Academic literature on the topic 'Baouendi-Grushin operator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Baouendi-Grushin operator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Baouendi-Grushin operator"

1

Laptev, Ari, Michael Ruzhansky, and Nurgissa Yessirkegenov. "Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I." MATHEMATICA SCANDINAVICA 125, no. 2 (October 19, 2019): 239–69. http://dx.doi.org/10.7146/math.scand.a-114892.

Full text
Abstract:
In this paper we prove the Hardy inequalities for the quadratic form of the Laplacian with the Landau Hamiltonian type magnetic field. Moreover, we obtain a Poincaré type inequality and inequalities with more general families of weights. Furthermore, we establish weighted Hardy inequalities for the quadratic form of the magnetic Baouendi-Grushin operator for the magnetic field of Aharonov-Bohm type. For these, we show refinements of the known Hardy inequalities for the Baouendi-Grushin operator involving radial derivatives in some of the variables. The corresponding uncertainty type principles are also obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Banerjee, Agnid, and Ramesh Manna. "Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation." Discrete & Continuous Dynamical Systems 41, no. 11 (2021): 5105. http://dx.doi.org/10.3934/dcds.2021070.

Full text
Abstract:
<p style='text-indent:20px;'>In this paper, we obtain new Carleman estimates for a class of variable coefficient degenerate elliptic operators whose constant coefficient model at one point is the so called Baouendi-Grushin operator. This generalizes the results obtained by the two of us with Garofalo in [<xref ref-type="bibr" rid="b10">10</xref>] where similar estimates were established for the "constant coefficient" Baouendi-Grushin operator. Consequently, we obtain: (ⅰ) a Bourgain-Kenig type quantitative uniqueness result in the variable coefficient setting; (ⅱ) and a strong unique continuation property for a class of degenerate sublinear equations. We also derive a subelliptic version of a scaling critical Carleman estimate proven by Regbaoui in the Euclidean setting using which we deduce a new unique continuation result in the case of scaling critical Hardy type potentials.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Bahrouni, Anouar, Vicenţiu D. Rădulescu, and Dušan D. Repovš. "Nonvariational and singular double phase problems for the Baouendi-Grushin operator." Journal of Differential Equations 303 (December 2021): 645–66. http://dx.doi.org/10.1016/j.jde.2021.09.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bahrouni, Anouar, and Vicenţiu D. Rădulescu. "Singular double-phase systems with variable growth for the Baouendi-Grushin operator." Discrete & Continuous Dynamical Systems 41, no. 9 (2021): 4283. http://dx.doi.org/10.3934/dcds.2021036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mihăilescu, Mihai, Denisa Stancu-Dumitru, and Csaba Varga. "On the spectrum of a Baouendi–Grushin type operator: an Orlicz–Sobolev space setting approach." Nonlinear Differential Equations and Applications NoDEA 22, no. 5 (March 8, 2015): 1067–87. http://dx.doi.org/10.1007/s00030-015-0314-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Markasheva, V. A., and A. F. Tedeev. "Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi-Grushin type." Mathematical Notes 85, no. 3-4 (April 2009): 385–96. http://dx.doi.org/10.1134/s0001434609030092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Metafune, Giorgio, Luigi Negro, and Chiara Spina. "Lp estimates for Baouendi–Grushin operators." Pure and Applied Analysis 2, no. 3 (November 17, 2020): 603–25. http://dx.doi.org/10.2140/paa.2020.2.603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jia, Xiaobiao, and Shanshan Ma. "Holder estimates and asymptotic behavior for degenerate elliptic equations in the half space." Electronic Journal of Differential Equations 2023, no. 01-37 (April 5, 2023): 33. http://dx.doi.org/10.58997/ejde.2023.33.

Full text
Abstract:
In this article we investigate the asymptotic behavior at infinity of viscosity solutions to degenerate elliptic equations. We obtain Holder estimates, up to the flat boundary, by using the rescaling method. Also as a byproduct we obtain a Liouville type result on Baouendi-Grushin type operators.
APA, Harvard, Vancouver, ISO, and other styles
9

Kombe, Ismail. "Nonlinear degenerate parabolic equations for Baouendi–Grushin operators." Mathematische Nachrichten 279, no. 7 (May 2006): 756–73. http://dx.doi.org/10.1002/mana.200310391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garofalo, Nicola, and Dimiter Vassilev. "Strong Unique Continuation Properties of Generalized Baouendi–Grushin Operators." Communications in Partial Differential Equations 32, no. 4 (April 11, 2007): 643–63. http://dx.doi.org/10.1080/03605300500532905.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Baouendi-Grushin operator"

1

Tamekue, Cyprien. "Controllability, Visual Illusions and Perception." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.

Full text
Abstract:
Cette thèse explore deux applications distinctes de la théorie du contrôle dans différents domaines scientifiques : la physique et les neurosciences. La première application se concentre sur la contrôlabilité nulle de l'équation parabolique associée à l'opérateur de Baouendi-Grushin sur la sphère de dimension 2. En revanche, la deuxième application concerne la description mathématique des illusions visuelles du type MacKay, et se focalise sur l'effet MacKay et les expériences psychophysiques de Billock et Tsou, via le contrôle de l'équation des champs neuronaux à une seule couche du type Amari. De plus, pour le besoin d'application à la stabilité entrée-état et la stabilisation robuste, la thèse examine l'existence d'un équilibre dans un modèle de population de champs neuronaux à plusieurs couches de Wilson-Cowan, plus précisément lorsque l'entrée sensorielle est un retour d'état proportionnelle agissant uniquement sur l'état des populations de neurones excitateurs.Dans la première partie, nous étudions les propriétés de contrôlabilité nulle de l'équation parabolique associée à l'opérateur de Baouendi-Grushin défini par la structure presque-riemannienne canonique sur la sphère bidimensionnelle. Cet opérateur présente une dégénérescence à l'équateur de la sphère. Nous fournissons certaines propriétés de contrôlabilité nulle de cette équation dans ce cadre courbé, ce qui généralise celles de l'équation parabolique de Baouendi-Grushin définie sur le plan.Concernant les neurosciences, dans un premier temps, on s'intéresse à la description des illusions visuelles pour lesquelles les outils de la théorie du contrôle et même de l'analyse multiéchelle semblent inappropriés.Dans notre discussion, nous utilisons l'équation des champs neuronaux de type Amari, dans laquelle l'entrée sensorielle est interprétée comme une représentation corticale du stimulus visuel utilisé dans chaque expérience. Elle contient une fonction de contrôle distribuée localisée qui modélise la spécificité du stimulus, par exemple, l'information redondante au centre du motif en entonnoir de MacKay (``rayons de MacKay'') ou le fait que les stimuli visuels dans les expériences de Billock et Tsou sont localisés dans le champ visuel.Toujours dans le cadre des neurosciences, nous étudions l'existence d'un équilibre dans un modèle de population de champs neuronaux à plusieurs couches de Wilson-Cowan lorsque l'entrée sensorielle est un retour d'état proportionnelle agissant uniquement sur l'état du système des populations de neurones excitateurs. Nous proposons une condition suffisante modérée sur les fonctions de réponse garantissant l'existence d'un tel point d'équilibre. L'intérêt de ce travail réside dans son application lors de l'étude de la pertubation des oscillations cérébrales pathologiques associées à la maladie de Parkinson lorsqu'on stimule et mesure uniquement la population de neurones excitateurs
This thesis explores two distinct control theory applications in different scientific domains: physics and neuroscience. The first application focuses on the null controllability of the parabolic, spherical Baouendi-Grushin equation. In contrast, the second application involves the mathematical description of the MacKay-type visual illusions, focusing on the MacKay effect and Billock and Tsou's psychophysical experiments by controlling the one-layer Amari-type neural fields equation. Additionally, intending to study input-to-state stability and robust stabilization, the thesis investigates the existence of equilibrium in a multi-layer neural fields population model of Wilson-Cowan, specifically when the sensory input is a proportional feedback acting only on the system's state of the populations of excitatory neurons.In the first part, we investigate the null controllability properties of the parabolic equation associated with the Baouendi-Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere. It presents a degeneracy at the equator of the sphere. We provide some null controllability properties of this equation to this curved setting, which generalize that of the parabolic Baouendi-Grushin equation defined on the plane.Regarding neuroscience, initially, the focus lies on the description of visual illusions for which the tools of bifurcation theory and even multiscale analysis appear unsuitable. In our study, we use the neural fields equation of Amari-type in which the sensory input is interpreted as a cortical representation of the visual stimulus used in each experiment. It contains a localised distributed control function that models the stimulus's specificity, e.g., the redundant information in the centre of MacKay's funnel pattern (``MacKay rays'') or the fact that visual stimuli in Billock and Tsou's experiments are localized in the visual field.Always within the framework of neurosciences, we investigate the existence of equilibrium in a multi-layers neural fields population model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on the system's state of the population of excitatory neurons. There, we provide a mild condition on the response functions under which such an equilibrium exists. The interest of this work lies in its application in studying the disruption of pathological brain oscillations associated with Parkinson's disease when stimulating and measuring only the population of excitatory neurons
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Baouendi-Grushin operator"

1

Garofalo, Nicola, and Dimiter Vassilev. "Strong Unique Continuation for Generalized Baouendi-Grushin Operators." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography