Academic literature on the topic 'Banach algebras'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Banach algebras.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Banach algebras"

1

Nasr-Isfahani, R. "Fixed point characterization of left amenable Lau algebras." International Journal of Mathematics and Mathematical Sciences 2004, no. 62 (2004): 3333–38. http://dx.doi.org/10.1155/s0161171204310446.

Full text
Abstract:
The present paper deals with the concept of left amenability for a wide range of Banach algebras known as Lau algebras. It gives a fixed point property characterizing left amenable Lau algebras𝒜in terms of left Banach𝒜-modules. It also offers an application of this result to some Lau algebras related to a locally compact groupG, such as the Eymard-Fourier algebraA(G), the Fourier-Stieltjes algebraB(G), the group algebraL1(G), and the measure algebraM(G). In particular, it presents some equivalent statements which characterize amenability of locally compact groups.
APA, Harvard, Vancouver, ISO, and other styles
2

Ludkovsky, S., and B. Diarra. "Spectral integration and spectral theory for non-Archimedean Banach spaces." International Journal of Mathematics and Mathematical Sciences 31, no. 7 (2002): 421–42. http://dx.doi.org/10.1155/s016117120201150x.

Full text
Abstract:
Banach algebras over arbitrary complete non-Archimedean fields are considered such that operators may be nonanalytic. There are different types of Banach spaces over non-Archimedean fields. We have determined the spectrum of some closed commutative subalgebras of the Banach algebraℒ(E)of the continuous linear operators on a free Banach spaceEgenerated by projectors. We investigate the spectral integration of non-Archimedean Banach algebras. We define a spectral measure and prove several properties. We prove the non-Archimedean analog of Stone theorem. It also contains the case ofC-algebrasC∞(X,𝕂). We prove a particular case of a representation of aC-algebra with the help of aL(Aˆ,μ,𝕂)-projection-valued measure. We consider spectral theorems for operators and families of commuting linear continuous operators on the non-Archimedean Banach space.
APA, Harvard, Vancouver, ISO, and other styles
3

Yoon Yang, Seo, Abasalt Bodaghi, and Kamel Ariffin Mohd Atan. "Approximate Cubic ∗-Derivations on Banach ∗-Algebras." Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/684179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ludkowski, Sergey Victor. "Algebras of Vector Functions over Normed Fields." Inventions 7, no. 4 (November 14, 2022): 102. http://dx.doi.org/10.3390/inventions7040102.

Full text
Abstract:
This article is devoted to study of vector functions in Banach algebras and Banach spaces over normed fields. A structure of their Banach algebras is investigated. Banach algebras of vector functions with values in ∗-algebras, finely regular algebras, B∗-algebras, and operator algebras are scrutinized. An approximation of vector functions is investigated. The realizations of these algebras by operator algebras are studied.
APA, Harvard, Vancouver, ISO, and other styles
5

Ebadian, A., and A. Jabbari. "ГИПЕРТАУБЕРОВЫ АЛГЕБРЫ, ОПРЕДЕЛЕННЫЕ ГОМОМОРФИЗМОМ БАНАХОВОЙ АЛГЕБРЫ." Вестник КРАУНЦ. Физико-математические науки, no. 1 (May 4, 2019): 18–28. http://dx.doi.org/10.26117/2079-6641-2019-26-1-18-28.

Full text
Abstract:
Let A and B be Banach algebras and T: B→A be a continuous homomorphism. We consider left multipliers from A×TB into its the first dual i.e., A*×B* and we show that A×TB is a hyper-Tauberian algebra if and only if A and B are hyper-Tauberian algebras. Пусть A и B – банаховы алгебры, а T: B→A – непрерывный гомоморфизм. Мы рассматриваем левые мультипликаторы из A×TB в его первое двойственное, т.е. A*×B*, и показываем, что A×TB является гипертауберовой алгеброй тогда и только тогда, когда A и B являются гипертауберовыми алгебрами.
APA, Harvard, Vancouver, ISO, and other styles
6

Srivastava, Neeraj, S. Bhattacharya, and S. N. Lal. "2-normed algebras-II." Publications de l'Institut Math?matique (Belgrade) 90, no. 104 (2011): 135–43. http://dx.doi.org/10.2298/pim1104135s.

Full text
Abstract:
In the first part of the paper [5], we gave a new definition of real or complex 2-normed algebras and 2-Banach algebras. Here we give two examples which establish that not all 2-normed algebras are normable and a 2-Banach algebra need not be a 2-Banach space. We conclude by deriving a new and interesting spectral radius formula for 1-Banach algebras from the basic properties of 2-Banach algebras and thus vindicating our definitions of 2-normed and 2-Banach algebras given in [5].
APA, Harvard, Vancouver, ISO, and other styles
7

BATKUNDE, HARMANUS, and Elvinus R. Persulessy. "ALJABAR-C* DAN SIFATNYA." BAREKENG: Jurnal Ilmu Matematika dan Terapan 6, no. 1 (March 1, 2012): 19–22. http://dx.doi.org/10.30598/barekengvol6iss1pp19-22.

Full text
Abstract:
These notes in this paper form an introductory of C*-algebras and its properties. Some results on more general Banach algebras and C*-algebras, are included. We shall prove and discuss basic properties of Banach Algebras, C*-algebras, and commutative C*-algebras. We will also give important examples for Banach Algebras, C*-algebras, and commutative C*-algebras.
APA, Harvard, Vancouver, ISO, and other styles
8

Maouche, Abdelaziz. "Gleason-Kahane-Zelazko Theorem in Jordan Banach algebras." Gulf Journal of Mathematics 16, no. 2 (April 12, 2024): 39–51. http://dx.doi.org/10.56947/gjom.v16i2.1868.

Full text
Abstract:
We review the celebrated Gleason-Kahane-Zelazko and Kowalski-Slodkowski theorems from the setting of associative Banach algebras to the wider class of nonassociative Jordan Banach algebras. We introduce the notion of almost multiplicative linear functionals in Jordan Banach algebras and prove a theorem extending a former result of B.E. Johnson for Banach algebras by employing the more recent concept of condition spectrum. We show how to rediscover the Gleason-Kahane-Zelazko theorem for Jordan Banach algebras from the corresponding version for almost multiplicative linear functionals.
APA, Harvard, Vancouver, ISO, and other styles
9

Gourdeau, Frédéric. "Amenability of Lipschitz algebras." Mathematical Proceedings of the Cambridge Philosophical Society 112, no. 3 (November 1992): 581–88. http://dx.doi.org/10.1017/s0305004100071267.

Full text
Abstract:
In this article, we study the amenability of Banach algebras in general, and that of Lipschitz algebras in particular. After introducing an alternative definition of amenability, we extend a result of [5], thereby proving a new characterization of amenability for Banach algebras. This characterization relates the amenability of a Banach algebra A to the space of bounded homomorphisms from A into another Banach algebra B (Theorem 4). This result allows us to solve the problem of amenability for virtually all Lipschitz algebras (of complex or Banach algebra valued functions), a class of algebras which has been studied in [2], [4] and [5].
APA, Harvard, Vancouver, ISO, and other styles
10

Khodakarami, Wania, Hoger Ghahramani, and Esmaeil Feizi. "Relative amenability of Banach algebras." Filomat 36, no. 6 (2022): 2091–103. http://dx.doi.org/10.2298/fil2206091k.

Full text
Abstract:
Let A be a Banach algebra and I be a closed ideal of A. We say that A is amenable relative to I, if A/I is an amenable Banach algebra. We study the relative amenability of Banach algebras and investigate the relative amenability of triangular Banach algebras and Banach algebras associated to locally compact groups. We generalize some of the previous known results by applying the concept of relative amenability of Banach algebras, especially, we present a generalization of Johnson?s theorem in the concept of relative amenability.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Banach algebras"

1

Cowell, S. R. "Unitary Banach algebras." Thesis, Swansea University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636306.

Full text
Abstract:
Chapter 1 defines the notion of a unitary Banach algebra, and gives various examples. The inheritance of the unitary property of quotients and subalgebras is investigated, the main result being that the class of unitary Banach algebras is exactly the class of quotients of discrete group algebras. One problem that is discussed is whether a unitary subalgebra needs to inherit the unit element. Chapter 2 gives several other characterisations of unitary Banach algebras among norm-unital Banach algebras, in particular by conditions on the numerical range. The topological properties of the unitary Banach algebra are also discussed. Chapter 3 deals with isometric isomorphisms of unitary Banach algebras. In particular it is shown that, for groups G1 and G2, and A a norm-unital Banach algebra with connected unitary group, or a unital C*-algebra, the existence of an isometric isomorphism from l1 (G1, A) onto ll (G2, A) implies that G1 and G2 are isomorphic. If A is commutative then these two results can be generalised to be case of locally compact abelian groups G1 and G2, and the Banach algebras L1(G1, A) and L1 (G2, A).
APA, Harvard, Vancouver, ISO, and other styles
2

Daws, Matthew David Peter. "Banach algebras of operators." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gourdeau, Frederic Marcel. "Amenability of Banach algebras." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heath, Matthew J. "Bounded derivations from Banach algebras." Thesis, University of Nottingham, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knapper, Andrew. "Derivations on certain banach algebras." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Feinstein, Joel Francis. "Derivations from Banach function algebras." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Hongfei. "Properties of Banach function algebras." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49075/.

Full text
Abstract:
This thesis is devoted to the study of various properties of Banach function algebras. We are particularly interested in the study of antisymmetric decompositions for uniform algebras and regularity of Banach function algebras. We are also interested in the study of Swiss cheese sets, essential uniform algebras and characterisations of C(X) among its subalgebras. The maximal antisymmetric decomposition for uniform algebras is a generalisation of the celebrated Stone-Weierstrass theorem and it is a powerful tool in the study of uniform algebras. However, in the literature, not much attention has been paid to the study of closed antisymmetric subsets. In Section 1.7 we give a characterisation of all the closed antisymmetric subsets for the disc algebra on the unit circle, and we use this characterisation to give a new proof of Wermer’s maximality theorem. Then in Section 4.1 we give characterisations of all the closed antisymmetric subsets for normal uniform algebras on the unit interval or the unit circle. The two types of regularity points, the R-point and the point of regularity, are important concepts in the study of regularity of Banach function algebras. In Section 3.2 we construct two examples of compact plane sets X, such that R(X) has either one R-point while having no points of regularity, or R(X) has one point of continuity while having no R-points. There are the first known examples of natural uniform algebras in the literature which show that R-points and points of continuity can be different. We then use properties of regularity points to study R(X) which is not regular while having no non-trivial Jensen measures. We also use properties of regularity points in Section 4.2 to study small exceptional sets for uniform algebras. In Chapter 2 we study Swiss cheese sets. Our approach is to regard Swiss cheese sets “abstractly”: we study the family of sequences of pairs of numbers, where the numbers represent the centre and radius of discs in the complex plane. We then give a natural topology on the space of abstract Swiss cheeses and give topological proofs of various classicalisation theorems. It is standard that the study of general uniform algebras can be reduced to the study of essential uniform algebras. In Chapter 5 we study methods to construct essential uniform algebras. In particular, we continue to study the method introduced in [26] to show that some more properties are inherited by the constructed essential uniform algebra from the original one. We note that the material in Chapter 2 is joint work with J. Feinstein and S. Morley and is published in [28, 27]. The material in Chapter 3 is joint work with J. Feinstein and is published in [32]. Section 4.2 contains joint work with J. Feinstein.
APA, Harvard, Vancouver, ISO, and other styles
8

Mudau, Leonard Gumani. "Zero divisors in banach algebras." Thesis, University of Limpopo (Medunsa Campus), 2010. http://hdl.handle.net/10386/632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Yemon. "Cohomology of commutative Banach algebras and l¹-semigroup algebras." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schick, G. J. "Spectrally bounded operators on Banach algebras." Thesis, Queen's University Belfast, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390862.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Banach algebras"

1

Runde, Volker. Amenable Banach Algebras. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-0716-0351-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albrecht, Ernst, and Martin Mathieu, eds. Banach Algebras 97. Berlin, Boston: DE GRUYTER, 1998. http://dx.doi.org/10.1515/9783110802009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pier, Jean-Paul. Amenable Banach algebras. Harlow, Essex, England: Longman Scientific & Technical, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Loy Richard, Runde Volker, Sołtysiak Andrzej, Stefan Banach International Mathematical Center, and Instytut Matematyczny (Polska Akademia Nauk), eds. Banach algebras 2009. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Palmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge [England]: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Palmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge: Cambridge University Press, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

García, Miguel Cabrera. Non-associative normed algebras. Cambridge: Cambridge University Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaniuth, Eberhard. A course in commutative Banach algebras. New York, NY: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jarosz, Krzysztof. Perturbations of Banach Algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0076885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yood, Bertram. Banach algebras: An introduction. Ottawa: Carleton University, Mathematics and Statistics, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Banach algebras"

1

Müller, Vladimir. "Banach Algebras." In Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 1–79. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7788-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Douglas, Ronald G. "Banach Algebras." In Graduate Texts in Mathematics, 30–57. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1656-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kutateladze, S. S. "Banach Algebras." In Fundamentals of Functional Analysis, 213–35. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8755-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bogachev, Vladimir I., and Oleg G. Smolyanov. "Banach Algebras." In Real and Functional Analysis, 483–510. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38219-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deitmar, Anton, and Siegfried Echterhoff. "Banach Algebras." In Principles of Harmonic Analysis, 37–60. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05792-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dales, H. G., and A. Ya Helemskii. "Banach algebras." In Lecture Notes in Mathematics, 51–154. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0100203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muscat, Joseph. "Banach Algebras." In Functional Analysis, 277–305. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06728-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bowers, Adam, and Nigel J. Kalton. "Banach Algebras." In An Introductory Course in Functional Analysis, 181–206. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1945-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pohl, Volker, and Holger Boche. "Banach Algebras." In Foundations in Signal Processing, Communications and Networking, 51–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03639-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roch, Steffen, Pedro A. Santos, and Bernd Silbermann. "Banach algebras." In Non-commutative Gelfand Theories, 3–61. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-183-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Banach algebras"

1

Jarosz, Krzysztof. "Wiesław Żelazko, topological algebras, Banach algebras." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laustsen, Niels Jakob, and Richard J. Loy. "Closed ideals in the Banach algebra of operators on a Banach space." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BASSEY, U. N. "ON COMPACT ELEMENTS OF BANACH ALGEBRAS." In Proceedings of the Fourth International Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773241_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

González, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moslehian, Mohammad Sal. "On (Co)homology of triangular Banach algebras." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

PLAKSA, S. A. "HARMONIC COMMUTATIVE BANACH ALGEBRAS AND SPATIAL POTENTIAL FIELDS." In Proceedings of the Conference Satellite to ICM 2006. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812778833_0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

PALACIOS, ÁNGEL RODRÍGUEZ. "ABSOLUTE-VALUED ALGEBRAS, AND ABSOLUTE-VALUABLE BANACH SPACES." In Proceedings of the First International School. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702371_0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Allan, Graham R. "Elements of finite closed descent in Banach and Fréchet algebras." In Topological Algebras, their Applications, and Related Topics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc67-0-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gürdal, M., U. Yamancı, and S. Saltan. "Generators of certain function Banach algebras and related questions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keyl, Michael. "Quantum control in infinite dimensions and Banach-Lie algebras." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography