Academic literature on the topic 'Bacterial Toxin-antitoxin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacterial Toxin-antitoxin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Bacterial Toxin-antitoxin"
Kim, Yoonji, and Jihwan Hwang. "Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications." Journal of Life Science 26, no. 2 (February 25, 2016): 265–74. http://dx.doi.org/10.5352/jls.2016.26.2.265.
Full textGuglielmini, Julien, and Laurence Van Melderen. "Bacterial toxin-antitoxin systems." Mobile Genetic Elements 1, no. 4 (November 2011): 283–306. http://dx.doi.org/10.4161/mge.18477.
Full textWalling, Lauren R., and J. Scott Butler. "Structural Determinants for Antitoxin Identity and Insulation of Cross Talk between Homologous Toxin-Antitoxin Systems." Journal of Bacteriology 198, no. 24 (September 26, 2016): 3287–95. http://dx.doi.org/10.1128/jb.00529-16.
Full textPiscotta, Frank J., Philip D. Jeffrey, and A. James Link. "ParST is a widespread toxin–antitoxin module that targets nucleotide metabolism." Proceedings of the National Academy of Sciences 116, no. 3 (December 31, 2018): 826–34. http://dx.doi.org/10.1073/pnas.1814633116.
Full textNonin-Lecomte, Sylvie, Laurence Fermon, Brice Felden, and Marie-Laure Pinel-Marie. "Bacterial Type I Toxins: Folding and Membrane Interactions." Toxins 13, no. 7 (July 14, 2021): 490. http://dx.doi.org/10.3390/toxins13070490.
Full textManikandan, Parthasarathy, Sankaran Sandhya, Kavyashree Nadig, Souradip Paul, Narayanaswamy Srinivasan, Ulli Rothweiler, and Mahavir Singh. "Identification, functional characterization, assembly and structure of ToxIN type III toxin–antitoxin complex from E. coli." Nucleic Acids Research 50, no. 3 (January 8, 2022): 1687–700. http://dx.doi.org/10.1093/nar/gkab1264.
Full textSyed, Mohammad Adnan, and Céline M. Lévesque. "Chromosomal bacterial type II toxin–antitoxin systems." Canadian Journal of Microbiology 58, no. 5 (May 2012): 553–62. http://dx.doi.org/10.1139/w2012-025.
Full textAlonso, Juan C. "Toxin–Antitoxin Systems in Pathogenic Bacteria." Toxins 13, no. 2 (January 20, 2021): 74. http://dx.doi.org/10.3390/toxins13020074.
Full textBrantl, Sabine. "Bacterial type I toxin-antitoxin systems." RNA Biology 9, no. 12 (December 2012): 1488–90. http://dx.doi.org/10.4161/rna.23045.
Full textDíaz-Orejas, Ramón, Elizabeth Diago-Navarro, Ana María Hernández Arriaga, Juan López-Villarejo, Marc Lemonnier, Inma Moreno-Córdoba, Concha Nieto, and Manuel Espinosa. "Bacterial toxin-antitoxin systems targeting translation." Journal of Applied Biomedicine 8, no. 4 (July 31, 2010): 179–88. http://dx.doi.org/10.2478/v10136-009-0021-9.
Full textDissertations / Theses on the topic "Bacterial Toxin-antitoxin"
Haque, Anamul. "Differential Expression Analysis of Type II Toxin-Antitoxin Genes of Pseudomonas aeruginosa PAO1 under Different Environmental Conditions." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83841.
Full textMaster of Science
Catchpole, Ryan Joseph. "Evolution Of The Unnecessary : Investigating How fMet Became Central In Bacterial Translation Initiation." Thesis, University of Canterbury. School of Biological Sciences, 2015. http://hdl.handle.net/10092/10334.
Full textWilbaux, Myriam. "Le système toxine-antitoxine ccdO157 d'Escherichia coli: caractérisation fonctionelle et distribution." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210503.
Full textAu cours de ce travail, nous avons caractérisé un homologue du système toxine-antitoxine ccd du plasmide F (ccdF) qui se situe dans le chromosome de la souche pathogène E. coli O157:H7 EDL933 entre les gènes folA et apaH (ccdO157). Les systèmes ccdF et ccdO157 coexistent naturellement dans les souches d’E. coli O157:H7, le système ccdF se trouvant sur le plasmide pO157 qui dérive du plasmide F. Nos résultats montrent que l’antitoxine plasmidique CcdAF neutralise l’effet de la toxine chromosomique CcdBO157, tandis que l’antitoxine chromosomique CcdAO157 ne contrecarre pas la toxicité de la toxine plasmidique CcdBF. Nous avons également montré que le système ccdF cause une tuerie post-ségrégationelle, lorsqu’il est cloné dans un plasmide instable, dans une souche possédant le système chromosomique ccdO157. Le système ccdF est donc fonctionnel en présence de son homologue chromosomique.
Le système ccdO157 est absent du chromosome de la souche de laboratoire E. coli K-12 MG1655, où une région intergénique de 77 pb sépare les gènes folA et apaH. Celle-ci contient une séquence cible pour la transposition. Nous avons étudié la distribution du système ccdO157 au sein de 523 souches d’E. coli représentatives de l’ensemble des sérogroupes décrits. Nos résultats montrent que le système ccdO157 est présent au sein de souches appartenant à 47 sérogroupes différents. Nos résultats mettent en évidence la diversité de la région intergénique folA-apaH d’E. coli. Celle-ci peut contenir gènes codant pour des protéines présentant de l’homologie avec des protéines d’espèce bactériennes éloignées d’E. coli ou d’organismes eucaryotes, ainsi qu’un élément génétique mobile, l’IS621, ce qui montre que le système ccdO157 a intégré le chromosome d’E. coli via le transfert horizontal de gènes.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Aakre, Christopher David. "Toxin-antitoxin systems in bacteria : targets, mechanisms, and specificity." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101824.
Full textTitle as it appears in MIT Commencement Exercises program, June, 2015: Toxin-antitoxin systems in bacteria : targets, mechanisms, and specificity. Cataloged from PDF version of thesis.
Includes bibliographical references.
Toxin-antitoxin (TA) systems are genetic modules widely present on bacterial chromosomes. These systems comprise a toxin and cognate antitoxin that are encoded together in an operon; normally, the toxin and antitoxin are synthesized and form a non-toxic complex. Under times of stress, however, the more labile antitoxin can be degraded, which frees the toxin to inhibit growth. TA systems have been implicated in a number of important processes, including plasmid stability, phage resistance, persistence, and virulence. Yet, there are a number of unanswered questions about these genetic modules. What are the cellular targets of toxins? How do antitoxins antagonize their cognate toxins? Do toxins and antitoxins interact in a one-to-one manner - one antitoxin for one toxin - or do they form large networks of cross-reacting systems? To answer these questions, I have studied the targets, mechanisms, and specificity of TA systems in bacteria. For my first project, I identified SocAB, a novel TA system in the bacterium Caulobacter crescentus. Unlike canonical TA systems, in which the antitoxin is less stable than the toxin, I found that the toxin SocB is unstable and constitutively degraded by the protease ClpXP. This degradation requires its antitoxin, SocA, which acts a proteolytic adaptor. Furthermore, I found that SocB blocks replication progress through an interaction with the sliding clamp, thus expanding the number of known cellular targets for TA systems. For my second project, I studied interaction specificity in the ParDE TA family. I found that toxins and antitoxins in this family exhibit a strong preference for interacting with their cognate pair, and that specificity is determined by a small subset of coevolving residues at the interface of these two proteins. To understand how the identity of these coevolving residues controls interaction specificity, I generated a library of ~10⁴ variants at these coevolving positions in the ParD antitoxin. By reacting this library against both cognate and non-cognate ParE toxins, I identified promiscuous ParD variants that are densely connected to specific variants in sequence space. These promiscuous states may facilitate changes in TA specificity and promote the expansion of these paralogous systems by duplication and divergence.
by Christopher David Aakre.
Ph. D.
Rocker, Andrea [Verfasser], and Ilme [Akademischer Betreuer] Schlichting. "Epsilon/Zeta Toxin-Antitoxin Systems in Gram-negative Bacteria / Andrea Rocker ; Betreuer: Ilme Schlichting." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180614038/34.
Full textJadhav, Pankaj Vilas. "Structural insights into assembly and regulation of HigBA toxin-antitoxin system from Escherichia coli." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5902.
Full textManikandan, P. "Identification, characterization, structure, and assembly of type III toxin-antitoxin systems from Escherichia coli." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5633.
Full textBooks on the topic "Bacterial Toxin-antitoxin"
Toxin-Antitoxin Systems in Pathogenic Bacteria. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-0675-3.
Full textBook chapters on the topic "Bacterial Toxin-antitoxin"
Bendtsen, Kirstine L., and Ditlev E. Brodersen. "Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes." In Subcellular Biochemistry, 381–412. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46503-6_14.
Full textFleming, Brittany A., and Matthew A. Mulvey. "Toxin-antitoxin Systems as Regulators of Bacterial Fitness and Virulence." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 437–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch39.
Full textAlonso, Juan C., Dolors Balsa, Izhack Cherny, Susanne K. Christensen, Manuel Espinosa, Djordje Francuski, Ehud Gazit, et al. "Bacterial Toxin-Antitoxin Systems as Targets for the Development of Novel Antibiotics." In Enzyme-Mediated Resistance to Antibiotics, 313–29. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815615.ch19.
Full textButt, Aaron T., and Richard W. Titball. "Functional Analysis of the Role of Toxin–Antitoxin (TA) Loci in Bacterial Persistence." In Methods in Molecular Biology, 121–29. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2854-5_11.
Full textYamaguchi, Yoshihiro, and Masayori Inouye. "Toxin-Antitoxin Systems in Bacteria and Archaea." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 97–107. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch8.
Full textMasachis, Sara, and Fabien Darfeuille. "Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding." In Regulating with RNA in Bacteria and Archaea, 171–90. Washington, DC, USA: ASM Press, 2018. http://dx.doi.org/10.1128/9781683670247.ch11.
Full textSužiedėlienė, Edita, Milda Jurėnaitė, and Julija Armalytė. "Identification and Characterization of Type II Toxin-Antitoxin Systems in the Opportunistic PathogenAcinetobacter Baumannii." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 454–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch41.
Full textKędzierska, Barbara, and Finbarr Hayes. "Transcriptional Control of Toxin-Antitoxin Expression: Keeping Toxins Under Wraps Until the Time is Right." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 463–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch42.
Full textAllchin, Douglas. "Nobel Ideals and Noble Errors." In Sacred Bovines. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190490362.003.0017.
Full textAlkhalili, Rawana N., Joel Wallenius, and Bjorn Canback. "Thermophilic Bacteria have the Toxin-Antitoxin System too: Type II Toxin-Antitoxin System Composites in Geobacillus." In New Innovations in Chemistry and Biochemistry Vol. 6, 1–23. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/nicb/v6/14556d.
Full text