Academic literature on the topic 'Bagasse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bagasse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bagasse"
Ndapamuri, Melycorianda Hubi, Maria Marina Herawati, and V. Irene Meitiniarti. "Production of Sugar From Sweet Sorghum Stems with Hydrolysis Method Using Trichoderma viride." Biosaintifika: Journal of Biology & Biology Education 13, no. 1 (April 29, 2021): 121–27. http://dx.doi.org/10.15294/biosaintifika.v13i1.25954.
Full textJonglertjunya, Woranart, Piyawat Chinwatpaiboon, Hathairat Thambaramee, and Paritta Prayoonyong. "Butanol, Ethanol and Acetone Production from Sugarcane Bagasses by Acid Hydrolysis and Fermentation Using Clostridium sp." Advanced Materials Research 931-932 (May 2014): 1602–7. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.1602.
Full textSaïed, Noura, Mohamed Khelifi, Annick Bertrand, Gaëtan F. Tremblay, and Mohammed Aider. "Ensilability and Nutritive Value of Sweet Sorghum and Sweet Pearl Millet Bagasse as Affected by Different Methods of Carbohydrate Extraction for Eventual Ethanol Production." Transactions of the ASABE 64, no. 2 (2021): 401–11. http://dx.doi.org/10.13031/trans.14071.
Full textAnh, Pham Tuan, Pham Kim Ngan, and Kim Anh To. "EFFICIENT STARCH RECOVERY FROM CASSAVA BAGASSE: ROLE OF CELLULASE AND PECTINASE." Vietnam Journal of Science and Technology 57, no. 4 (July 1, 2019): 401. http://dx.doi.org/10.15625/2525-2518/57/4/12764.
Full textSaraswati, S. "Fermentasi etanol menggunakan bakteri Zymonas mobilis dari glukosa hasil hidrolisa enzimatik bagas." Jurnal Teknik Kimia Indonesia 6, no. 2 (October 2, 2018): 609. http://dx.doi.org/10.5614/jtki.2007.6.2.3.
Full textLiu, Yu Xin, Bing Sun, and Ke Li Chen. "Hemicelluloses Extraction of Bagasse and Bagasse Pith." Advanced Materials Research 468-471 (February 2012): 2052–56. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.2052.
Full textSeyoum, Redeat, Belay Brehane Tesfamariam, Dinsefa Mensur Andoshe, Ali Algahtani, Gulam Mohammed Sayeed Ahmed, and Vineet Tirth. "Investigation on Control Burned of Bagasse Ash on the Properties of Bagasse Ash-Blended Mortars." Materials 14, no. 17 (September 1, 2021): 4991. http://dx.doi.org/10.3390/ma14174991.
Full textANDRADE, MARCELA FREITAS, JORGE LUIZ COLODETTE, and HASAN JAMEEL. "Chemical and morphological characterization of sugar cane bagasse." June 2014 13, no. 6 (July 1, 2014): 27–33. http://dx.doi.org/10.32964/tj13.6.27.
Full textWheatley, Greg, Rong Situ, Jarrod Dwyer, Alexander Larsen, and Robiul Islam Rubel. "Dryer design parameters and parts specifications for an industrial scale bagasse drying system." Acta Agronómica 69, no. 4 (November 23, 2021): 293–305. http://dx.doi.org/10.15446/acag.v69n4.89795.
Full textFirmansayah, Muhammad, Erfan Wahyudi, Irwan Agusnu Putra, and Dedi Kurniawan. "The Application of Sugarcane Bagasse Compost and Effectiveness of N-Fertilizer on Vegetative Growth for Cocoa (Theobroma cacao L.)." AGRINULA: Jurnal Agroteknologi dan Perkebunan 3, no. 2 (October 17, 2020): 36–47. http://dx.doi.org/10.36490/agri.v3i2.101.
Full textDissertations / Theses on the topic "Bagasse"
Hugo, Thomas Johannes. "Pyrolysis of sugarcane bagasse." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5238.
Full textENGLISH ABSTRACT: The world’s depleting fossil fuels and increasing greenhouse gas emissions have given rise to much research into renewable and cleaner energy. Biomass is unique in providing the only renewable source of fixed carbon. Agricultural residues such as Sugarcane Bagasse (SB) are feedstocks for ‘second generation fuels’ which means they do not compete with production of food crops. In South Africa approximately 6 million tons of raw SB is produced annually, most of which is combusted onsite for steam generation. In light of the current interest in bio-fuels and the poor utilization of SB as energy product in the sugar industry, alternative energy recovery processes should be investigated. This study looks into the thermochemical upgrading of SB by means of pyrolysis. Biomass pyrolysis is defined as the thermo-chemical decomposition of organic materials in the absence of oxygen or other reactants. Slow Pyrolysis (SP), Vacuum Pyrolysis (VP), and Fast Pyrolysis (FP) are studied in this thesis. Varying amounts of char and bio-oil are produced by the different processes, which both provide advantages to the sugar industry. Char can be combusted or gasified as an energy-dense fuel, used as bio-char fertilizer, or upgraded to activated carbon. High quality bio-oil can be combusted or gasified as a liquid energy-dense fuel, can be used as a chemical feedstock, and shows potential for upgrading to transport fuel quality. FP is the most modern of the pyrolysis technologies and is focused on oil production. In order to investigate this process a 1 kg/h FP unit was designed, constructed and commissioned. The new unit was tested and compared to two different FP processes at Forschungszentrum Karlsruhe (FZK) in Germany. As a means of investigating the devolatilization behaviour of SB a Thermogravimetric Analysis (TGA) study was conducted. To investigate the quality of products that can be obtained an experimental study was done on SP, VP, and FP. Three distinct mass loss stages were identified from TGA. The first stage, 25 to 110°C, is due to evaporation of moisture. Pyrolitic devolatilization was shown to start at 230°C. The final stage occurs at temperatures above 370°C and is associated with the cracking of heavier bonds and char formation. The optimal decomposition temperatures for hemicellulose and cellulose were identified as 290°C and 345°C, respectively. Lignin was found to decompose over the entire temperature range without a distinct peak. These results were confirmed by a previous study on TGA of bagasse. SP and VP of bagasse were studied in the same reactor to allow for accurate comparison. Both these processes were conducted at low heating rates (20°C/min) and were therefore focused on char production. Slow pyrolysis produced the highest char yield, and char calorific value. Vacuum pyrolysis produced the highest BET surface area chars (>300 m2/g) and bio-oil that contained significantly less water compared to SP bio-oil. The short vapour residence time in the VP process improved the quality of liquids. The mechanism for pore formation is improved at low pressure, thereby producing higher surface area chars. A trade-off exists between the yield of char and the quality thereof. FP at Stellenbosch University produced liquid yields up to 65 ± 3 wt% at the established optimal temperature of 500°C. The properties of the bio-oil from the newly designed unit compared well to bio-oil from the units at FZK. The char properties showed some variation for the different FP processes. At the optimal FP conditions 20 wt% extra bio-oil is produced compared to SP and VP. The FP bio-oil contained 20 wt% water and the calorific value was estimated at 18 ± 1 MJ/kg. The energy per volume of FP bio-oil was estimated to be at least 11 times more than dry SB. FP was found to be the most effective process for producing a single product with over 60% of the original biomass energy. The optimal productions of either high quality bio-oil or high surface area char were found to be application dependent.
AFRIKAANSE OPSOMMING: As gevolg van die uitputting van fossielbrandstofreserwes, en die toenemende vrystelling van kweekhuisgasse word daar tans wêreldwyd baie navorsing op hernubare en skoner energie gedoen. Biomassa is uniek as die enigste bron van hernubare vaste koolstof. Landbouafval soos Suikerriet Bagasse (SB) is grondstowwe vir ‘tweede generasie bio-brandstowwe’ wat nie die mark van voedselgewasse direk affekteer nie. In Suid Afrika word jaarliks ongeveer 6 miljoen ton SB geproduseer, waarvan die meeste by die suikermeulens verbrand word om stoom te genereer. Weens die huidige belangstelling in bio-brandstowwe en ondoeltreffende benutting van SB as energieproduk in die suikerindustrie moet alternatiewe energie-onginningsprosesse ondersoek word. Hierdie studie is op die termo-chemiese verwerking van SB deur middel van pirolise gefokus. Biomassa pirolise word gedefinieer as die termo-chemiese afbreking van organiese bio-materiaal in die afwesigheid van suurstof en ander reagense. Stadige Pirolise (SP), Vakuum Pirolise (VP), en Vinnige Pirolise word in hierdie tesis ondersoek. Die drie prosesse produseer veskillende hoeveelhede houtskool en bio-olie wat albei voordele bied vir die suikerindustrie. Houtskool kan as ‘n vaste energie-digte brandstof verbrand of vergas word, as bio-houtskoolkompos gebruik word, of kan verder tot geaktiveerde koolstof geprosesseer word. Hoë kwaliteit bio-olie kan verbrand of vergas word, kan as bron vir chemikalië gebruik word, en toon potensiaal om in die toekoms opgegradeer te kan word tot vervoerbrandstof kwaliteit. Vinnige pirolise is die mees moderne pirolise tegnologie en is op bio-olie produksie gefokus. Om die laasgenoemde proses te toets is ‘n 1 kg/h vinnige pirolise eenheid ontwerp, opgerig en in werking gestel. Die nuwe pirolise eenheid is getoets en vegelyk met twee verskillende vinnige pirolise eenhede by Forschungszentrum Karlsruhe (FZK) in Duitsland. Termo-Gravimetriese Analise (TGA) is gedoen om die ontvlugtigingskenmerke van SB te bestudeer. Eksperimentele werk is verrig om die kwaliteit van produkte van SP, VP, vinnige pirolise te vergelyk. Drie duidelike massaverlies fases van TGA is geïdentifiseer. Die eerste fase (25 – 110°C) is as gevolg van die verdamping van vog. Pirolitiese ontvlugtiging het begin by 230°C. Die finale fase (> 370°C) is met die kraking van swaar verbindings en die vorming van houtskool geassosieer. Die optimale afbrekingstemperatuur vir hemisellulose en sellulose is as 290°C en 345°C, respektiewelik, geïdentifiseer. Daar is gevind dat lignien stadig oor die twede en derde fases afgebreek word sonder ‘n duidelike optimale afbrekingstemperatuur. Die resultate is deur vorige navorsing op TGA van SB bevestig. SP en VP van bagasse is in dieselfde reaktor bestudeer, om ‘n akkurate vergelyking moontlik te maak. Beide prosesse was by lae verhittingstempo’s (20°C/min) ondersoek, wat gevolglik op houtskoolformasie gefokus is. SP het die hoogste houtskoolopbrengs, met die hoogste verbrandingsenergie, geproduseer. VP het hootskool met die hoogste BET oppervlakarea geproduseer, en die bio-olie was weens ‘n dramatiese afname in waterinhoud van beter gehalte. Die meganisme vir die vorming van ‘n poreuse struktuur word deur lae atmosferiese druk verbeter. Daar bestaan ‘n inverse verband tussen die kwantiteit en kwaliteit van die houtskool. Vinnige pirolise by die Universiteit van Stellenbosch het ‘n bio-olie opbrengs van 65 ± 3 massa% by ‘n vooraf vasgestelde optimale temperatuur van 500°C geproduseer. Die eienskappe van bio-olie wat deur die nuwe vinnige pirolise eenheid geproduseer is het goed ooreengestem met die bio-olie afkomstig van FZK se pirolise eenhede. Die houtskool eienskappe van die drie pirolise eenhede het enkele verskille getoon. By optimale toestande vir vinnige pirolise word daar 20 massa% meer bio-olie as by SP en VP geproduseer. Vinnige pirolise bio-olie het ‘n waterinhoud van 20 massa% en ‘n verbrandingswarmte van 18 ± 1 MJ/kg. Daar is gevind dat ten opsigte van droë SB die energie per enheidsvolume van bio-olie ongeveer 11 keer meer is. Vinnige pirolise is die mees doeltreffende proses vir die vervaardiging van ‘n produk wat meer as 60% van die oorspronklike biomassa energie bevat. Daar is gevind dat die optimale hoeveelhede van hoë kwaliteit bio-olie en hoë oppervlakarea houtskool doelafhanklik is.
Anukam, Anthony Ike. "Gasification characteristics of sugarcane bagasse." Thesis, University of Fort Hare, 2013. http://hdl.handle.net/10353/d1016170.
Full textWoodfield, Peter Lloyd. "Combustion instability in bagasse-fired furnaces." Thesis, The University of Sydney, 2001. https://hdl.handle.net/2123/27860.
Full textKamimoto, Lynn K. (Lynn Kam Oi). "Economic feasibility of bagasse charcoal in Haiti." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32937.
Full textIncludes bibliographical references (leaves 13-15).
The economics of implementing bagasse-based charcoal manufacturing in Haiti was investigated. From these main inputs, three different manufacturing economic scenarios were modeled using a simple, dynamic excel spreadsheet. The first model reflects single family implementation, which reasonable found that a family would be able to make back their start up costs within a month of production. The second model examined sugarcane bagasse charcoal production as an entrepreneurial endeavor for a small community. The third model is similar to the second model, but reflects large-scale factory production. The potential of the second and third models primarily depend on the cost of raw materials and transportation. These models are easily adjusted to reflect market rates and can be generalized to address similar start-up economies.
by Lynn K. Kamimoto.
S.B.
Pinheiro, Francisca Gleyciara Cavalcante. "Lignosulfonates production from lignin extracted sugarcane bagasse." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13799.
Full textThe present work aimed at the production of lignosulfonate, based in the lignin extracted from sugarcane bagasse-cane for using in phenolic resins. The extraction of lignin was carried out using the acetosolv process, which was optimised with a central composite design 22 to evaluate the effects of reaction time and temperature on the extraction yield, weight-average (M ̅w) and number-average (M ̅n) molecular weights, relative content of total hydroxyl, phenolic hydroxyl and methoxyl groups. The lignins obtained under conditions that maximized the extraction yield and showed better structural and thermal characteristics were sulfonated to obtain the lignosulfonates. The structural and thermal characteristics of the lignins and lignosulfonates were determined by FT-IR, GPC, 1H-NMR and 13C-NMR, DSC and TGA. The results show that the best extraction yield (64.5%) was obtained with 95% (w/w) of acetic acid, the addition of 0.1% HCl, at a temperature of 187 ÂC and reaction time of 40 min. However, with the same concentration of acetic acid and reaction time of 15 min at 187 ÂC, the extraction yield decreased to 55.6% Â 4.5%, without significant reduction. Furthermore, the increase in temperature of 187 ÂC to 205 ÂC was not enough to cause a significant increase in the relative content of hydroxyls and reduction of the relative content of methoxyl. These results show that the most appropriate conditions for adequate extraction of lignin for application in resins are: 95% (w/w) of acetic acid, addition of 0.1% of HCl, temperature of 187 ÂC and reaction time of 15 min. The acetosolv lignins showed p-hidroxifenila units as major constituent, higher thermal stability and higher purity than the commercial Kraft lignin. The glass transition temperature of the Kraft lignins was lower than that of the acetosolv lignin. This is due to the hydrophilic character and the presence of carbohydrates in the Kraft lignin. The lignosulfonates obtained in this study showed structural characteristics suitable for application in phenolic resins, because they showed high reactivity due to the greater presence of p-hidroxifenila units as major constituent, low molecular weights (40234878 g/mol), greater stability and greater purity compared to commercial sodium lignosulfonate. Therefore, lignosulfonates obtained in this work are more suitable for use in phenolic resins than commercial sodium lignosulfonate used for comparison.
O presente trabalho teve por objetivo a produÃÃo de lignossulfonato, a partir da lignina extraÃda do bagaÃo da cana-de-aÃÃcar para aplicaÃÃo em resinas fenÃlicas. Foi realizada a otimizaÃÃo da extraÃÃo da lignina do bagaÃo de cana-de-aÃÃcar utilizando o processo acetosolv. Para tanto, empregou-se um delineamento composto central 22 para analisar os efeitos do tempo de reaÃÃo e da temperatura no rendimento de extraÃÃo, massa molar ponderal mÃdia, massa molar numÃrica mÃdia, e conteÃdo relativo de hidroxilas totais, hidroxilas fenÃlicas e metoxilas. As ligninas obtidas nas condiÃÃes que maximizaram o rendimento de extraÃÃo e que mostraram melhores caracterÃsticas estruturais e tÃrmicas foram sulfonadas para obtenÃÃo dos lignossulfonatos. As caracterÃsticas estruturais e tÃrmicas das ligninas e dos lignossulfonatos foram determinadas por FT-IR, GPC, RMN-1H e 13C, TGA e DSC. Os resultados mostram que o melhor rendimento de extraÃÃo (64,5 % 4,2%) foi obtido com 95% (m/m) de Ãcido acÃtico, adiÃÃo de 0,1% de HCl, a uma temperatura de 187 C e tempo de reaÃÃo de 40 min. No entanto, com a mesma concentraÃÃo de soluÃÃo de Ãcido acÃtico e com tempo de reaÃÃo de 15 min a 187ÂC, o rendimento de extraÃÃo diminuiu para 55,6%  4,5%, nÃo sendo significativa esta reduÃÃo. AlÃm disto, a elevaÃÃo da temperatura de 187ÂC para 205ÂC nÃo foi suficiente para causar um aumento significativo no conteÃdo relativo de hidroxilas e reduÃÃo do conteÃdo relativo de metoxila. Esses resultados mostram que as condiÃÃes mais adequadas para extraÃÃo da lignina a ser aplicada em resinas sÃo: 95% (m/m) de Ãcido acÃtico, adiÃÃo de 0,1% de HCl, temperatura de 187 C e tempo de reaÃÃo de 15 min. As ligninas acetosolv apresentaram unidades p-hidroxifenila como constituinte majoritÃrio, maior estabilidade tÃrmica e maior pureza em relaÃÃo à lignina Kraft comercial. A temperatura de transiÃÃo vÃtrea da lignina Kraft foi menor do que à das ligninas acetosolv, devido à sua caracterÃstica hidrofÃlica e à presenÃa de carboidratos na lignina Kraft. Os lignossulfonatos obtidos no presente trabalho apresentaram caracterÃsticas estruturais adequadas para aplicaÃÃo em resinas fenÃlicas, pois mostraram alta reatividade devido a maior presenÃa de unidades p-hidroxifenila como constituinte majoritÃrio, baixas massas molares (4023 a 4878 g/mol), maior estabilidade e uma maior pureza em relaÃÃo ao lignossulfonato de sÃdio comercial. Portanto, os lignossulfonatos obtidos no presente trabalho sÃo mais adequados para aplicaÃÃo em resinas fenÃlicas do que o lignossulfonato de sÃdio comercial utilizado no presente trabalho.
Oderah, Vincent. "Shear strength behaviour of sugarcane bagasse reinforced soils." Master's thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20106.
Full textLyatuu, Eric M. M. "Utilization of lignocellulosic wastes : the sugarcane bagasse case." Thesis, University of Surrey, 1985. http://epubs.surrey.ac.uk/847663/.
Full textTait, Peter. "Simulation of bagasse-fired furnaces incorporating energy recycling to stabilise combustion /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17066.pdf.
Full textPlaza, Floran. "Measuring, modelling and understanding the mechanical behaviour of bagasse." University of Southern Queensland, Faculty of Engineering and Surveying, 2002. http://eprints.usq.edu.au/archive/00001485/.
Full textVALIM, ISABELLE CUNHA. "MODELING AND OPTIMIZATION STRATEGIES IN SUGARCANE BAGASSE DELIGNIFICATION PROCESS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35985@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
O bagaço da cana-de-açúcar é uma biomassa vegetal que possui muito potencial de uso devido aos seus três elementos estruturais: celulose, hemicelulose e lignina. Para servir como matéria prima na produção de insumos, o bagaço da cana-de-açúcar precisa passar por um processo de pré-tratamento. Nesse estudo, duas metodologias para o processo de pré-tratamento do bagaço da cana-de-açúcar foram utilizadas: a deslignização via peróxido de hidrogênio (H2O2) e via dióxido de carbono supercrítico (ScCO2). Para o estudo utilizando H2O2, foram desenvolvidos modelos a partir de planejamento experimental, Algoritmos Genéticos (GA, do inglês Genetic Algorithms), Redes Neurais Artificiais (RNA) e Neuro-Fuzzy (ANFIS). As variáveis independentes foram temperatura (25 – 60 graus Celsius), concentração de H2O2 (2 – 15 por cento m/v) e pH (10 – 13), tendo como resposta os teores de lignina residual e oxidada no processo, através de análises de FT-IR e análise pelo método de Klason. Para o estudo utilizando ScCO2 foram construídos modelos a partir de RNA e ANFIS. As variáveis estudadas no processo foram: temperatura (35 – 100 graus Celsius), pressão (75- 300 bar) e teor de etanol na solução de co-solvente (0 – 100 graus Celsius). De modo geral, para os dois processos, os modelos desenvolvidos consideram as variáveis independentes como sendo neurônios na camada de entrada e as variáveis dependentes como sendo neurônios na camada de saída. Todos os modelos neurais e ANFIS desenvolvidos neste trabalho foram avaliados pelo coeficiente de correlação e índices de erro (SSE, MSE e RMSE), além do número de parâmetros. Os resultados mostraram que, dentre estas estratégias estudadas, os modelos neurais se mostraram mais satisfatórios para predição das respostas do pré-tratamento com H2O2, já que se encaixa nos índices de performance estipulados. O mesmo ocorreu no modelo neural para predição do teor de lignina residual no pré-tratamento com ScCO2. Para cada modelo polinomial e neural desenvolvido, foi realizada a investigação das superfícies de respostas e das curvas de contorno. Com esse recurso, foi possível a identificação dos melhores pontos operacionais para os processos, visando a minimização dos teores de lignina residual e oxidada na biomassa.
Sugarcane bagasse is a plant biomass that has a great potential for use due to its three structural elements: cellulose, hemicellulose and lignin. To serve as raw material in the production of other products, sugarcane bagasse needs to undergo a pre-treatment process. In this study, two methodologies for the sugarcane bagasse pretreatment process were used: delignification via hydrogen peroxide (H2O2) and via supercritical carbon dioxide (ScCO2). The models for study the process with H2O2 were developed from experimental planning, Genetic Algorithms (GA), Artificial Neural Networks (ANN) and Neuro-Fuzzy (ANFIS). The independent variables were: temperature (25- 60 degrees Celsius), H2O2 concentration (2 - 15 percent m/v) and pH (10-13). The residual and oxidized lignin contents in the process were evaluated from FT-IR and Klason method analysis. The models for study the process with ScCO2 were developed from RNA and ANFIS. The variables studied in the process were: temperature (35-100 degrees Celsius), pressure (75-300 bar) and ethanol content in the aqueous solution of co-solvent (0-100 percent). In general, for the two processes, the developed models consider the independent variables to be neurons in the input layer and the dependent variables to be neurons in the output layer. All the neural and ANFIS models developed in this study were evaluated by the correlation coefficient and error indexes (SSE, MSE and RMSE), as well as the number of parameters. From the stipulated indices of performance, among the results obtained by the different strategies, the neural models were the most satisfactory for the prediction of pretreatment responses with H2O2. The same occurred in the neural model for prediction of the residual lignin content in the pre-treatment with ScCO2. Response surfaces and the contour curves were investigated for each polynomial and neural model developed. With this resource, it was possible to identify the best operational points for the processes, pointing at minimizing the residual and oxidized lignin contents in the biomass.
Books on the topic "Bagasse"
Lapra, Paule. Bagasse: Poéhistoires d'une île à sucre. Sainte-Clotilde (La Réunion): Surya éditions, 2014.
Find full textBrazil. Secretaria de Tecnologia Industrial. Coordenadoria de Informações Tecnológicas. Serviço de Editoração., ed. Bagaço: Guia de informação e bibliografia básica = Bagasse : information guide and basic bibliography. Brasília: MIC/STI, Coordenadoria de Informações Tecnológicas, Serviço de Editoração, 1985.
Find full textAcchar, Wilson, and Eduardo J. V. Dultra. Ceramic Materials from Coffee Bagasse Ash Waste. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15281-3.
Full textShin Enerugī Sangyō Gijutsu Sōgō Kaihatsu Kikō (Japan). Baiofyūeru hatsuden no dōnyū kanōsei chōsa. [Tokyo]: Shin Enerugī Sangyō Gijutsu Sōgō Kaihatsu Kikō, 1994.
Find full textGupta, Tirath R. Economic and policy issues for bagasse-based paper and newsprint in India. New Delhi: Oxford & IBH Pub. Co., 1990.
Find full textCommission of the European Communities. Directorate-General Energy., ed. 24.65 mw. bagasse-fired steam power plant: Demonstration project = Centrale thermique à bagaasse de 24.65 megawatts : projet de demonstration. Luxembourg: Commission of the European Communities, 1986.
Find full text1906-, Payne John Howard, ed. Cogeneration in the cane sugar industry. Amsterdam: Elsevier, 1991.
Find full textKatty Maria da Costa Mattos. Valoração econômica do meio ambiente: Uma abordagem teórica e prática. São Carlos, SP: RiMa, 2004.
Find full textIndia) International CHP and Decentralized Energy Symposium and USAID International Conference and Exhibition on Bagasse Cogeneration (3rd 2002 New Delhi. 3rd International CHP and Decentralized Energy Symposium and USAID International Conference and Exhibition on Bagasse Cogeneration: 24-26 October 2002 : conference proceedings. New Delhi]: Winrock International India, 2002.
Find full textSuzor, Norland C. Identifying the basic conditions for economic generation of public electricity from surplus bagasse in sugar mills: A study prepared for the World Bank. Washington, D.C., U.S.A. (1818 H. St., N.W., Washington 20433): the World Bank, Industry and Energy Dept., 1991.
Find full textBook chapters on the topic "Bagasse"
Gooch, Jan W. "Bagasse." In Encyclopedic Dictionary of Polymers, 62. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_986.
Full textParameswaran, Binod. "Sugarcane Bagasse." In Biotechnology for Agro-Industrial Residues Utilisation, 239–52. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9942-7_12.
Full textKlasson, K. Thomas. "Char from Sugarcane Bagasse." In Biorefinery Co-Products, 327–50. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9780470976692.ch15.
Full textReddy, Narendra, and Yiqi Yang. "Fibers from Sugarcane Bagasse." In Innovative Biofibers from Renewable Resources, 29–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45136-6_8.
Full textGoodman, Louis J. "Hawaii Bagasse Pellets Project." In Project Planning and Management, 158–89. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-6587-7_7.
Full textRehman, Rida, and Alvina Gul Kazi. "Sugarcane Straw and Bagasse." In Biomass and Bioenergy, 141–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07641-6_9.
Full textAmin, M. B., A. G. Maadhah, and A. M. Usmani. "Newer Applications of Bagasse." In Renewable-Resource Materials, 75–82. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2205-4_6.
Full textVarshney, Gunjan, Eksha Guliani, and Christine Jeyaseelan. "Graphene from Sugarcane Bagasse." In Graphene from Natural Sources, 117–38. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003169741-9.
Full textBeux, M. R., C. R. Soccol, B. Marin, T. Tonial, and S. Roussos. "Cultivation of Lentinula edodes on mixture of cassava bagasse and sugarcane bagasse." In Advances in Solid State Fermentation, 501–13. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-0661-2_41.
Full textLal, Dharmesh, M. Jeevan Kumar, K. Naresh Kumar, K. Sindhu, and Ashok Kumar. "Soil Stabilization Using Bagasse Ash." In Lecture Notes in Civil Engineering, 21–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3662-5_3.
Full textConference papers on the topic "Bagasse"
Venkatesan, Pandian, and Ramasamy Vasudevan. "The structural behaviour of bagasse ash and bagasse fibre in concrete." In INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND MANUFACTURING SYSTEMS: ICMEMS2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0132538.
Full textArzola, Nelson, Rafael Goytisolo, Lester D. Suarez, and Ariel Fernandez. "Efficiency Increase in the Extraction of Sugar Cane Juice in the Sugar Cane Mills by Means of the Regulation of Hydraulic Pressures." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80439.
Full textShinde, Sachin, Kiran Mane, and Vidyanand Jakukore. "Review of Sugarcane Bagasse and Luffa Fiber composites." In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.11.
Full textZhou Jing-hong, Wang Shuang-fei, Qi Yuan-feng, Xu Gui-ping, and Teng Yun-mei. "Notice of Retraction: Composition of bagasse leachate and volatile organic compounds from bagasse stacking site." In 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC 2011). IEEE, 2011. http://dx.doi.org/10.1109/aimsec.2011.6009648.
Full textHamka, Nur Aqila Mohd, Nadzhratul Husna, Syed Ahmad Farhan, Mohamed Mubarak Abdul Wahab, Nur Izzah Azlan, Nasir Shafiq, and Siti Nooriza Abd Razak. "Extraction of Silica from Sugarcane Bagasse Ash for Cement Replacement in Concrete: Effect of Treatment and Burning Temperature." In 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MATERIALS, MINERALS & ENVIRONMENT (RAMM) 2022. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-ehhce9.
Full textPeres, Sérgio, and Alex Green. "Catalytic Indirectly Heated Gasification of Bagasse." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-161.
Full textde Toledo Silva, João Marcos, Gretta Larisa Aurora Arce Ferrufino, Ivonete Ávila, and Carlos Manuel Romero Luna. "SIMULATION OF TORREFIED SUGARCANE BAGASSE COMBUSTION." In 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0800.
Full textSalvador Pinos, Carmen, Adalis Mesa Noval, Ángel Batallas Merino, Jonathan Villavicencio, Layanis Mesa Garriga, and Erenio González Suárez. "Assessment of the best operating conditions in the enzymatic hydrolysis of pretreated bagasse for bagasse ethanol." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05298.
Full textChowdhury, Nabil, Kazi Ahasan Ekram, Rakibul Hasan Raihan, Md Ershad Khan, Dr M. Azizur Rahman, and Dr Md Shahnewaz Bhuiyan. "Effect of Bagasse fiber extraction process on mechanical properties of 3D printed Bagasse reinforced Composite Material." In The IMEOM 2022 Dhaka Conference, Bangladesh. Michigan, USA: IEOM Society International, 2022. http://dx.doi.org/10.46254/bd05.20220096.
Full textMehanny, Sherif, Mahmoud Farag, R. M. Rashad, and Hamdy Elsayed. "Fabrication and Characterization of Starch Based Bagasse Fiber Composite." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86265.
Full textReports on the topic "Bagasse"
Cuzens, J. E. Conversion of bagasse cellulose into ethanol. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/674641.
Full textBaker, E. G., M. D. Brown, and R. J. Robertus. Catalytic gasification of bagasse for the production of methanol. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/5124590.
Full textKadam, K. Environmental Life Cycle Implications of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in Mumbai (Bombay). Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/772426.
Full textRodríguez-Machín, Lizet, Luis Ernesto Arteaga-Pérez, Pérez-Bermúdez Raúl Alberto, Pala Mehmet, Feys Jeroen, Nemmar Aris, Wolter Prins, and Ronsse Frederik. Effect of pretreatment with an organic solution on yield and quality of bio-oil obtained from fast pyrolysis of sugarcane bagasse. Peeref, April 2023. http://dx.doi.org/10.54985/peeref.2304p9074854.
Full textSommerseth, Rita. Pårørendesamtalen: En kvalitativ studie av profesjonsutøveres erfaringer med samtaler hvor pårørende søker hjelp. University of Stavanger, March 2013. http://dx.doi.org/10.31265/usps.235.
Full textCommercialization of the Conversion of Bagasse to Ethanol. Summary quarterly report for the period January-September 1999. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/755492.
Full text