Academic literature on the topic 'Balance de Sverdrup'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Balance de Sverdrup.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Balance de Sverdrup":

1

Thomas, Matthew D., Agatha M. De Boer, Helen L. Johnson, and David P. Stevens. "Spatial and Temporal Scales of Sverdrup Balance*." Journal of Physical Oceanography 44, no. 10 (October 1, 2014): 2644–60. http://dx.doi.org/10.1175/jpo-d-13-0192.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales.
2

Wunsch, Carl, and Dean Roemmich. "Is the North Atlantic in Sverdrup Balance?" Journal of Physical Oceanography 15, no. 12 (December 1985): 1876–80. http://dx.doi.org/10.1175/1520-0485(1985)015<1876:itnais>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wunsch, Carl. "The decadal mean ocean circulation and Sverdrup balance." Journal of Marine Research 69, no. 2 (March 1, 2011): 417–34. http://dx.doi.org/10.1357/002224011798765303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gray, Alison R., and Stephen C. Riser. "A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo." Journal of Physical Oceanography 44, no. 4 (April 1, 2014): 1213–29. http://dx.doi.org/10.1175/jpo-d-12-0206.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Using observations from the Argo array of profiling floats, the large-scale circulation of the upper 2000 decibars (db) of the global ocean is computed for the period from December 2004 to November 2010. The geostrophic velocity relative to a reference level of 900 db is estimated from temperature and salinity profiles, and the absolute geostrophic velocity at the reference level is estimated from the trajectory data provided by the floats. Combining the two gives the absolute geostrophic velocity on 29 pressure surfaces spanning the upper 2000 db of the global ocean. These velocities, together with satellite observations of wind stress, are then used to evaluate Sverdrup balance, the simple canonical theory relating meridional geostrophic transport to wind forcing. Observed transports agree well with predictions based on the wind field over large areas, primarily in the tropics and subtropics. Elsewhere, especially at higher latitudes and in boundary regions, Sverdrup balance does not accurately describe meridional geostrophic transports, possibly due to the increased importance of the barotropic flow, nonlinear dynamics, and topographic influence. Thus, while it provides an effective framework for understanding the zero-order wind-driven circulation in much of the global ocean, Sverdrup balance should not be regarded as axiomatic.
5

Gray, Alison R., and Stephen C. Riser. "Reply to “Comments on ‘A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo’”." Journal of Physical Oceanography 45, no. 5 (May 2015): 1449–50. http://dx.doi.org/10.1175/jpo-d-14-0215.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Le Corre, Mathieu, Jonathan Gula, and Anne-Marie Tréguier. "Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model." Ocean Science 16, no. 2 (April 20, 2020): 451–68. http://dx.doi.org/10.5194/os-16-451-2020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity advection, the bottom pressure torque, and the wind stress curl. However, these dynamics have been studied mostly with non-eddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic subpolar gyre using a new eddy-resolving simulation (with a grid space of ≈2 km) with topography-following vertical coordinates to better represent the mesoscale turbulence and flow–topography interactions. Our findings highlight that, locally, there is a first-order balance between the bottom pressure torque and the nonlinear terms, albeit with a high degree of cancellation between them. However, balances integrated over different regions of the gyre – shelf, slope, and interior – still highlight the important role played by nonlinearities and bottom drag curls. In particular, the Sverdrup balance cannot describe the dynamics in the interior of the gyre. The main sources of cyclonic vorticity are nonlinear terms due to eddies generated along eastern boundary currents and time-mean nonlinear terms in the northwest corner. Our results suggest that a good representation of the mesoscale activity and a good positioning of mean currents are two important conditions for a better representation of the circulation in the North Atlantic subpolar gyre.
7

Lu, Youyu, and Detlef Stammer. "Vorticity Balance in Coarse-Resolution Global Ocean Simulations." Journal of Physical Oceanography 34, no. 3 (March 1, 2004): 605–22. http://dx.doi.org/10.1175/2504.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract The vorticity budget of the vertically integrated circulation from two global ocean simulations is analyzed using a horizontal spacing of 2° × 2° in longitude/latitude. The two simulations differ in their initial hydrographic conditions and surface wind and buoyancy forcing. The constrained simulation obtains optimal initial condition and surface forcing through assimilating observational data using the model's adjoint, whereas the unconstrained simulation uses Levitus climatological conditions for initialization and is driven by NCEP–NCAR reanalysis forcing, plus restoring to the monthly surface temperature and salinity climatological conditions. The goal is to examine the dynamics that sets the time-mean circulation and to understand the differences between the constrained and unconstrained simulations. It is found that, similar to eddy-permitting simulations, the bottom pressure torque (BPT) in coarse-resolution models plays an important role in the western boundary currents and in the Southern Ocean, and largely balances the difference between wind stress curl and βV for the depth-integrated flow. BPT is a controlling factor of the interior abyssal flow. The geostrophic vorticity relation holds in the interior basins in intermediate and deep layers and breaks down in the upper ocean toward the surface. In the upper layer of the interior basins, the model simulations show statistically significant deviation from the Sverdrup balance. In the subtropical gyre regions, the deviation from Sverdrup balance is confined to zonal bands that are balanced by the curls of lateral friction and nonlinear advection. The differences between the constrained and unconstrained simulations are significant in vorticity terms. The adjustment to Levitus hydrographic climatological data as the model's initial condition causes the most significant changes in BPT, which is the main reason for changes in abyssal flow. The analysis also points to needs for further improvement of models and controlling the influence of data errors in ocean state estimation.
8

Hautala, Susan L., Dean H. Roemmich, and William J. Schmilz. "Is the North Pacific in Sverdrup balance along 24°N?" Journal of Geophysical Research 99, no. C8 (1994): 16041. http://dx.doi.org/10.1029/94jc01084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohshima, Kay I., Daisuke Simizu, Motoyo Itoh, Genta Mizuta, Yasushi Fukamachi, Stephen C. Riser, and Masaaki Wakatsuchi. "Sverdrup Balance and the Cyclonic Gyre in the Sea of Okhotsk." Journal of Physical Oceanography 34, no. 2 (February 2004): 513–25. http://dx.doi.org/10.1175/1520-0485(2004)034<0513:sbatcg>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

NIILER, P. P., and C. J. KOBLINSKY. "A Local Time-Dependent Sverdrup Balance in the Eastern North Pacific Ocean." Science 229, no. 4715 (August 23, 1985): 754–56. http://dx.doi.org/10.1126/science.229.4715.754.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Balance de Sverdrup":

1

Thomas, Matthew. "Sverdrup balance and three dimensional variability of the meridional overturning circulation." Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/48025/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Two numerical models are used to gain an understanding of the spatial structure of Atlantic Meridional Overturning Circulation changes and the dynamical framework within which those changes occur. Sverdrup balance is studied using the 16 year ECCO-GODAE state estimation. It is shown to hold well in the interior subtropics when integrating to a mid-depth level and when considered at spatial scales larger than approximately 5◦. Outside of the subtropics, in western boundary currents and at short spatial scales, significant departures occur mostly due to a failure in the assumption that there is a level of no motion that can be integrated to and partly due to the assumption of linear vorticity. Sverdrup balance is reached when enough time is allowed for the ocean to adjust to forcing by the propagation of baroclinic Rossby waves. A climate change simulation of the HiGEM high resolution coupled climate model is used to investigate to what extent a 30% reduction in the deep southward transport is balanced by a reduction in the northward flowing surface western boundary transport, or an increase in the southward upper interior transport. It is found that a reduction in the southwards deep transport is balanced solely by a weakening of the northward surface western boundary current. This is consistent with Sverdrup balance holding to a good approximation in the basin interior. Overturning calculations in depth space and density space are found to differ within the subpolar gyre of a 120 year Control simulation of HiGEM. Depth space overturning is found to depend strongly on the transports of the Labrador current, which are strengthened by a spin-up of the horizontal subpolar gyre. Density space overturning is found to be strongly dependent on the densities of the Labrador Current, which increase following Labrador Sea water mass transformation and strong flow through the Denmark Straits.
2

Cortés, Morales Diego. "Large-scale Vertical Velocities in the Global Open Ocean via Linear Vorticity Balance." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
À l'échelle des bassins océaniques, les vitesses verticales présentent des valeurs nettement inférieures à celles des vitesses horizontales, imposant ainsi un défi considérable en ce qui concerne leur mesure directe dans l'océan. Par conséquent, leur évaluation nécessite une combinaison d'ensembles de données observationnelles et de considérations théoriques. Diverses méthodes ont été tentées, allant de celles qui se fondent sur la divergence du courant horizontal in situ à celles qui reposent sur des équations complexes de type oméga. Cependant, l'équilibre de Sverdrup a attiré l'attention des chercheurs, y compris la nôtre, en raison de sa description robuste et simple de la dynamique des océans. L'une de ses composantes fondamentales est l'équilibre de vorticité linéaire (LVB: βv = f ∂z w). Celle-ci introduit une dimension verticale dans l'équilibre de Sverdrup conventionnel, en établissant un lien entre le mouvement vertical et le transport méridien au-dessus de lui. Afin de progresser dans la perspective théorique de l'estimation des vitesses verticales, on analyse la validité de cet équilibre linéaire dans une simulation de modèle de circulation générale océanique (OGCM) eddy-permitting. Au départ, cette analyse est effectuée dans la région de l'océan Atlantique Nord, puis étendue à l'ensemble de l'océan mondial, en mettant l'accent sur des échelles supérieures à des échelles plus grandes que 5 degrés. L'analyse a révélé la faisabilité du calcul d'un champ de vitesse verticale robuste sous la couche de mélange en utilisant l'approche LVB pour de grandes fractions de la colonne d'eau dans les régions intérieures des gyres tropicaux et subtropicaux, ainsi que dans certaines couches de la circulation subpolaire et australe à des échelles de temps annuelles et interannuelles. Des déviations par rapport à la LVB se produisent dans les courants de la frontière occidentale, les flux tropicaux zonaux forts, les gyres subpolaires et les échelles plus petites en raison des non-linéarités, des mélanges et des contributions au bilan de vorticité induites par la bathymétrie. L'étude de la validité de la LVB dans l'océan global fournit une base relativement simple pour l'estimation des vitesses verticales à travers de la LVB intégrée indéfinie en profondeur. Grâce à l'utilisation d'un OGCM, il a été démontré que ces estimations ont la capacité de reproduire avec précision l'amplitude temporelle moyenne et de la variabilité interannuelle des vitesses verticales dans des portions substantielles de l'océan global, en comparaison avec le modèle de référence. Nous construisons ici le produit DIOLIVE (Depth-Indefinitive integrated Observation-based LInear Vorticity Estimates) dérivé des vitesses géostrophiques ARMOR3D basées sur des observations et appliquées à la LVB intégrée indéfinie en profondeur, avec les données de forçage du vent ERA5 comme conditions limites à la surface. Ce produit contient des vitesses verticales couvrant l'ensemble de la thermocline globale à une résolution horizontale de 5 degrés et 40 niveaux isopycnaux pendant la période 1993-2018.Une analyse comparative entre le produit DIOLIVE et quatre autres produits de vitesse verticale, comprenant une simulation OGCM, deux réanalyses et une reconstruction basée sur l'observation de l'équation oméga, est proposée. Diverses métriques sont utilisées pour évaluer les caractéristiques multidimensionnelles de la circulation verticale de l'océan. Le produit basé sur l'équation oméga révèle d'importantes divergences par rapport à la synchronisation et à la baroclinicité reproduites par l'ensemble de validation. Mais, dans les régions où la LVB est une hypothèse valide, le produit DIOLIVE démontre une capacité remarquable à reproduire la structure barocline de l'océan, présentant une cohérence spatiale satisfaisante et un accord notable en termes de variabilité temporelle lorsqu'il est comparé aux deux réanalyses et à la simulation OGCM
At oceanic basin scales, vertical velocities are several orders of magnitude smaller than their horizontal counterparts, rendering a formidable challenge for their direct measurement in the real ocean. Therefore, their estimations need a combination of observation-based datasets and theoretical considerations.Historically, scientists have employed various techniques to estimate vertical velocities across different scales constrained by the available observations of their time. Various approaches have been attempted, ranging from methods utilizing in situ horizontal current divergence to those based on intricate omega-type equations. However, the Sverdrup balance has captured the attention of researchers and ours due to its robust and straightforward description of ocean dynamics. One of the fundamental components of the Sverdrup balance is the linear vorticity balance (LVB: βv = f ∂z w). It introduces a novel vertical dimension to the conventional Sverdrup balance, establishing a connection between vertical movement and the meridional transport above it.In order to advance on the theoretical prospect of estimating the vertical velocities, it is primarily identified the annual and interannual timescales patterns governing the linear vorticity balance within an eddy-permitting OGCM simulation. Initially, this analysis is conducted over the North Atlantic Ocean, and subsequently expanded to encompass the entire global ocean, focusing on larger scales than 5 degrees. The analysis revealed the feasibility of computing a robust vertical velocity field beneath the mixed layer using the LVB approach across large fractions of the water column in the interior regions of tropical and subtropical gyres and within some layers of the subpolar and austral circulation. Departures from the LVB occur in the western boundary currents, strong zonal tropical flows, subpolar gyres and smaller scales due to the nonlinearities, mixing and bathymetry-driven contributions to the vorticity budget.The extensive validity of the LVB description of the global ocean provides a relatively simple foundation for estimating the vertical velocities through the indefinite depth-integrated LVB. Using an OGCM, it has demonstrated that the estimates possess the capability to accurately reproduce the time-mean amplitude and interannual variability of the vertical velocity field within substantial portions of the global ocean when compared to the reference model. Here, we build the DIOLIVE (indefinite Depth-Integrated Observation-based LInear Vorticity Estimates) product by applying the observation-based geostrophic velocities from ARMOR3D into the indefinite depth-integrated LVB formalism, with wind stress data from ERA5 serving as boundary condition at the surface. This product contains vertical velocities spanning the global ocean's thermocline at 5 degrees horizontal resolution and 40 isopycnal levels during the 1993-2018 period.A comparative analysis between the DIOLIVE product and four alternative products, including one OGCM simulation, two reanalyses and an observation-based reconstruction based on the omega equation, is conducted using various metrics assessing the vertical circulation's multidimensional features of the ocean vertical flow. The omega equation-based product displays large departures from the synchronicity and baroclinicity reproduced by the validation ensemble. However, in regions where the LVB holds as a valid assumption, the DIOLIVE product demonstrates a remarkable ability to replicate the baroclinic structure of the ocean, exhibiting satisfactory spatial consistency and notable agreement in terms of temporal variability when compared to the two reanalyses and the OGCM simulation

Book chapters on the topic "Balance de Sverdrup":

1

TOMCZAK, MATTHIAS, and J. STUART GODFREY. "Ekman layer transports, Ekman pumping and the Sverdrup balance." In Regional Oceanography, 39–51. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-08-041021-0.50008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography