Dissertations / Theses on the topic 'Banach algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Banach algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cowell, S. R. "Unitary Banach algebras." Thesis, Swansea University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636306.
Full textDaws, Matthew David Peter. "Banach algebras of operators." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414151.
Full textGourdeau, Frederic Marcel. "Amenability of Banach algebras." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305500.
Full textHeath, Matthew J. "Bounded derivations from Banach algebras." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519425.
Full textKnapper, Andrew. "Derivations on certain banach algebras." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368411.
Full textFeinstein, Joel Francis. "Derivations from Banach function algebras." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329058.
Full textYang, Hongfei. "Properties of Banach function algebras." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49075/.
Full textMudau, Leonard Gumani. "Zero divisors in banach algebras." Thesis, University of Limpopo (Medunsa Campus), 2010. http://hdl.handle.net/10386/632.
Full textChoi, Yemon. "Cohomology of commutative Banach algebras and l¹-semigroup algebras." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427291.
Full textSchick, G. J. "Spectrally bounded operators on Banach algebras." Thesis, Queen's University Belfast, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390862.
Full textBland, William J. "Banach function algebras and their properties." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364660.
Full textOliver, Thomas. "Extensions of endomorphisms of Banach algebras." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432001.
Full textPourabbas, Abdolrasoul. "The cohomology of some Banach algebras." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318540.
Full textZsák, András. "Algebras of operators on Banach spaces." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621830.
Full textHeymann, Retha. "Fredholm theory in general Banach algebras." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4265.
Full textENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm theory in the context of bounded linear operators on Banach spaces to a theory in a Banach algebra setting. A bounded linear operator T on a Banach space X is Fredholm if it has closed range and the dimension of its kernel as well as the dimension of the quotient space X/T(X) are finite. The index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl operators are those Fredholm operators of which the index is zero. Browder operators are Fredholm operators with finite ascent and descent. Harte’s generalisation is motivated by Atkinson’s theorem, according to which a bounded linear operator on a Banach space is Fredholm if and only if its coset is invertible in the Banach algebra L(X) /K(X), where L(X) is the Banach algebra of bounded linear operators on X and K(X) the two-sided ideal of compact linear operators in L(X). By Harte’s definition, an element a of a Banach algebra A is Fredholm relative to a Banach algebra homomorphism T : A ! B if Ta is invertible in B. Furthermore, an element of the form a + b where a is invertible in A and b is in the kernel of T is called Weyl relative to T and if ab = ba as well, the element is called Browder. Harte consequently introduced spectra corresponding to the sets of Fredholm, Weyl and Browder elements, respectively. He obtained several interesting inclusion results of these sets and their spectra as well as some spectral mapping and inclusion results. We also convey a related result due to Harte which was obtained by using the exponential spectrum. We show what H. du T. Mouton and H. Raubenheimer found when they considered two homomorphisms. They also introduced Ruston and almost Ruston elements which led to an interesting result related to work by B. Aupetit. Finally, we introduce the notions of upper and lower semi-regularities – concepts due to V. M¨uller. M¨uller obtained spectral inclusion results for spectra corresponding to upper and lower semi-regularities. We could use them to recover certain spectral mapping and inclusion results obtained earlier in the thesis, and some could even be improved.
AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op ’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van ’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is. As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word die element Browder relatief tot T genoem. Harte het vervolgens spektra gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate met betrekking tot insluitings van die verskillende versamelings en hulle spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate. Ons dra ook ’n verwante resultaat te danke aan Harte oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak. Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik ’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter word.
Kuo, Po Ling. "Algebras de Banach de funções continuas." [s.n.], 2003. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306891.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-03T00:57:25Z (GMT). No. of bitstreams: 1 Kuo_PoLing_M.pdf: 558728 bytes, checksum: c3e86d7e2ae08fa1336b62cf274673dc (MD5) Previous issue date: 2003
Mestrado
Mestre em Matemática
Bertoloto, Fábio José. "Algebras de Banach de funções analiticas." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307335.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação
Made available in DSpace on 2018-08-04T04:15:50Z (GMT). No. of bitstreams: 1 Bertoloto_FabioJose_M.pdf: 1324259 bytes, checksum: f7fd3d37bfe8d06ad156b30761402bfe (MD5) Previous issue date: 2005
Resumo: O principal objetivo deste trabalho é o estudo de certos espaços de Banach de funções analíticas no disco aberto unitário, conhecidos como espaços de Hardy. Um outro objetivo é o estudo das propriedades básicas de álgebras de Banach, com especial ênfase na álgebra do disco e na álgebra das funções analíticas e limitadas no disco aberto unitário
Abstract: The main objective of this work is the study of certain Banach spaces of analytic functions on the open unit disc, known as Hardy spaces. Another objective is the study of the basic properties of Banach algebras, with special emphasis in the disc algebra and the algebra of bounded analytic functions in the open unit disc
Mestrado
Matematica
Mestre em Matemática
White, Jared. "Banach algebras on groups and semigroups." Thesis, Lancaster University, 2018. http://eprints.lancs.ac.uk/125490/.
Full textOberbroeckling, Lisa A. "Generalized inverses in certain Banach algebras /." view abstract or download file of text, 2002. http://wwwlib.umi.com/cr/uoregon/fullcit?p3055703.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 57-58). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p3055703.
Moore, David. "Endomorphisms of commutative unital Banach algebras." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39674/.
Full textZhang, Yong. "Amenability and weak amenability of Banach algebras." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0004/NQ41635.pdf.
Full textHowey, Richard Andrew Jonathon. "Approximately multiplicative maps between some Banach algebras." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324859.
Full textMuzundu, Kelvin. "Spectral theory in commutatively ordered banach algebras." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71619.
Full textWeigt, Martin. "Spectrum preserving linear mappings between Banach algebras." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53597.
Full textENGLISH ABSTRACT: Let A and B be unital complex Banach algebras with identities 1 and I' respectively. A linear map T : A -+ B is invertibility preserving if Tx is invertible in B for every invertible x E A. We say that T is unital if Tl = I'. IfTx2 = (TX)2 for all x E A, we call T a Jordan homomorphism. We examine an unsolved problem posed by 1. Kaplansky: Let A and B be unital complex Banach algebras and T : A -+ B a unital invertibility preserving linear map. What conditions on A, Band T imply that T is a Jordan homomorphism? Partial motivation for this problem are the Gleason-Kahane-Zelazko Theorem (1968) and a result of Marcus and Purves (1959), these also being special instances of the problem. We will also look at other special cases answering Kaplansky's problem, the most important being the result stating that if A is a von Neumann algebra, B a semi-simple Banach algebra and T : A -+ B a unital bijective invertibility preserving linear map, then T is a Jordan homomorphism (B. Aupetit, 2000). For a unital complex Banach algebra A, we denote the spectrum of x E A by Sp (x, A). Let a(x, A) denote the union of Sp (x, A) and the bounded components of
Skillicorn, Richard. "Discontinuous homomorphisms from Banach algebras of operators." Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/79356/.
Full textMorley, Sam. "Regularity and extensions of Banach function algebras." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/43358/.
Full textZuick, Nhan H. "The Gelfand Theorem for Commutative Banach Algebras." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/243.
Full textBird, Alistair. "A study of James-Schreier spaces as Banach spaces and Banach algebras." Thesis, Lancaster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.551626.
Full textWilkins, Timothy John Digby. "Spectral characterisations in non-associative algebras." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243002.
Full textKilgour, Christopher Edward. "Radical convolution algebras." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319998.
Full textEsslamzadeh, Gholam Hossein. "Banach algebra structure and amenability of a class of matrix algebras with applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/NQ29033.pdf.
Full textDas, Bata Krishna. "Quantum stochastic analysis in Banach space and operator space." Thesis, Lancaster University, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.660115.
Full textLawson, Paul David. "Ideals in Banach algebras and notions of amenability." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491742.
Full textPinto, Dominic Luiz. "Convolution semigroups, and primes in radical Banach algebras." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435784.
Full textBoos, Lynette J. "Function Algebras on Riemann Surfaces and Banach Spaces." Bowling Green State University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1151340555.
Full textAdamo, Maria Stella. "Representable functionals and derivations on Banach quasi *-algebras." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4117.
Full textD'Alessandro, S. "POLYNOMIAL ALGEBRAS AND SMOOTH FUNCTIONS IN BANACH SPACES." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244407.
Full textPanova, Olga. "Real Gelfand-Mazur algebras /." Online version, 2006. http://dspace.utlib.ee/dspace/bitstream/10062/117/1/panovaolga.pdf.
Full textAli, Abdullah Khalifa Saeed. "Some topics in the theory of Banach function algebras." Thesis, University of Nottingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338490.
Full textPham, Hung Le. "The functions of homomorphisms and derivations from Banach algebras." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421451.
Full textYoung, Matthew. "The structure of spectrally bounded operators on Banach algebras." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709866.
Full textCushing, David. "Homological properties of Banach and C*-algebras of continuous fields." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/3024.
Full textPedersen, Thomas Vils. "Banach algebras of functions on the circle and the disc." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338209.
Full textBenjamin, Ronalda Abigail Marsha. "Continuity of Drazin and generalized Drazin inversion in Banach algebras." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79878.
Full textFalco, Benavent Francisco Javier. "Complex approximation and fibers of Banach algebras of analytic functions." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1478016863252231.
Full textCho, Chong-Man d. "M-ideal structures in operator algebras /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487259125219421.
Full textNeale, Daniel Lloyd. "Topics in automatic continuity for banach and other complete metrizable algebras." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616117.
Full textJiang, Jiaosheng. "Bounded operators without invariant subspaces on certain Banach spaces." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037506.
Full textSantos, Elisa Regina dos 1984. "A equação de Daugavet para polinômios em espaços de Banach." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307318.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-21T23:57:51Z (GMT). No. of bitstreams: 1 Santos_ElisaReginados_D.pdf: 2025728 bytes, checksum: 9a431cb6242382a2edc9a78d9a7467e4 (MD5) Previous issue date: 2013
Resumo: O resumo poderá ser visualizado no texto completo da tese digital
Abstract: The abstract is available with the full electronic document
Doutorado
Matematica
Doutor em Matemática
Martini, Alessio. "Algebras of differential operators on Lie groups and spectral multipliers." Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85663.
Full text