Academic literature on the topic 'Bacteria protein synthesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacteria protein synthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bacteria protein synthesis"

1

Laursen, Brian Søgaard, Hans Peter Sørensen, Kim Kusk Mortensen, and Hans Uffe Sperling-Petersen. "Initiation of Protein Synthesis in Bacteria." Microbiology and Molecular Biology Reviews 69, no. 1 (March 2005): 101–23. http://dx.doi.org/10.1128/mmbr.69.1.101-123.2005.

Full text
Abstract:
SUMMARY Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
APA, Harvard, Vancouver, ISO, and other styles
2

Kwaik, Yousef Abu. "Induced Expression of the Legionella pneumophila Gene Encoding a 20-Kilodalton Protein during Intracellular Infection." Infection and Immunity 66, no. 1 (January 1, 1998): 203–12. http://dx.doi.org/10.1128/iai.66.1.203-212.1998.

Full text
Abstract:
ABSTRACT The eukaryotic protein synthesis inhibitor cycloheximid has been used by many investigators to selectively radiolabel intracellular bacteria. Although cycloheximide has no direct effect on bacterial gene expression, there are concerns that long-term inhibition of the host cell protein synthesis may have secondary effects on bacterial gene expression. Therefore, prior to further identification and cloning of the macrophage-induced (MI) genes of Legionella pneumophila, the effects of cycloheximide on L. pneumophila-infected U937 cells were evaluated by transmission electron microscopy. Inhibition of protein synthesis of the host cell for 6 h had no major effect on the ultrastructure of the host cell, on the formation of rough endoplasmic reticulum-surrounded replicative phagosome, or on initiation of intracellular bacterial replication. In contrast, by 15 h of cycloheximide treatment, there was profound deterioration in the host cell as well as in the phagosome. To examine protein synthesis by L. pneumophila during the intracellular infection, U937 macrophage-like cells were infected with L. pneumophila, and intracellular bacteria were radiolabeled during a 2-h cycloheximide treatment or following 12 h of cycloheximide treatment. Comparison by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein profile of radiolabeled in vitro-grown L. pneumophila to that of intracellularly radiolabeled bacteria showed that 23 proteins were induced in response to the intracellular environment during 2 h of inhibition of host cell protein biosynthesis. Twelve MI proteins ofL. pneumophila were artifactually induced due to prolonged inhibition of the host cell protein synthesis. The gene encoding a 20-kDa MI protein was cloned by a reverse genetics technique. Sequence analysis showed that the cloned gene encoded a protein that was 80% similar to the enzyme inorganic pyrophosphatase. Studies of promoter fusion to a promoterless lacZ gene showed that compared to in vitro-grown bacteria, expression of the pyrophosphatase gene (ppa) was induced fourfold throughout the intracellular infection. There was no detectable induction in transcription of the ppa promoter during exposure to stress stimuli in vitro. The ppa gene of L. pneumophila is the first example of a regulated ppagene which is selectively induced during intracellular infection and which may reflect enhanced capabilities of macromolecular biosynthesis by intracellular L. pneumophila. The data indicate caution in the long-term use of inhibition of host cell protein synthesis to selectively examine gene expression by intracellular bacteria.
APA, Harvard, Vancouver, ISO, and other styles
3

Dethlefsen, Les, and Thomas M. Schmidt. "Performance of the Translational Apparatus Varies with the Ecological Strategies of Bacteria." Journal of Bacteriology 189, no. 8 (February 2, 2007): 3237–45. http://dx.doi.org/10.1128/jb.01686-06.

Full text
Abstract:
ABSTRACT Protein synthesis is the predominant activity of growing bacteria; the protein synthesis system accounts for more than one-half the cell's dry mass and consumes most of the cell's energy during rapid growth. Translation has been studied extensively using model organisms, and the translational apparatus is qualitatively similar in terms of structure and function across all known forms of life. However, little is known about variation between organisms in translational performance. Using measurements of macromolecular content in a phylogenetically diverse collection of bacteria with contrasting ecological strategies, we found that the translational power (the rate of protein synthesis normalized to the mass of the protein synthesis system) is three- to fourfold higher among bacteria that respond rapidly to nutrient availability than among bacteria that respond slowly. An analysis of codon use in completely sequenced bacterial genomes confirmed that the selective forces acting on translation vary with the ecological strategy. We propose that differences in translational power result from ecologically based variation among microbes in the relative importance of two competing benefits: reducing the biomass invested in the protein synthesis system and reducing the energetic expense of protein synthesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Simon, M., and F. Azam. "Protein content and protein synthesis rates of planktonic marine bacteria." Marine Ecology Progress Series 51 (1989): 201–13. http://dx.doi.org/10.3354/meps051201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nally, Jarlath E., John F. Timoney, and Brian Stevenson. "Temperature-Regulated Protein Synthesis by Leptospira interrogans." Infection and Immunity 69, no. 1 (January 1, 2001): 400–404. http://dx.doi.org/10.1128/iai.69.1.400-404.2001.

Full text
Abstract:
ABSTRACT Leptospira interrogans is an important mammalian pathogen. Transmission from an environmental source requires adaptations to a range of new environmental conditions in the organs and tissues of the infected host. Since many pathogenic bacteria utilize temperature to discern their environment and regulate the synthesis of appropriate proteins, we investigated the effects of temperature on protein synthesis in L. interrogans. Bacteria were grown for several days after culture temperatures were shifted from 30 to 37°C. Triton X-114 cellular fractionation identified several proteins of the cytoplasm, periplasm, and outer membrane for which synthesis was dependent on the culture temperature. Synthesis of a cytoplasmic protein of 20 kDa was switched off at 37°C, whereas synthesis of a 66-kDa periplasmic protein was increased at the higher temperature. Increased synthesis of a 25-kDa outer membrane protein was observed when the organisms were shifted from 30 to 37°C. A 36-kDa protein synthesized at 30 but not at 37°C was identified as LipL36, an outer membrane lipoprotein. In contrast, expression of another lipoprotein, LipL41, was the same at either temperature. Immunoblotting with convalescent equine sera revealed that some proteins exhibiting thermoregulation of synthesis elicited antibody responses during infection. Our results show that sera from horses which aborted as a result of naturally acquired infection withL. interrogans serovar pomona type kennewicki recognize periplasmic and outer membrane proteins which are differentially synthesized in response to temperature and which therefore may be important in the host-pathogen interaction during infection.
APA, Harvard, Vancouver, ISO, and other styles
6

Wei, Hong Tao, Zhong Wen Lv, Xue Mei Han, and Guo Li Zhang. "High Expression and Preliminary Purification of Human β-Defensin-2 Fusion Protein." Advanced Materials Research 781-784 (September 2013): 1076–79. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.1076.

Full text
Abstract:
This study was undertaken to achieve high expression and preliminary purification of human β-defensin-2 fusion protein to lay a solid foundation for production of human β-defensin-2 using genetic engineering. A prokaryotic expression vector for human β-defensin-2 fusion protein was generated using in vitro gene synthesis before transformation into BL21 (l DE3) plysS TrX-B host bacteria. High expression of TrX-A-HBD-2 fusion protein was induced with IPTG in the bacteria exposed to various expression conditions. The fusion protein then underwent preliminary purification. The protein of interest was released from the genetically engineered bacteria after freezing and thawing. The expression of the target protein accounted for 16.12% of the total bacterial proteins. Fractional precipitation with saturated ammonium sulfate and metal chelate affinity chromatography yielded human β-defensin-2 peptide fusion protein, with a relative purity of 80.53%.Human β-defensin-2 fusion protein could be highly expressed in a soluble form, with a relatively high purity
APA, Harvard, Vancouver, ISO, and other styles
7

Banta, Amy B., Jeremy H. Wei, and Paula V. Welander. "A distinct pathway for tetrahymanol synthesis in bacteria." Proceedings of the National Academy of Sciences 112, no. 44 (October 19, 2015): 13478–83. http://dx.doi.org/10.1073/pnas.1511482112.

Full text
Abstract:
Tetrahymanol is a polycyclic triterpenoid lipid first discovered in the ciliate Tetrahymena pyriformis whose potential diagenetic product, gammacerane, is often used as a biomarker for water column stratification in ancient ecosystems. Bacteria are also a potential source of tetrahymanol, but neither the distribution of this lipid in extant bacteria nor the significance of bacterial tetrahymanol synthesis for interpreting gammacerane biosignatures is known. Here we couple comparative genomics with genetic and lipid analyses to link a protein of unknown function to tetrahymanol synthesis in bacteria. This tetrahymanol synthase (Ths) is found in a variety of bacterial genomes, including aerobic methanotrophs, nitrite-oxidizers, and sulfate-reducers, and in a subset of aquatic and terrestrial metagenomes. Thus, the potential to produce tetrahymanol is more widespread in the bacterial domain than previously thought. However, Ths is not encoded in any eukaryotic genomes, nor is it homologous to eukaryotic squalene-tetrahymanol cyclase, which catalyzes the cyclization of squalene directly to tetrahymanol. Rather, heterologous expression studies suggest that bacteria couple the cyclization of squalene to a hopene molecule by squalene-hopene cyclase with a subsequent Ths-dependent ring expansion to form tetrahymanol. Thus, bacteria and eukaryotes have evolved distinct biochemical mechanisms for producing tetrahymanol.
APA, Harvard, Vancouver, ISO, and other styles
8

Woolstenhulme, C. J., S. Parajuli, D. W. Healey, D. P. Valverde, E. N. Petersen, A. L. Starosta, N. R. Guydosh, W. E. Johnson, D. N. Wilson, and A. R. Buskirk. "Nascent peptides that block protein synthesis in bacteria." Proceedings of the National Academy of Sciences 110, no. 10 (February 19, 2013): E878—E887. http://dx.doi.org/10.1073/pnas.1219536110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bürk, Jonas, Benjamin Weiche, Meike Wenk, Diana Boy, Sigrun Nestel, Bernd Heimrich, and Hans-Georg Koch. "Depletion of the Signal Recognition Particle Receptor Inactivates Ribosomes in Escherichia coli." Journal of Bacteriology 191, no. 22 (September 11, 2009): 7017–26. http://dx.doi.org/10.1128/jb.00208-09.

Full text
Abstract:
ABSTRACT The signal recognition particle (SRP)-dependent cotranslational targeting of proteins to the cytoplasmic membrane in bacteria or the endoplasmic reticulum membrane in eukaryotes is an essential process in most living organisms. Eukaryotic cells have been shown to respond to an impairment of the SRP pathway by (i) repressing ribosome biogenesis, resulting in decreased protein synthesis, and (ii) by increasing the expression of protein quality control mechanisms, such as chaperones and proteases. In the current study, we have analyzed how bacteria like Escherichia coli respond to a gradual depletion of FtsY, the bacterial SRP receptor. Our analyses using cell-free transcription/translation systems showed that FtsY depletion inhibits the translation of both SRP-dependent and SRP-independent proteins. This synthesis defect is the result of a multifaceted response that includes the upregulation of the ribosome-inactivating protein ribosome modulation factor (RMF). Although the consequences of these responses in E. coli are very similar to some of the effects also observed in eukaryotic cells, one striking difference is that E. coli obviously does not reduce the rate of protein synthesis by downregulating ribosome biogenesis. Instead, the upregulation of RMF leads to a direct and reversible inhibition of translation.
APA, Harvard, Vancouver, ISO, and other styles
10

Errington, Jeffery, Richard A. Daniel, and Dirk-Jan Scheffers. "Cytokinesis in Bacteria." Microbiology and Molecular Biology Reviews 67, no. 1 (March 2003): 52–65. http://dx.doi.org/10.1128/mmbr.67.1.52-65.2003.

Full text
Abstract:
SUMMARY Work on two diverse rod-shaped bacteria, Escherichia coli and Bacillus subtilis, has defined a set of about 10 conserved proteins that are important for cell division in a wide range of eubacteria. These proteins are directed to the division site by the combination of two negative regulatory systems. Nucleoid occlusion is a poorly understood mechanism whereby the nucleoid prevents division in the cylindrical part of the cell, until chromosome segregation has occurred near midcell. The Min proteins prevent division in the nucleoid-free spaces near the cell poles in a manner that is beginning to be understood in cytological and biochemical terms. The hierarchy whereby the essential division proteins assemble at the midcell division site has been worked out for both E. coli and B. subtilis. They can be divided into essentially three classes depending on their position in the hierarchy and, to a certain extent, their subcellular localization. FtsZ is a cytosolic tubulin-like protein that polymerizes into an oligomeric structure that forms the initial ring at midcell. FtsA is another cytosolic protein that is related to actin, but its precise function is unclear. The cytoplasmic proteins are linked to the membrane by putative membrane anchor proteins, such as ZipA of E. coli and possibly EzrA of B. subtilis, which have a single membrane span but a cytoplasmic C-terminal domain. The remaining proteins are either integral membrane proteins or transmembrane proteins with their major domains outside the cell. The functions of most of these proteins are unclear with the exception of at least one penicillin-binding protein, which catalyzes a key step in cell wall synthesis in the division septum.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bacteria protein synthesis"

1

Takahshi, Naoko. "Flagella synthesis in Rhodobacter sphaeroides WS8." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koripella, Srihari Nagendra Ravi Kiran. "Characterizing Elongation of Protein Synthesis and Fusidic Acid Resistance in Bacteria." Doctoral thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-207924.

Full text
Abstract:
Protein synthesis is a highly complex process executed by the ribosome in coordination with mRNA, tRNAs and translational protein factors. Several antibiotics are known to inhibit bacterial protein synthesis by either targeting the ribosome or the proteins factors involved in translation. Fusidic acid (FA) is a bacteriostatic antibiotic that blocks polypeptide chain elongation by locking elongation factor-G (EF-G) on the ribosome. Mutations in fusA, the gene encoding bacterial EF-G, confer high-level of resistance towards FA.  Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by acquiring secondary mutations. In order to understand the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that, the causes for fitness loss in the FA-resistant mutant F88L are resulting from significantly slower tRNA translocation and ribosome recycling. Analysis of the crystal structures, together with the results from our biochemical studies enabled us to propose that FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome. EF-G is a G-protein belonging to the GTPase super-family. In all the translational GTPases, a conserved histidine (H92 in E. coli EF-G) residue, located at the apex of switch II in the G-domain is believed to play a crucial role in ribosome-stimulated GTP hydrolysis and inorganic phosphate (Pi) release. Mutagenesis of H92 to alanine (A) and glutamic acid (E) showed different degree of defect in different steps of translation. Compared to wild type (WT) EF-G, mutant H92A showed a 10 fold defect in ribosome mediated GTP hydrolysis whereas the other mutant H92E showed a 100 fold defect. However, both the mutants are equally defective in single round Pi release (100 times slower than WT). When checked for their activity in mRNA translocation, H92A and H92E were 10 times and 100 times slower than WT respectively. Results from our tripeptide formation experiments revealed a 1000 fold defect for both mutants. Altogether, our results indicate that GTP hydrolysis occurs before tRNA translocation, whereas Pi release occurs probably after or independent of the translocation step. Further, our results confirm that, His92 has a vital role residue in ribosome-stimulated GTP hydrolysis and Pi release.
APA, Harvard, Vancouver, ISO, and other styles
3

Fowler, Colleen Marie. "Evaluation of 2-Hydroxy-4-(methylthio) Butanoic Acid Isopropyl Ester and Methionine Supplementation on Efficiency of Microbial Protein Synthesis and Rumen Bacterial Populations." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1248875016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haas, R. Matthew. "Synthesis and characterization of phosphono-CheY from Thermotoga maritima /." Electronic version (PDF), 2007. http://dl.uncw.edu/etd/2007-1/haasr/rmatthewhaas.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lovmar, Martin. "Macrolide Antibiotics in Bacterial Protein Synthesis." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Guangtao. "Design, synthesis, and evaluation of cholera toxin inhibitors and [alpha]-helix mimetics of dormancy survival regulator /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johansson, Magnus. "Rate and Accuracy of Bacterial Protein Synthesis." Doctoral thesis, Uppsala universitet, Struktur- och molekylärbiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-171040.

Full text
Abstract:
High levels of accuracy in transcription, aminoacylation of tRNA, and mRNA translation are essential for all life forms. However, high accuracy also necessarily means large energy dissipation and slow kinetics. Therefore, in vivo there is a fine tuned balance between rate and accuracy of key chemical reactions. We have shown that in our optimized in vitro bacterial protein synthesis system we have in vivo compatible rate and accuracy of ribosomal protein elongation. Our measurements of the temperature and the pH dependence of peptide bond formation with native substrates also suggest that the chemical step of peptidyl transfer, rather than tRNA accommodation, limits the rate of peptide bond formation. This work has made it possible to study ribosomal peptidyl transfer with native substrates. Furthermore, we have developed a general theoretical model for the rate-accuracy trade-off in enzymatic reactions. When considering this trade-off for protein synthesis in the context of the living bacterial cell, where cognate aa-tRNAs compete for ribosome binding with an excess of non-cognate aa-tRNAs, the model predicts an accuracy optimum where the inhibitory effect of non-cognate substrate binding and the efficiency loss due to high discard rate of cognate aa-tRNAs are minimized. However, these results also show that commonly used biochemical systems for protein synthesis studies operate at exceptionally suboptimal conditions. This makes it difficult, if not impossible, to relate the biochemical data to protein synthesis in the living cell. To validate our theoretical model we developed a method, based on variation of the concentration of Mg2+ ions in the buffer, to study the rate-accuracy trade-off of bacterial protein synthesis in vitro. We found a linear trade-off between rate and accuracy of tRNA selection on the ribosome, from which we could estimate the maximal accuracy. Exploiting this method for a complete set of single-mismatch readings by one tRNA species, we found simple patterns of genetic code reading, where the accuracy was highest for the second and lowest for the third codon position. The results bridge the gap between in vivo and in vitro protein synthesis and allow calibration of our test tube conditions to those of the living cell.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jingji. "Accuracy of mRNA Translation in Bacterial Protein Synthesis." Doctoral thesis, Uppsala universitet, Struktur- och molekylärbiologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262901.

Full text
Abstract:
Reading of messenger RNA (mRNA) by aminoacyl-tRNAs (aa-tRNAs) on the ribosomes in the bacterial cell occurs with high accuracy. It follows from the physical chemistry of enzymatic reactions that there must be a trade-off between rate and accuracy of initial tRNA selection in protein synthesis: when the current accuracy, the A-value, approaches its maximal possible value, the d-value, the kinetic efficiency of the reaction approaches zero. We have used an in vitro system for mRNA translation with purified E. coli components to estimate the d- and A-values by which aa-tRNAs discriminate between their cognate and near cognate codons displayed in the ribosomal A site. In the case of tRNALys, we verified the prediction of a linear trade-off between kinetic efficiency of cognate codon reading and the accuracy of codon selection. These experiments have been extended to a larger set of tRNAs, including tRNAPhe, tRNAGlu, tRNAHis, tRNACys, tRNAAsp and tRNATyr, and linear efficiency-accuracy trade-off was observed in all cases. Similar to tRNALys, tRNAPhe discriminated with higher accuracy against a particular mismatch in the second than in the first codon position. Remarkably high d-values were observed for tRNAGlu discrimination against a C-C mismatch in the first codon position (70 000) and for tRNAPhe discrimination against an A-G mismatch in the second codon position (79 000). At the same time, we have found a remarkably small d-value (200) for tRNAGlu misreading G in the middle position of the codon (U-G mismatch). Aminoglycoside antibiotics induce large codon reading errors by tRNAs. We have studied the mechanism of aminoglycoside action and found that the drug stabilized aminoacyl-tRNA in a codon selective in relation to a codon non-selective state. This greatly enhanced the probability of near cognate aminoacyl-tRNAs to successfully transcend the initial selection step of the translating ribosome. We showed that Mg2+ ions, in contrast, favour codon non-selective states and thus induce errors in a principally different way than aminoglycosides.  We also designed experiments to estimate the overall accuracy of peptide bond formation with, including initial selection accuracy and proofreading of tRNAs after GTP hydrolysis on EF-Tu. Our experiments have now made it possible to calibrate the accuracy of tRNA selection in the test tube to that in the living cells. We will now also be able to investigate the degree to which the accuracy of tRNA selection has been optimized for maximal fitness.
APA, Harvard, Vancouver, ISO, and other styles
9

Nagalingam, Anil. "Towards the total synthesis of bacterial immunity proteins." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shanley, Samantha Jane. "A glycopore for bacterial sensing." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:06fe9bce-6bf2-4f61-b4d8-014cb9df3fc0.

Full text
Abstract:
Increasing antibiotic resistance has created a need to develop rapid and reliable methods to identify bacteria and provide pertinent information to ensure suitable antibiotics or sugar therapeutics can be chosen for treatment. Carbohydrate structures attached to proteins on host cell surfaces provide a binding point for many pathogens, including bacteria. These structures can be mimicked using single monosaccharides glycosylated to alpha-hemolysin (alpha-HL). Alpha-HL is a beta-barrel pore-forming toxin secreted by Staphylococcus aureus that forms an SDS stable heptamer, which can be expressed by coupled in vitro transcription and translation and purified by polyacrylamide gel electrophoresis. The purified heptamers can be reconstituted into planar lipid bilayers and studied at the single channel level. Through single channel recordings the effects of sugar-linker lengths, different glycans and the interaction between the ‘Glycopore’ and sugar binding molecules can be studied. The glycopore, therefore, acts as a scaffold for analysing protein-sugar interactions. Studies in this thesis have focused on the synthesis of carbohydrates for site-selective protein glycosylation; cloning and in vitro transcription translation of alpha-HL monomers; and glycosylation and oligomerisation of alpha-HL to form glycopores suitable for lectin-binding studies. Lectins DC-SIGN and FimH have been expressed in Escherichia coli and these lectins as well as others have been screened using alpha-HL glycopores. The glycopores have also been investigated with bacteria in serum in a controlled molecule-specific manner using single-channel electrical recording. In this work glycosylated alpha-HL-monomers have been found to form stable heptamers which can be formed by oligomerisation on red blood cell membranes. The purified glycopores were reconstituted into planar lipid bilayers and studied at the single-channel level. Through single-channel recordings an optimised glycopore has been shown to be effective in distinguishing lectins alone and in a mixture and has afforded qualitative and quantitative information about the binding interactions between carbohydrates and sugar binding proteins. Furthermore, the glycopore has been used to sense bacteria which may provide an insight into modes of bacterial infection. In addition, a multivalent glycopore has been formed which has proved preliminary information about the effects of multivalency in lectin binding. The design and synthesis of non-beta-lactam antibiotic candidates and their evaluation has also been carried out.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Bacteria protein synthesis"

1

service), ScienceDirect (Online, ed. RNA turnover in bacteria, archaea and organelles. San Diego, Calif: Academic Press/Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolfe, Gordon V. Accumulation of dissolved DMSP by marine bacteria and its degradation via bacterivory. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hengge-Aronis, Regine. Studies of secretion of periplasmic proteins in Escherichia coli. Konstanz: Hartung-Gorre, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Måns, Ehrenberg, ed. Structural aspects of protein synthesis. 2nd ed. New Jersey: World Scientific, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Structural aspects of protein synthesis. Singapore: World Scientific, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Yanyan, Sylvie Rebuffat, and Séverine Zirah. Lasso Peptides: Bacterial Strategies to Make and Maintain Bioactive Entangled Scaffolds. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Structural Aspects Of Protein Synthesis. World Scientific Publishing Company, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liljas, Anders. Structural Aspects Of Protein Synthesis. World Scientific Publishing Company, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The Periplasm. ASM Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ayers, Joseph. Biohybrid robots are synthetic biology systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0051.

Full text
Abstract:
This chapter describes how synthetic biology and organic electronics can integrate neurobiology and robotics to form a basis for biohybrid robots and synthetic neuroethology. Biomimetic robots capture the performance advantages of animal models by mimicking the behavioral control schemes evolved in nature, based on modularized devices that capture the biomechanics and control principles of the nervous system. However, current robots are blind to chemical senses, difficult to miniaturize, and require chemical batteries. These obstacles can be overcome by integration of living engineered cells. Synthetic biology seeks to build devices and systems from fungible gene parts (gene systems coding different proteins) integrated into a chassis (induced pluripotent eukaryotic cells, yeast, or bacteria) to produce devices with properties not found in nature. Biohybrid robots are examples of such systems (interacting sets of devices). A nascent literature describes genes that can mediate organ levels of organization. Such capabilities, applied to biohybrid systems, portend truly biological robots guided, controlled, and actuated solely by life processes.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bacteria protein synthesis"

1

Stemmer, P., S. Leong, and L. Sequeira. "The use of a λgt11 Expression Vector and of Protein Sequence Derived DNA Oligomers to Clone Genes for Pilus Synthesis in Pseudomonas Solanacearum." In Plant Pathogenic Bacteria, 474. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3555-6_97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Payne, Shelley M. "Regulation of Bacterial Toxin Synthesis by Iron." In Bacterial Protein Toxins, 25–38. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817893.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Matsumoto, H., Y. Baba, Y. Yoshitake, P. Jitareerat, K. Nomura, and S. Tsuyumu. "Comparison of Regulatory Proteins for Pectate Lyase Synthesis between Erwinia chrysanthemi and E. carotovora subsp. carotovora." In Plant Pathogenic Bacteria, 224–28. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0003-1_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Perederina, Anna, and Andrey S. Krasilnikov. "Crystallization of RNA–Protein Complexes: From Synthesis and Purification of Individual Components to Crystals." In Bacterial Regulatory RNA, 123–43. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-949-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gagarinova, Alla, and Andrew Emili. "Investigating Bacterial Protein Synthesis Using Systems Biology Approaches." In Advances in Experimental Medicine and Biology, 21–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23603-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gemmell, C. G. "Protein Synthesis Inhibitors and Bacterial Susceptibility to Phagocytosis." In Host Defense Dysfunction in Trauma, Shock and Sepsis, 987–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77405-8_132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stirling, Colin J. "Similarities between S. cerevisiae SEc61p and E. coli SecY Suggest a Common Origin for Protein Translocases of the Eukaryotic ER and the Bacterial Plasma Membrane." In Protein Synthesis and Targeting in Yeast, 293–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84921-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boxer, S. G. "Structure and Energetics in Reaction Centers and Semi-synthetic Chlorophyll Protein Complexes." In Antennas and Reaction Centers of Photosynthetic Bacteria, 306–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82688-7_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mackie, Roderick I., and Marvin P. Bryant. "Efficiency of Bacterial Protein Synthesis and Methanogenesis During Anaerobic Degradation." In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 411–13. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Russell, Michael W., Hong-Yin Wu, Pamela L. White, Ichiro Takahashi, Nobuo Okahashi, and Toshihiko Koga. "Peroral Immunization with a Cholera Toxin-Linked Bacterial Protein Antigen and Synthetic Peptide." In Genetically Engineered Vaccines, 199–207. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3410-5_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bacteria protein synthesis"

1

Chubukova, O. V., Z. R. Vershinina, R. T. Matnyazov, and Al Kh Baymiev. "Using nod genes control system to create rhizospheric microorganisms with regulated gene expression." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.054.

Full text
Abstract:
Inducible vector containing the full-sized nodD gene and the promoter region of the nod-box under the control of which was cloned the gfp gene was constructed. Modified bacteria R. galegae in which the synthesis of GFP protein was activated by plant flavonoids were obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Cuppoletti, John. "Composite Synthetic Membranes Containing Native and Engineered Transport Proteins." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-449.

Full text
Abstract:
Our membrane transport protein laboratory has worked with material scientists, computational chemists and electrical and mechanical engineers to design bioactuators and sensing devices. The group has demonstrated that it is possible to produce materials composed native and engineered biological transport proteins in a variety of synthetic porous and solid materials. Biological transport proteins found in nature include pumps, which use energy to produce gradients of solutes, ion channels, which dissipate ion gradients, and a variety of carriers which can either transport substances down gradients or couple the uphill movement of substances to the dissipation of gradients. More than one type of protein can be reconstituted into the membranes to allow coupling of processes such as forming concentration gradients with ion pumps and dissipating them with an ion channel. Similarly, ion pumps can provide ion gradients to allow the co-transport of another substance. These systems are relevant to bioactuation. An example of a bioactuator that has recently been developed in the laboratory was based on a sucrose-proton exchanger coupled to a proton pump driven by ATP. When coupled together, the net reaction across the synthetic membrane was ATP driven sucrose transport across a flexible membrane across a closed space. As sucrose was transported, net flow of water occurred, causing pressure and deformation of the membrane. Transporters are regulated in nature. These proteins are sensitive to voltage, pH, sensitivity to a large variety of ligands and they can be modified to gain or lose these responses. Examples of sensors include ligand gated ion channels reconstituted on solid and permeable supports. Such sensors have value as high throughput screening devices for drug screening. Other sensors that have been developed in the laboratory include sensors for membrane active bacterial products such as the anthrax pore protein. These materials can be self assembled or manufactured by simple techniques, allowing the components to be stored in a stable form for years before (self) assembly on demand. The components can be modified at the atomic level, and are composed of nanostructures. Ranges of sizes of structures using these components range from the microscopic to macroscopic scale. The transport proteins can be obtained from natural sources or can be produced by recombinant methods from the genomes of all kingdoms including archea, bacteria and eukaryotes. For example, the laboratory is currently studying an ion channel from a thermophile from deep sea vents which has a growth optimum of 90 degrees centigrade, and has membrane transport proteins with very high temperature stability. The transport proteins can also be genetically modified to produce new properties such as activation by different ligands or transport of new substances such as therapeutic agents. The structures of many of these proteins are known, allowing computational chemists to help understand and predict the transport processes and to guide the engineering of new properties for the transport proteins and the composite membranes. Supported by DARPA and USARMY MURI Award and AFOSR.
APA, Harvard, Vancouver, ISO, and other styles
3

Ashraf, Noreen, Fiaz Ahmad, and Yin Da-Chuan. "Bacterial Protein Mediated Synthesis of Antibacterial AgNPs and Protein Crystallization for Time-dependent Growth Studies of AgNPs." In The 5th World Congress on New Technologies. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icnfa19.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Shangxian, Su Sun, Xiaoyu Zhang, and Joshua S. Yuan. "Synthetic Bacterial Cell Factory for Highly Efficient Protein Secretion and Consolidated." In The 5th World Congress on New Technologies. Avestia Publishing, 2019. http://dx.doi.org/10.11159/icbb19.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lord, S. T. "DIRECTED MUTAGENESIS OF HUMAN FIBRINOGEN: Aα CHAIN SUBSTITUTIONS THAT ALTER THROMBIN CLEAVAGE AND ANTIBODY RECOGNITION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642887.

Full text
Abstract:
The initial event in fibrin clot formation is the thrombin catalized cleavage of the Aa chain of fibrinogen between Argl6 and Glyl7, releasing fibrinopeptide A. Previous data indicate that most of the information required for thrombin recognition and cleavage of the Aa chain lies within the amino terminal 51 residue CNBr fragment. In order to use protein engineering techniques to study the interaction of thrombin with the Aa chain, we have constructed a plasmid expression vector which encodes a tripartite protein consisting of amino acids 1-50 of the Aa chain of human fibrinogen followed by 60 amino acids of chicken collagen, and the beta-galactosidase protein from Escherichia coli. The codons for an initiator methionine and amino acids 1-50 were assembled from 7 oligonucleotides. Protein blot analysis of bacterial lysates of cells induced to synthesize this tribrid protein show a single band (MW = 125,000) crossreactive with a monoclonal antibody, Y-18, which recognizes the Aa chain of fibrinogen but not the products of thrombin cleavage. When these lysates are incubated with thrombin, fibrinopeptide A is released as demonstrated both by protein blot analysis and radioimmunoassay. By including one heterogeneous oligonucleotide in the assembly process, we have constructed plasmids which encode specific amino acid substitutions within residues 1-23. One of these substitutions, Glyl4 to val, significantly alters both cleavage by thrombin and recognition by Y-18. Substitution of ilu for Arg23 alters neither thrombin cleavage nor monoclonal recognition while substitution of leu for Argl6 alters thrombin cleavage, but not recognition by Y-18.
APA, Harvard, Vancouver, ISO, and other styles
6

Uzan, G., A. Lajmanovich, M. H. Prandini, Ph Frachet, A. Duperray, and G. Marguerie. "MOLECULAR CLONING OF PLATELET GPIIb FROM HEL CELLS AND HUMAN MEGAKARYOCYTES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643960.

Full text
Abstract:
Platelet GP IIb-IIIa is an heterodimer which functions as a receptor for fibrinogen, fibronectin and Von Willebrand factor and is implicated in platelet adhesive reactions. To study the structure function relationship of this glycoprotein, a recombinant DNA approach was initiated. cDNA expression libraries were constructed in » gtll vector, from erythro-leukemia cells (HEL) and megakaryocytes mRNA. The human megakaryocytes were isolated from patients with chronic myeloid leukemia. The HEL library was initially screened with polyclonal antibodies anti GPIIb IIIa. One clone, λIIbI, containing a 1.65 kbp insert reacted with a panel of different polyclonal antibodies anti GPIIb IIIa and a monoclonal antibody anti GPIIb. To further characterize this clone the synthesis of the fusion protein was induced by IPTG. The bacterial protein was then blotted onto nitro cellulose and incubated with antisera anti GPIIb-IIIa. Antibodies that specifically bound with the fusion protein were eluted and tested on platelet membrane extracts. The selected antibodies produced a positive signal at the GPIIb position similar to the signal produced by the monoclonal antibody anti GPIIb on the same membrane extract. Finally on western blotting, a protein of Mr= 170kD reacted with the monoclonal antibody anti GPIIb. λIIbI insert was used to screen the megakaryocyte library and 3 clones, λIIb2,λIIb3 and λIIb4 were isolated. The size of HEL cells and megakaryocytes GPIIb mRNA was estimated by northern blotting. Only one species of 3.9 kb was identified in both cells. The four different clones accounted for 50% of the coding sequence of this mRNA.Sequencing of these cDNAs indicated that the plasmatic domain of GPIIb contains a cystein rich region. The sequence of these clones will allow the study of the adhesines genetic diversity in different cellular systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Ferreira, Sávio, Ticiane Farias, and Felipe do Amaral. "Modulating effect of (+) – α – pinene on the activity of antimicrobials that interfere on protein synthesis and bacterial genetic material." In MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition. Basel, Switzerland: MDPI, 2019. http://dx.doi.org/10.3390/mol2net-05-06251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nguyen, Thai Huu, and Qiao Lin. "An Aptamer-Functionalized Microfluidic Platform for Biomolecular Purification and Sensing." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82142.

Full text
Abstract:
Aptamers are oligonucleotides (DNA or RNA) that bind to chemical and biological analyte targets via affinity interactions. Through an in vitro synthetic process, aptamers can be developed for an extremely broad spectrum of analytes, such as small molecules, proteins, cells, viruses, and bacteria. Target recognition by aptamers is highly selective, as affinity interactions result in secondary aptamer conformational structures that specifically fit the target. The aptamer-target binding is also reversible and depends strongly on external stimuli such as pH and temperature. The specificity and stimuli-responsiveness of aptamers are highly attractive to biological purification and sensing, which generally involve isolating minute quantities of targets from complex samples with non-specific molecules and impurities present at orders-of-magnitude higher concentrations. We present an aptamer-functionalized microfluidic platform that by design exploits the specificity and temperature-dependent reversibility of aptamers to enable biomolecular purification and sensing. Using the specificity of aptamers, we demonstrate highly selective capture and enrichment of biomolecules. Employing thermally induced, reversible disruption of aptamer-target binding, we accomplish isocratic elution of the captured analytes and regeneration of the aptamer surfaces, thereby eliminating the use of potentially harsh reagents. Using integrated microfluidic control, the eluted analytes are detected in a label-free fashion by mass spectrometric methods.
APA, Harvard, Vancouver, ISO, and other styles
9

Bevilacqua, M. A., and M. A. Gimbrone. "LEUKOCYTE-ENDOTHELIAL INTERACTIONS: IMPLICATIONS FOR INFLAMMATION AND COAGULATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642948.

Full text
Abstract:
A rapidly increasing body of data indicates that the vascular endothelium plays an active role in the development of inflammatory and thrombotic processes. Our laboratory has focused on the modulation of certain endothelial cell functions by inflammatory/immune mediators. Initially, we demonstrated that human monocyte derived interleukin-1 (hmIL-1) can act directly on cultured human endothelial cells (HEC) to increase the expression of tissue factor procoagulant activity in a time- and protein-synthesis dependent fashion (J. Exp. Med. 160:618, 1984). Increased expression of HEC tissue factor was also elicited with recombinant IL-1α (rlL-lα), rIL-1 β, and recombinant human tumor necrosis factor (rTNF), as well as with bacterial endotoxin (1 ipopolysaccharide, LPS) (Am. J. Pathol. 121:393, 1985; Proc. Natl. Acad. Sci. USA 83:4533, 1986). The kinetics of the HEC tissue factor responses to these stimuli were similar, demonstrating a rapid use rise to peak activity at ~ 4 hr, and a decline toward basal levels by 24 hr. This characteristic decline in tissue factor PCA after prolonged incubation with IL-1 or TNF was accompanied by selective endothelial hyporesponsiveness to the initially stimulating monokine. Interestingly, the effects of IL-1 and TNF were found to be additive even at apparent maximal doses of the individual monokines. We have also examined the effects of IL-1 and other mediators on HEC production of fibrinolytic components (J. Clin. Invest. 78:587, 1986). HEC monolayers which had been treated for 24 hr with IL-1 or TNF exhibited decreased tissue type plasminogen activator (tPA) and increased plasminogen activator inhibitor (PAI) as assessed in functional and immunological assays. Thus, certain inflammatory mediators such as IL-1 and TNF can act on vascular endothelial cells to induce the expression of tissue factor in a rapid and transient fashion, and to decrease the expression of fibrinolytic activity in a more prolonged fashion. In a parallel series of studies, we have demonstrated that IL-1, TNF and LPS also act on HEC to increase the adhesion of polymorphonuclear leukocytes (PMN), monocytes and the related cell lines HL-60 and U937 (J. Clin. Invest. 76:2003, 1985; Fed. Proc. 46:405A, 1987). The kinetics of this modulation of HEC adhesiveness parallel that of the change in tissue factor PCA. Recently, we have developed two monoclonal antibodies (mAb), H4/18 and H18/7, which identify a surface antigen expressed on monokine- and LPS-stimulated HEC but not on unstimulated HEC. The mediator specificity, kinetics, and protein synthesis-dependence of the expression of this antigen correlate with increased HEC adhesiveness for leukocytes. Neither mAb binds to unstimulated or stimulated PMN, HL-60 cells or dermal fibroblasts. H18/7 inhibits the adhesion of PMN (>50%) and HL-60 cells (>60%) to stimulated HEC by comparison to isotype matched control mAb; H4/18 also inhibits HL-60 adhesion but to a lesser extent. H4/18 and H18/7 immunoprecipitate the same polypeptides from biosynthetically-1abeled monokine-stimulated HEC, but not unstimulated HEC. We have designated this inducible endothelial cell surface protein, endothelial-leukocyte adhesion molecule-1 (E-LAM 1). Thus, vascular endothelium can be activated by inflammatory/immune mediators to express both prothrombotic and pro-inflammatory functions. In vivo, these endothelial responses may contribute to a variety of pathophysiologic processes.
APA, Harvard, Vancouver, ISO, and other styles
10

de Agostini, A., J. Marcum, and R. Rosenberg. "THE BINDING OF ANTITHROMBIN TO CAPILLARY ENDOTHELIAL CELLS GROWN IN VITRO." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643343.

Full text
Abstract:
Cloned endothelial cells from rat epididymal fat pads synthesize anticoagulantly active heparan sulfate proteoglycans containing the disaccharide, GlcA→ AMN-3,6-O-SO3, which is a marker for the antithrombin-binding domain of heparin. To demonstrate that antithrombin (AT) binds to cell surface heparan sulfate, a binding assay employing 125I-AT and cell monolayers has been developed. Post-confluent endothelial cells (7 days) were incubated with radiolabeled AT for 1 h at 4° and washed with PBS. Bound radioactivity was quantitated after solubilizing whole cells. Under these conditions, ∼1% (2174±50 cpm/5x104 cells) of the 125I-AT bound to the endothelial cell monolayer, whereas none of the radiolabeled protein bound to CHO cells or bovine smooth muscle cells. Utilization of unlabeled AT (1 μM) in experiments conducted as described above resulted in a reduction (73%) of the binding of the labeled species to endothelial cells. To assess whether heparan sulfate was responsible for AT binding, cell monolayers were incubated for 1 h at 37° with purified Flavobacterium heparinase (0.2 units). Over 90% of 125I-AT binding to these cellular elements was suppressed with the bacterial enzyme. Internalization of radiolabeled AT by endothelial cells was examined by incubating the protease inhibitor and cells at 4° and 37 . An initial rapid binding was observed at both temperatures. At 4° AT binding plateaued within 15 min, whereas at 37° binding did not plateau until 60 min and was 30% greater than that observed at 4. These data suggest that surface-associated AT can be internalized by endothelial cells. In addition, AT binding was shown to increase with the length of endothelial cell postconfluence, indicating an accumulation of heparan sulfate by these cells during quiescence. In conclusion, our studies support the hypothesis that the vascular endothelium is coated with heparan sulfate-bound AT, which is responsible for the antithrombotic properties of these natural surfaces.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography