Contents
Academic literature on the topic 'Baeyer-Villiger monooxygenase de type II'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Baeyer-Villiger monooxygenase de type II.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Baeyer-Villiger monooxygenase de type II"
Isupov, Michail N., Ewald Schröder, Robert P. Gibson, Jean Beecher, Giuliana Donadio, Vahid Saneei, Stephlina A. Dcunha, et al. "The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid ofPseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase." Acta Crystallographica Section D Biological Crystallography 71, no. 11 (October 31, 2015): 2344–53. http://dx.doi.org/10.1107/s1399004715017939.
Full textIsupov, Michail N., Ewald Schröder, Robert P. Gibson, Jean Beecher, Giuliana Donadio, Vahid Saneei, Stephlina A. Dcunha, et al. "The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid ofPseudomonas putida: the first crystal structure of a type II Baeyer–Villiger monooxygenase. Corrigendum." Acta Crystallographica Section D Structural Biology 74, no. 4 (April 1, 2018): 379. http://dx.doi.org/10.1107/s205979831800150x.
Full textLöwe, Jana, Olga Blifernez-Klassen, Thomas Baier, Lutz Wobbe, Olaf Kruse, and Harald Gröger. "Type II flavoprotein monooxygenase PsFMO_A from the bacterium Pimelobacter sp. Bb-B catalyzes enantioselective Baeyer-Villiger oxidations with a relaxed cofactor specificity." Journal of Biotechnology 294 (March 2019): 81–87. http://dx.doi.org/10.1016/j.jbiotec.2019.01.011.
Full textRiebel, Anette, Michael J. Fink, Marko D. Mihovilovic, and Marco W. Fraaije. "Type II Flavin-Containing Monooxygenases: A New Class of Biocatalysts that Harbors Baeyer-Villiger Monooxygenases with a Relaxed Coenzyme Specificity." ChemCatChem 6, no. 4 (October 7, 2013): 1112–17. http://dx.doi.org/10.1002/cctc.201300550.
Full textTanner, Adam, and David J. Hopper. "Conversion of 4-Hydroxyacetophenone into 4-Phenyl Acetate by a Flavin Adenine Dinucleotide-Containing Baeyer-Villiger-Type Monooxygenase." Journal of Bacteriology 182, no. 23 (December 1, 2000): 6565–69. http://dx.doi.org/10.1128/jb.182.23.6565-6569.2000.
Full textNiero, Mattia, Irene Righetto, Elisa Beneventi, Patrizia Polverino de Laureto, Marco Wilhelmus Fraaije, Francesco Filippini, and Elisabetta Bergantino. "Unique Features of a New Baeyer–Villiger Monooxygenase from a Halophilic Archaeon." Catalysts 10, no. 1 (January 16, 2020): 128. http://dx.doi.org/10.3390/catal10010128.
Full textIwaki, Hiroaki, Yoshie Hasegawa, Shaozhao Wang, Margaret M. Kayser, and Peter C. K. Lau. "Cloning and Characterization of a Gene Cluster Involved in Cyclopentanol Metabolism in Comamonas sp. Strain NCIMB 9872 and Biotransformations Effected by Escherichia coli-Expressed Cyclopentanone 1,2-Monooxygenase." Applied and Environmental Microbiology 68, no. 11 (November 2002): 5671–84. http://dx.doi.org/10.1128/aem.68.11.5671-5684.2002.
Full textKostichka, Kristy, Stuart M. Thomas, Katharine J. Gibson, Vasantha Nagarajan, and Qiong Cheng. "Cloning and Characterization of a Gene Cluster for Cyclododecanone Oxidation in Rhodococcus ruber SC1." Journal of Bacteriology 183, no. 21 (November 1, 2001): 6478–86. http://dx.doi.org/10.1128/jb.183.21.6478-6486.2001.
Full textIwaki, Hiroaki, Shaozhao Wang, Stephan Grosse, Hélène Bergeron, Ayako Nagahashi, Jittiwud Lertvorachon, Jianzhong Yang, Yasuo Konishi, Yoshie Hasegawa, and Peter C. K. Lau. "Pseudomonad Cyclopentadecanone Monooxygenase Displaying an Uncommon Spectrum of Baeyer-Villiger Oxidations of Cyclic Ketones." Applied and Environmental Microbiology 72, no. 4 (April 2006): 2707–20. http://dx.doi.org/10.1128/aem.72.4.2707-2720.2006.
Full textTolmie, Carmien, Martha Smit, and Diederik Opperman. "Alternative Splicing of the Aflatoxin-Associated Baeyer–Villiger Monooxygenase from Aspergillus flavus: Characterisation of MoxY Isoforms." Toxins 10, no. 12 (December 5, 2018): 521. http://dx.doi.org/10.3390/toxins10120521.
Full textDissertations / Theses on the topic "Baeyer-Villiger monooxygenase de type II"
Downey, Theresa E. "INVESTIGATING STRUCTURE AND PROTEIN-PROTEIN INTERACTIONS OF KEY POST-TYPE II PKS TAILORING ENZYMES." UKnowledge, 2014. http://uknowledge.uky.edu/pharmacy_etds/35.
Full textRöllig, Robert. "Chemical hydride transfer for flavin dependent monooxygenases of two-component systems." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0436.
Full textThe term flavoprotein monooxygenases (FPMO) covers two different types of flavoenzymes: single and two component oxygenases. Two component FPMOs consist of a reductase and an oxygenating enzyme. The functional independence of the oxygenase part of 2,5-diketocamphane 1,2-monooxygenase I (2,5 DKCMO), an FMN dependent type II Baeyer-Villiger monooxygenase, from the reductase counterpart, as well as the mechanism of flavin transfer by free diffusion, was investigated in a reductase-free reaction, using synthetic nicotinamide biomimetics (NCBs) for the reduction of FMN. The balance of flavin reduction and enzymatic (re)oxidation was identified as the bottleneck of the system. Aiming for potentially cost efficient hydride donors for enzymatic redox reactions, nicotinamide coenzyme and nicotinamide biomimetic independent flavin reduction strategies were investigated. The capability of the pH and oxygen robust iridium III complex [Cp*Ir(bpy-OMe)H]+ (Ir* (H+)) to transfer hydrides for flavin reduction for the enzymatic reaction of respectively FMNH2 and FADH2 dependent monooxygenases, 2,5 DKCMO and styrene monooxygenase from Sphingopyxis fribergensis Kp.5.2 (SfStyA) was exploited. The Ir* (H+)/SfStyA approach outperformed the state of the art system by six-fold in terms of turn over number of the metal catalyst. Nevertheless, the robustness of the system remains challenging, and improvements are required to establish the approach as an efficient and versatile platform technology for flavoenzymes