. This work first describes the design and component integration of an LPG fuel system that delivers fuel from the tank to the injector in the liquid state at around 172 bar, mainly focusing on thermal management aspects to avoid multi-phase behavior within the system. A detailed description of the injector developmental work, from reverse engineering of stock injectors to manufacturing a prototype LPG direct injector, is also presented, including nozzle modifications to accommodate a high LPG flow rate for heavy-duty applications. A one-dimensional (1D) flow model of the fuel delivery system is developed using the MATLAB/Simulink software platform to guide the selection and sizing of components and characterize the prototype injector. Bench testing of the fuel delivery system is performed with the unmodified stock and prototype LPG injectors using a Viscor calibration fluid and LPG to study the effect of fuel pressure and current profiles on the injected fuel quantity. The simulation models are shown to be capable of predicting the experimental results. Durability tests are also performed to understand the failure modes of different components in the fuel delivery system.
APA, Harvard, Vancouver, ISO, and other styles
9

Jayakumar, Chandrasekharan, Jagdish Nargunde, Anubhav Sinha, Walter Bryzik, Naeim A. Henein, and Eric Sattler. "Effect of Biodiesel, JP-8 and Ultra Low Sulfur Diesel Fuel on Autoignition, Combustion, Performance and Emissions in a Single Cylinder Diesel Engine." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35060.

Full text
Abstract:
Concern about the depletion of petroleum reserves, rising prices of conventional fuels, security of supply and global warming have driven research toward the development of renewable fuels for use in diesel engines. These fuels have different physical and chemical properties that affect the diesel combustion process. This paper compares between the autoignition, combustion, performance and emissions of soybean derived biodiesel, JP-8 and ultra low sulfur diesel (ULSD) in a high speed single-cylinder research diesel engine equipped with a common rail injection system. Tests were conducted at steady state conditions at different injection pressures ranging from 600 bar to 1200 bar. The ‘rate of heat release’ traces are analyzed to determine the effect of fuel properties on the ignition delay, premixed combustion fraction and mixing and diffusion controlled combustion fractions. Biodiesel produced the largest diffusion controlled combustion fraction at all injection pressures compared to ULSD and JP-8. At 600 bar injection pressure, the diffusion controlled combustion fraction for biodiesel was 53% whereas both JP-8 and ULSD produced 39%. In addition, the effect of fuel properties on engine performance, fuel economy, and engine-out emissions is determined. On an average JP-8 produced 3% higher thermal efficiency than ULSD. Special attention is given to the NOx emissions and particulate matter characteristics. On an average biodiesel produced 37% less NOx emissions compared to ULSD and JP-8.
APA, Harvard, Vancouver, ISO, and other styles
10

Engelmayer, Michael, Gert Taucher, Andreas Wimmer, Gernot Hirschl, and Thomas Kammerdiener. "Impact of Very High Injection Pressure on Soot Emissions of Medium Speed Large Diesel Engines." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5692.

Full text
Abstract:
Measures exist to adjust tailpipe NOx emissions to assigned values, for example cooled exhaust gas recirculation (EGR) or a SCR catalyst in conjunction with urea. The situation is quite different with soot when use of a trap is not feasible for reasons of cost, space requirements and maintenance. Due to the highly complex soot formation and oxidation process, soot emissions can’t be targeted as easily as NOX. So how can soot be kept within the limits? In principle, soot can be controlled by allocating sufficient oxygen and establishing good mixing conditions with vaporized fuel. The most effective measures target the injection system, e.g. increasing injection pressure, applying multiple injections, optimizing nozzle geometry. To investigate the impact of very high injection pressure on soot, an advanced injection system with rail pressure capability up to 3000 bar and a Bosch injector was installed at the Large Engines Competence Center (LEC) in Graz. Full load and part load operating points at constant speed and in accordance with the propeller law were investigated at the test bed to quantify the impact of high injection pressure on soot emissions. Test runs were conducted with both SCR and EGR while varying injection timing and air-fuel ratios. Use of a statistical method, Design of Experiments (DOE), helped reduce the number of tests. Optical investigations of the spray and combustion were conducted. The goal was to obtain soot concentration history traces with the two color method in order to better understand how soot originates and to be able to calibrate 3D CFD FIRE spray models for use with injection pressures of up to 3000 bar. Very low soot emissions can be achieved using high pressure injection, even when EGR is applied. DOE results provide a clear picture of the relationships between the parameters and can be used to optimize set values for the whole speed and load range. A reliable spray break up model can be used in further 3D CFD simulation to investigate how to reduce soot emissions.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bar Fuel Injection System"

1

Spencer Pack. An Innovative Injection and Mixing System for Diesel Fuel Reforming. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/936087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murayama, Tetsuya, Hidenori Kosaka, Tetsuya Aizawa, and Yukio Matsui. Control of Diesel Combustion Using Electronically Controlled Fuel Injection System. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshida, Koji, and Hideo Shoji. The Fuel Injection System Using the High-Voltage Electrical Discharge. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Komuro, Katsunori, Katsuichi Yagisawa, Shunji Akamatsu, Akira Hayashi, and Minoru Ueda. Fuel Injection System of Air-cooled Engines for Small Displacement Motorcycles. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Akiyama, Hiroshige, Kiyoshi Suzuki, Kazumi Araki, and Yoshikatsu Nakano. Development of carburetors and element parts of fuel injection system for motorcycles. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takano, Yuki, Katsuhiro Utsugi, Kazuhiko Sakaguchi, and Kenta Onishi. Development of Intake Air Pressure Sensorless Fuel Injection System for Small Motorcycles. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karasawa, Toshio, Shougo Hashimoto, and Ryouji Ehara. Development of Discharge Pump Type Fuel Injection System for Small Two-Wheel Vehicles. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ishibe, Eiichi, Kenji Torii, and Tsuyoshi Kasai. Development of a 4-Stroke Small-Displacement Scooter with Discharge Pump Type Fuel Injection System. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Sejun, Ocktaeck Lim, and Norimasa Lida. An Investigation on the Spray Characteristics of DME with Variation of Ambient Pressure using the Common Rail Fuel Injection System. Warrendale, PA: SAE International, November 2011. http://dx.doi.org/10.4271/2011-32-0591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kakuya, Hiromu, Shiro Yamaoka, Atsushi Shimada, Kunihiko Suzuki, and Shinya Sato. Development of a Gasoline HCCI Engine Control System (Second Report)~HCCI Combustion Stabilization in a Multi-Cylinder Gasoline Engine by Individual Cylinder Fuel Injection Control. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography