Journal articles on the topic 'Band gap tailoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Band gap tailoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Koo, Jahyun, Bing Huang, Hosik Lee, Gunn Kim, Jaewook Nam, Yongkyung Kwon, and Hoonkyung Lee. "Tailoring the Electronic Band Gap of Graphyne." Journal of Physical Chemistry C 118, no. 5 (January 27, 2014): 2463–68. http://dx.doi.org/10.1021/jp4087464.
Full textLi, W., Y. Wang, H. Lin, S. Ismat Shah, C. P. Huang, D. J. Doren, Sergey A. Rykov, J. G. Chen, and M. A. Barteau. "Band gap tailoring of Nd3+-doped TiO2 nanoparticles." Applied Physics Letters 83, no. 20 (November 17, 2003): 4143–45. http://dx.doi.org/10.1063/1.1627962.
Full textChambouleyron, I. "Band‐gap tailoring in amorphous germanium‐nitrogen compounds." Applied Physics Letters 47, no. 2 (July 15, 1985): 117–19. http://dx.doi.org/10.1063/1.96288.
Full textMangamma, G., T. N. Sairam, M. Chitra, and M. Manikandan. "Tailoring the band gap of ZnO nanostructures using chromium." Physica B: Condensed Matter 610 (June 2021): 412922. http://dx.doi.org/10.1016/j.physb.2021.412922.
Full textShang, Shunli, Yi Wang, Zi-Kui Liu, Chia-En Yang, and Shizhuo Yin. "Band structure of FeBO3: Implications for tailoring the band gap of nanoparticles." Applied Physics Letters 91, no. 25 (December 17, 2007): 253115. http://dx.doi.org/10.1063/1.2824869.
Full textNair, Aparna V., and B. Manoj. "Tailoring of Energy Band Gap inGraphene-like System by Fluorination." Mapana - Journal of Sciences 18, no. 1 (January 1, 2019): 55–66. http://dx.doi.org/10.12723/mjs.48.4.
Full textYang, Lei, Qi Fu, Wenhui Wang, Jian Huang, Jianliu Huang, Jingyu Zhang, and Bin Xiang. "Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity." Nanoscale 7, no. 23 (2015): 10490–97. http://dx.doi.org/10.1039/c5nr02652k.
Full textFélix, Roberto, Alfons Weber, Ole Zander, Humberto Rodriguez-Álvarez, Björn-Arvid Schubert, Joachim Klaer, Regan G. Wilks, Hans-Werner Schock, Roland Mainz, and Marcus Bär. "Selenization of CuInS2 by rapid thermal processing – an alternative approach to induce a band gap grading in chalcopyrite thin-film solar cell absorbers?" Journal of Materials Chemistry A 7, no. 5 (2019): 2087–94. http://dx.doi.org/10.1039/c8ta10823d.
Full textSernelius, B. E., K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist. "Band-gap tailoring of ZnO by means of heavy Al doping." Physical Review B 37, no. 17 (June 15, 1988): 10244–48. http://dx.doi.org/10.1103/physrevb.37.10244.
Full textSahu, Mitali, Pramod K. Singh, S. P. Pandey, and B. Bhattacharya. "Band Gap Tailoring of Ni Doped Ternary Semiconductors for Photovoltaic Applications." Macromolecular Symposia 347, no. 1 (January 2015): 68–74. http://dx.doi.org/10.1002/masy.201400059.
Full textAgarwal, V., and J. A. del Rı́o. "Tailoring the photonic band gap of a porous silicon dielectric mirror." Applied Physics Letters 82, no. 10 (March 10, 2003): 1512–14. http://dx.doi.org/10.1063/1.1559420.
Full textWu, Aimin, Jing Li, Baodan Liu, Wenjin Yang, Yanan Jiang, Lusheng Liu, Xinglai Zhang, Changmin Xiong, and Xin Jiang. "Correction: Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1−x(ZnO)x solid solution." Dalton Transactions 46, no. 14 (2017): 4860. http://dx.doi.org/10.1039/c7dt90047c.
Full textGolubev, N. V., E. S. Ignat'eva, V. N. Sigaev, L. De Trizio, A. Azarbod, A. Paleari, and R. Lorenzi. "Nucleation-controlled vacancy formation in light-emitting wide-band-gap oxide nanocrystals in glass." Journal of Materials Chemistry C 3, no. 17 (2015): 4380–87. http://dx.doi.org/10.1039/c4tc02837f.
Full textSong, Myoung Geun, Jun Young Han, and Chung Wung Bark. "Effects of Doping Ratio of Cobalt and Iron on the Structure and Optical Properties of Bi3.25La0.75FexCo1–xTi2O12 (x = 0, 0.25, 0.5, 0.75, 1)." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 7841–44. http://dx.doi.org/10.1166/jnn.2015.11183.
Full textAl-Harthi, Salim, Mubarak Al-Saadi, Imad Al-Omari, Husein Sitepu, Khalid Melghit, Issa Al-Amri, Ashraf T. Al-Hinai, and Senoy Thomas. "Structural analysis and band gap tailoring of Fe3+-doped Zn–TiO2 nanoparticles." Applied Physics A 99, no. 1 (December 5, 2009): 237–44. http://dx.doi.org/10.1007/s00339-009-5508-4.
Full textKhalid, Muhammad, Saira Riaz, and Shahzad Naseem. "Tailoring of the Band Gap in Transition Metal-doped ZnO: First Principle Calculations." Materials Today: Proceedings 2, no. 10 (2015): 5246–50. http://dx.doi.org/10.1016/j.matpr.2015.11.030.
Full textWessler, Garrett C., Tong Zhu, Jon-Paul Sun, Alexis Harrell, William P. Huhn, Volker Blum, and David B. Mitzi. "Band Gap Tailoring and Structure-Composition Relationship within the Alloyed Semiconductor Cu2BaGe1–xSnxSe4." Chemistry of Materials 30, no. 18 (August 28, 2018): 6566–74. http://dx.doi.org/10.1021/acs.chemmater.8b03380.
Full textMuralidharan, M., V. Anbarasu, A. Elaya Perumal, and K. Sivakumar. "Band gap tailoring and enhanced ferromagnetism in Yb doped SrWo4 scheelite structured system." Journal of Materials Science: Materials in Electronics 26, no. 9 (June 9, 2015): 6875–86. http://dx.doi.org/10.1007/s10854-015-3304-9.
Full textMurali, Banavoth, and S. B. Krupanidhi. "Tailoring the Band Gap and Transport Properties of Cu3BiS3 Nanopowders for Photodetector Applications." Journal of Nanoscience and Nanotechnology 13, no. 6 (June 1, 2013): 3901–9. http://dx.doi.org/10.1166/jnn.2013.7133.
Full textPolat, O., F. M. Coskun, M. Coskun, Z. Durmus, Y. Caglar, M. Caglar, and A. Turut. "Tailoring the band gap of ferroelectric YMnO3 through tuning the Os doping level." Journal of Materials Science: Materials in Electronics 30, no. 4 (January 2, 2019): 3443–51. http://dx.doi.org/10.1007/s10854-018-00619-9.
Full textBhowmik, Dipak, Joy Mukherjee, and Prasanta Karmakar. "Projectile mass dependent nano patterning and optical band gap tailoring of muscovite mica." Radiation Physics and Chemistry 187 (October 2021): 109568. http://dx.doi.org/10.1016/j.radphyschem.2021.109568.
Full textAli, Hafiz T., Jolly Jacob, Salma Ikram, Tariq Sikandar, K. Mahmood, Mohammad Yusuf, A. Ali, N. Amin, K. Javaid, and Fouad A. Abolaban. "Band gap tailoring of hydrothermally synthesized WS2 nanoparticles by the sulfurization time duration." Ceramics International 47, no. 18 (September 2021): 25381–86. http://dx.doi.org/10.1016/j.ceramint.2021.05.260.
Full textJ., Fatima Rasheed, and V. Suresh Babu. "Investigations on Optical, Material and Electrical Properties of aSi:H and aSiGe:H in Making Proposed n+aSi:H/i-aSi:H/p+aSiGe:H Graded Bandgap Single-junction Solar Cell." Nanoscience & Nanotechnology-Asia 10, no. 5 (November 11, 2020): 709–18. http://dx.doi.org/10.2174/2210681209666190627152852.
Full textGao, R. Z., G. Y. Zhang, T. Ioppolo, and X. L. Gao. "Elastic wave propagation in a periodic composite beam structure: A new model for band gaps incorporating surface energy, transverse shear and rotational inertia effects." Journal of Micromechanics and Molecular Physics 03, no. 03n04 (September 2018): 1840005. http://dx.doi.org/10.1142/s2424913018400052.
Full textLi, Jing, Baodan Liu, Wenjin Yang, Yujin Cho, Xinglai Zhang, Benjamin Dierre, Takashi Sekiguchi, Aimin Wu, and Xin Jiang. "Solubility and crystallographic facet tailoring of (GaN)1−x(ZnO)x pseudobinary solid-solution nanostructures as promising photocatalysts." Nanoscale 8, no. 6 (2016): 3694–703. http://dx.doi.org/10.1039/c5nr08663a.
Full textSangeetha, R., and S. Muthukumaran. "Band gap tailoring and enhanced visible emission by two-step annealing in Zn0.94Cu0.04Cr0.02O nanocrystals." Journal of Materials Science: Materials in Electronics 26, no. 12 (August 15, 2015): 9667–79. http://dx.doi.org/10.1007/s10854-015-3634-7.
Full textShanid, N. A. Mohemmed, and M. Abdul Khadar. "Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films." Thin Solid Films 516, no. 18 (July 2008): 6245–52. http://dx.doi.org/10.1016/j.tsf.2007.11.119.
Full textLi, Weiwei, Ruiping Qin, Yi Zhou, Mattias Andersson, Fenghong Li, Chi Zhang, Binsong Li, Zhengping Liu, Zhishan Bo, and Fengling Zhang. "Tailoring side chains of low band gap polymers for high efficiency polymer solar cells." Polymer 51, no. 14 (June 2010): 3031–38. http://dx.doi.org/10.1016/j.polymer.2010.05.015.
Full textJang, Jum Suk, Pramod H. Borse, Jae Sung Lee, Sun Hee Choi, and Hyun Gyu Kim. "Indium induced band gap tailoring in AgGa1−xInxS2 chalcopyrite structure for visible light photocatalysis." Journal of Chemical Physics 128, no. 15 (April 21, 2008): 154717. http://dx.doi.org/10.1063/1.2900984.
Full textBadawi, Ali, Alia Hendi Al Otaibi, Ateyyah M. Albaradi, N. Al-Hosiny, and Sultan E. Alomairy. "Tailoring the energy band gap of alloyed Pb1−xZnxS quantum dots for photovoltaic applications." Journal of Materials Science: Materials in Electronics 29, no. 24 (October 19, 2018): 20914–22. http://dx.doi.org/10.1007/s10854-018-0235-2.
Full textKumar, Promod, Mohan Chandra Mathpal, Jai Prakash, Bennie C. Viljoen, W. D. Roos, and H. C. Swart. "Band gap tailoring of cauliflower-shaped CuO nanostructures by Zn doping for antibacterial applications." Journal of Alloys and Compounds 832 (August 2020): 154968. http://dx.doi.org/10.1016/j.jallcom.2020.154968.
Full textTyona, Mrumun David, R. U. Osuji, P. U. Asogwa, S. B. Jambure, and F. I. Ezema. "Structural modification and band gap tailoring of zinc oxide thin films using copper impurities." Journal of Solid State Electrochemistry 21, no. 9 (March 17, 2017): 2629–38. http://dx.doi.org/10.1007/s10008-017-3533-3.
Full textSakthivel, P., K. Kavi Rasu, A. Sivakami, P. Muthukrishnan, and G. K. D. Prasanna Venkatesan. "Band gap tailoring, structural and optical features of MgS nanoparticles: Influence of Ag+ ions." Optik 236 (June 2021): 166544. http://dx.doi.org/10.1016/j.ijleo.2021.166544.
Full textGoyal, Alisha, Jyoti Rozra, Isha Saini, Pawan K. Sharma, and Annu Sharma. "Refractive Index Tailoring of Poly(methylmethacrylate) Thin Films by Embedding Silver Nanoparticles." Advanced Materials Research 585 (November 2012): 134–38. http://dx.doi.org/10.4028/www.scientific.net/amr.585.134.
Full textCao, Hai Ning, Zhi Ya Zhang, Ming Su Si, Feng Zhang, and Yu Hua Wang. "Indirect-Direct Band Gap Transition by Van Der Waals Interaction Engineering in MoS2/WS2 Bilayer Heterojunction." Applied Mechanics and Materials 614 (September 2014): 70–74. http://dx.doi.org/10.4028/www.scientific.net/amm.614.70.
Full textGanose, Alex M., and David O. Scanlon. "Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics." Journal of Materials Chemistry C 4, no. 7 (2016): 1467–75. http://dx.doi.org/10.1039/c5tc04089b.
Full textMisra, Ramprasad, Pushkin Chakraborty, Subhas C. Roy, D. K. Maity, and S. P. Bhattacharyya. "Tailoring of spectral response and intramolecular charge transfer in β-enaminones through band gap tuning: synthesis, spectroscopy and quantum chemical studies." RSC Advances 6, no. 43 (2016): 36811–22. http://dx.doi.org/10.1039/c6ra00376a.
Full textChandrasekhar, D., David J. Smith, and J. Kouvetakis. "Characterization of Sil-ycy Alloy Layers Incorporating Si4c Building Blocks." Microscopy and Microanalysis 3, S2 (August 1997): 457–58. http://dx.doi.org/10.1017/s143192760000917x.
Full textPrabhash, P. G., and Swapna S. Nair. "Synthesis of copper quantum dots by chemical reduction method and tailoring of its band gap." AIP Advances 6, no. 5 (May 2016): 055003. http://dx.doi.org/10.1063/1.4948747.
Full textHone, Fekadu Gashaw, F. B. Dejene, and O. K. Echendu. "Band gap tailoring of chemically synthesized lead sulfide thin films by in situ Sn doping." Surface and Interface Analysis 50, no. 6 (May 10, 2018): 648–56. http://dx.doi.org/10.1002/sia.6454.
Full textChen, Qian, Hong Hu, Xiaojie Chen, and Jinlan Wang. "Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations." Applied Physics Letters 98, no. 5 (January 31, 2011): 053102. http://dx.doi.org/10.1063/1.3549299.
Full textPeymanfar, Reza, Elnaz Selseleh-Zakerin, and Ali Ahmadi. "Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4)." Journal of Alloys and Compounds 867 (June 2021): 159039. http://dx.doi.org/10.1016/j.jallcom.2021.159039.
Full textSanthaveesuk, Theerapong, Yoottana Keawtoakrue, Kwunta Siwawongkasem, and Supab Choopun. "Size and Shape Tailoring of ZnO Nanoparticles." Key Engineering Materials 675-676 (January 2016): 61–64. http://dx.doi.org/10.4028/www.scientific.net/kem.675-676.61.
Full textKhajuria, R., A. Sharma, and P. Sharma. "Effect of Sn Incorporation on Physical Parameters of Sb-Se Glassy System." Journal of Scientific Research 12, no. 4 (September 1, 2020): 545–54. http://dx.doi.org/10.3329/jsr.v12i4.46048.
Full textAsha, S., Y. Sangappa, and Sanjeev Ganesh. "Tuning the Refractive Index and Optical Band Gap of Silk Fibroin Films by Electron Irradiation." Journal of Spectroscopy 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/879296.
Full textBARUAH, SUNANDAN, RAHMAN FAIZUR RAFIQUE, and JOYDEEP DUTTA. "VISIBLE LIGHT PHOTOCATALYSIS BY TAILORING CRYSTAL DEFECTS IN ZINC OXIDE NANOSTRUCTURES." Nano 03, no. 05 (October 2008): 399–407. http://dx.doi.org/10.1142/s179329200800126x.
Full textHassanabadi, Ehsan, Masoud Latifi, Andrés F. Gualdrón-Reyes, Sofia Masi, Seog Joon Yoon, Macarena Poyatos, Beatriz Julián-López, and Iván Mora-Seró. "Ligand & band gap engineering: tailoring the protocol synthesis for achieving high-quality CsPbI3 quantum dots." Nanoscale 12, no. 26 (2020): 14194–203. http://dx.doi.org/10.1039/d0nr03180a.
Full textWu, Aimin, Jing Li, Baodan Liu, Wenjin Yang, Yanan Jiang, Lusheng Liu, Xinglai Zhang, Changmin Xiong, and Xin Jiang. "Band-gap tailoring and visible-light-driven photocatalytic performance of porous (GaN)1−x(ZnO)x solid solution." Dalton Transactions 46, no. 8 (2017): 2643–52. http://dx.doi.org/10.1039/c6dt04428j.
Full textKushwaha, Manvir S. "The phononic crystals: An unending quest for tailoring acoustics." Modern Physics Letters B 30, no. 19 (July 20, 2016): 1630004. http://dx.doi.org/10.1142/s0217984916300040.
Full textDilonardo, Elena, Maria M. Giangregorio, Maria Losurdo, Pio Capezzuto, Giovanni Bruno, Antonio Cardone, Carmela Martinelli, Gianluca M. Farinola, Francesco Babudri, and Francesco Naso. "Tailoring Optical Properties of Blue-Gap Poly(p-phenylene Vinylene)s for LEDs Applications." Advances in Science and Technology 75 (October 2010): 118–23. http://dx.doi.org/10.4028/www.scientific.net/ast.75.118.
Full text