Journal articles on the topic 'Backbone Modification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Backbone Modification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Servatius, Phil, Lukas Junk, and Uli Kazmaier. "Peptide Modifications: Versatile Tools in Peptide and Natural Product Syntheses." Synlett 30, no. 11 (April 2, 2019): 1289–302. http://dx.doi.org/10.1055/s-0037-1612417.
Full textRehpenn, Andreas, Alexandra Walter, and Golo Storch. "Molecular Editing of Flavins for Catalysis." Synthesis 53, no. 15 (March 22, 2021): 2583–93. http://dx.doi.org/10.1055/a-1458-2419.
Full textSchmidtgall, Boris, Claudia Höbartner, and Christian Ducho. "NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A–T phosphoramidite building blocks." Beilstein Journal of Organic Chemistry 11 (January 13, 2015): 50–60. http://dx.doi.org/10.3762/bjoc.11.8.
Full textMeng, Melissa, Boris Schmidtgall, and Christian Ducho. "Enhanced Stability of DNA Oligonucleotides with Partially Zwitterionic Backbone Structures in Biological Media." Molecules 23, no. 11 (November 10, 2018): 2941. http://dx.doi.org/10.3390/molecules23112941.
Full textChang, Chi-Fon, and Micheal H. Zehfus. "Effects of backbone modification on helical peptides: The reduced carbonyl modification." Biopolymers 46, no. 3 (September 1998): 181–93. http://dx.doi.org/10.1002/(sici)1097-0282(199809)46:3<181::aid-bip5>3.0.co;2-h.
Full textDawson, Philip E., Gangamani Beligere, and Liang Yan. "Modification of the polypeptide backbone using chemical synthesis." Journal of Molecular Graphics and Modelling 18, no. 4-5 (2000): 550. http://dx.doi.org/10.1016/s1093-3263(00)80112-6.
Full textShaykhutdinova, Polina, and Martin Oestreich. "Further Structural Modification of Sulfur-Stabilized Silicon Cations with Binaphthyl Backbones." Synthesis 51, no. 10 (March 11, 2019): 2221–29. http://dx.doi.org/10.1055/s-0037-1610697.
Full textFan, Linmeng, Min Du, Lichun Kong, Yan Cai, and Xiaobo Hu. "Recognition Site Modifiable Macrocycle: Synthesis, Functional Group Variation and Structural Inspection." Molecules 28, no. 3 (January 31, 2023): 1338. http://dx.doi.org/10.3390/molecules28031338.
Full textMazo, Nuria, Claudio D. Navo, Jesús M. Peregrina, Jesús H. Busto, and Gonzalo Jiménez-Osés. "Selective modification of sulfamidate-containing peptides." Organic & Biomolecular Chemistry 18, no. 32 (2020): 6265–75. http://dx.doi.org/10.1039/d0ob01061h.
Full textStrąkowska, Anna, Anna Kosmalska, and Marian Zaborski. "Silsesquioxanes as Modifying Agents of Methylvinylsilicone Rubber." Materials Science Forum 714 (March 2012): 183–89. http://dx.doi.org/10.4028/www.scientific.net/msf.714.183.
Full textMesibov, Robert. ""Look what they've done to our data!" — How Aggregators Change Data Items in Collection Records." Biodiversity Information Science and Standards 2 (June 15, 2018): e25906. http://dx.doi.org/10.3897/biss.2.25906.
Full textSester, David P., Shalin Naik, Shannon J. Beasley, David A. Hume, and Katryn J. Stacey. "Phosphorothioate Backbone Modification Modulates Macrophage Activation by CpG DNA." Journal of Immunology 165, no. 8 (October 15, 2000): 4165–73. http://dx.doi.org/10.4049/jimmunol.165.8.4165.
Full textWang, Xiaoyan, Mengli Feng, Lu Xiao, Aijun Tong, and Yu Xiang. "Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme." ACS Chemical Biology 11, no. 2 (December 16, 2015): 444–51. http://dx.doi.org/10.1021/acschembio.5b00867.
Full textMurahashi, Shun-Ichi, Akira Mitani, and Kyuuhei Kitao. "Ruthenium-catalyzed glycine-selective oxidative backbone modification of peptides." Tetrahedron Letters 41, no. 52 (December 2000): 10245–49. http://dx.doi.org/10.1016/s0040-4039(00)01823-2.
Full textAbkowitz, M. A., M. Stolka, R. J. Weagley, K. McGrane, and F. E. Knier. "Chemical modification of charge transport in silicon backbone polymers." Synthetic Metals 28, no. 1-2 (January 1989): 553–58. http://dx.doi.org/10.1016/0379-6779(89)90573-0.
Full textDarapaneni, Chandra Mohan, Prathap Jeya Kaniraj, and Galia Maayan. "Water soluble hydrophobic peptoids via a minor backbone modification." Organic & Biomolecular Chemistry 16, no. 9 (2018): 1480–88. http://dx.doi.org/10.1039/c7ob02928d.
Full textMahanta, Nilkamal, Andi Liu, Shihui Dong, Satish K. Nair, and Douglas A. Mitchell. "Enzymatic reconstitution of ribosomal peptide backbone thioamidation." Proceedings of the National Academy of Sciences 115, no. 12 (March 5, 2018): 3030–35. http://dx.doi.org/10.1073/pnas.1722324115.
Full textZhu, Sucheng, Tao Zheng, Lingxin Kong, Jinli Li, Bo Cao, Michael S. DeMott, Yihua Sun, et al. "Development of Methods Derived from Iodine-Induced Specific Cleavage for Identification and Quantitation of DNA Phosphorothioate Modifications." Biomolecules 10, no. 11 (October 28, 2020): 1491. http://dx.doi.org/10.3390/biom10111491.
Full textYang, Weiwei, Alexey Fomenkov, Dan Heiter, Shuang-yong Xu, and Laurence Ettwiller. "High-throughput sequencing of EcoWI restriction fragments maps the genome-wide landscape of phosphorothioate modification at base resolution." PLOS Genetics 18, no. 9 (September 19, 2022): e1010389. http://dx.doi.org/10.1371/journal.pgen.1010389.
Full textLiu, Shi, Ross W. Cheloha, Tomoyuki Watanabe, Thomas J. Gardella, and Samuel H. Gellman. "Receptor selectivity from minimal backbone modification of a polypeptide agonist." Proceedings of the National Academy of Sciences 115, no. 49 (November 15, 2018): 12383–88. http://dx.doi.org/10.1073/pnas.1815294115.
Full textRozners, Eriks. "Recent Advances in Chemical Modification of Peptide Nucleic Acids." Journal of Nucleic Acids 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/518162.
Full textMicklefield, Jason. "Backbone Modification of Nucleic Acids: Synthesis, Structure and Therapeutic Applications." Current Medicinal Chemistry 8, no. 10 (August 1, 2001): 1157–79. http://dx.doi.org/10.2174/0929867013372391.
Full textLi, Cong, Ling Zhu, Zhi Zhu, Hao Fu, Gareth Jenkins, Chunming Wang, Yuan Zou, Xin Lu, and Chaoyong James Yang. "Backbone modification promotes peroxidase activity of G-quadruplex-based DNAzyme." Chemical Communications 48, no. 67 (2012): 8347. http://dx.doi.org/10.1039/c2cc32919k.
Full textRanganathan, Darshan, Narendra K. Vaish, and Kavita Shah. "Protein Backbone Modification by Novel C.alpha.-C Side-Chain Scission." Journal of the American Chemical Society 116, no. 15 (July 1994): 6545–57. http://dx.doi.org/10.1021/ja00094a008.
Full textZanda, Matteo. "Trifluoromethyl group: an effective xenobiotic function for peptide backbone modification." New Journal of Chemistry 28, no. 12 (2004): 1401. http://dx.doi.org/10.1039/b405955g.
Full textZuo, Chao, Shan Tang, Yan-Yan Si, Zhipeng A. Wang, Chang-Lin Tian, and Ji-Shen Zheng. "Efficient synthesis of longer Aβ peptides via removable backbone modification." Organic & Biomolecular Chemistry 14, no. 22 (2016): 5012–18. http://dx.doi.org/10.1039/c6ob00712k.
Full textDe Mesmaeker, Alain, Adrian Waldner, Jacques Lebreton, Pascale Hoffmann, Valérie Fritsch, Romain M. Wolf, and Susan M. Freier. "Amides as a New Type of Backbone Modification in Oligonucleotides." Angewandte Chemie International Edition in English 33, no. 2 (February 1, 1994): 226–29. http://dx.doi.org/10.1002/anie.199402261.
Full textZaini, Mahirah, Rohah A. Majid, and Hossein Nikbakht. "Modification of Montmorillonite with Diamine Surfactants." Applied Mechanics and Materials 695 (November 2014): 224–27. http://dx.doi.org/10.4028/www.scientific.net/amm.695.224.
Full textScully, Conor C. G., Christopher J. White, and Andrei K. Yudin. "The effect of backbone flexibility on site-selective modification of macrocycles." Organic & Biomolecular Chemistry 14, no. 43 (2016): 10230–37. http://dx.doi.org/10.1039/c6ob01778a.
Full textLi, Yuxiang, Minseok Kim, Ziang Wu, Changyeon Lee, Young Woong Lee, Jin-Woo Lee, Young Jun Lee, Ergang Wang, Bumjoon J. Kim, and Han Young Woo. "Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells." Journal of Materials Chemistry C 7, no. 6 (2019): 1681–89. http://dx.doi.org/10.1039/c8tc06206d.
Full textShan, Junwen, Thomas Böck, Thorsten Keller, Leonard Forster, Torsten Blunk, Jürgen Groll, and Jörg Teßmar. "TEMPO/TCC as a Chemo Selective Alternative for the Oxidation of Hyaluronic Acid." Molecules 26, no. 19 (October 1, 2021): 5963. http://dx.doi.org/10.3390/molecules26195963.
Full textMax, J. B., D. V. Pergushov, L. V. Sigolaeva, and F. H. Schacher. "Polyampholytic graft copolymers based on polydehydroalanine (PDha) – synthesis, solution behavior and application as dispersants for carbon nanotubes." Polymer Chemistry 10, no. 23 (2019): 3006–19. http://dx.doi.org/10.1039/c8py01390j.
Full textHandelmann, Jens, Chatla Naga Babu, Henning Steinert, Christopher Schwarz, Thorsten Scherpf, Alexander Kroll, and Viktoria H. Gessner. "Towards the rational design of ylide-substituted phosphines for gold(i)-catalysis: from inactive to ppm-level catalysis." Chemical Science 12, no. 12 (2021): 4329–37. http://dx.doi.org/10.1039/d1sc00105a.
Full textYi, Zhengran, Lanchao Ma, Ping Li, Long Xu, Xiaowei Zhan, Jingui Qin, Xingguo Chen, Yunqi Liu, and Shuai Wang. "Enhancing the organic thin-film transistor performance of diketopyrrolopyrrole–benzodithiophene copolymers via the modification of both conjugated backbone and side chain." Polymer Chemistry 6, no. 30 (2015): 5369–75. http://dx.doi.org/10.1039/c5py00704f.
Full textTang, Shan, Chao Zuo, Dong-Liang Huang, Xiao-Ying Cai, Long-Hua Zhang, Chang-Lin Tian, Ji-Shen Zheng, and Lei Liu. "Chemical synthesis of membrane proteins by the removable backbone modification method." Nature Protocols 12, no. 12 (November 16, 2017): 2554–69. http://dx.doi.org/10.1038/nprot.2017.129.
Full textCheloha, Ross W., Tomoyuki Watanabe, Thomas Dean, Samuel H. Gellman, and Thomas J. Gardella. "Backbone Modification of a Parathyroid Hormone Receptor-1 Antagonist/Inverse Agonist." ACS Chemical Biology 11, no. 10 (August 17, 2016): 2752–62. http://dx.doi.org/10.1021/acschembio.6b00404.
Full textLi, Jia-Bin, Shan Tang, Ji-Shen Zheng, Chang-Lin Tian, and Lei Liu. "Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins." Accounts of Chemical Research 50, no. 5 (April 4, 2017): 1143–53. http://dx.doi.org/10.1021/acs.accounts.7b00001.
Full textKuwahara, M., S. Minezaki, J. i. Nagashima, H. Ozaki, and H. Sawai. "Effect of backbone-modification of oligodeoxyribonucleic acid on primer extension reactions." Nucleic Acids Symposium Series 52, no. 1 (September 1, 2008): 453–54. http://dx.doi.org/10.1093/nass/nrn230.
Full textKato, Kazuaki, Tomoya Ise, and Kohzo Ito. "Crystal structure transition of polyrotaxanes attributable to competing rings and backbone induced by in situ modification of the backbone." Polymer 55, no. 6 (March 2014): 1514–19. http://dx.doi.org/10.1016/j.polymer.2014.01.044.
Full textVorherr, Thomas, Ian Lewis, Joerg Berghausen, Felix Huth, Michael Schaefer, Roman Wille, Jinhai Gao, and Bing Wang. "Pyridyl-Ala Modified Cyclic Hexapeptides: In-Vitro and In-Vivo Profiling for Oral Bioavailability." International Journal of Peptide Research and Therapeutics 26, no. 3 (October 11, 2019): 1383–97. http://dx.doi.org/10.1007/s10989-019-09935-y.
Full textSu, Yongdong, Maitsetseg Bayarjargal, Tracy K. Hale, and Vyacheslav V. Filichev. "DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies." Beilstein Journal of Organic Chemistry 17 (March 29, 2021): 749–61. http://dx.doi.org/10.3762/bjoc.17.65.
Full textFuchs, Elisabeth, Christoph Falschlunger, Ronald Micura, and Kathrin Breuker. "The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry." Nucleic Acids Research 47, no. 14 (July 5, 2019): 7223–34. http://dx.doi.org/10.1093/nar/gkz574.
Full textRajagopalan, Narayani, and A. S. Khanna. "Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure." Journal of Coatings 2014 (June 11, 2014): 1–7. http://dx.doi.org/10.1155/2014/515470.
Full textDe Zotti, Marta, Barbara Biondi, Cristina Peggion, Matteo De Poli, Haleh Fathi, Simona Oancea, Claudio Toniolo, and Fernando Formaggio. "Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on folding and bioactivity." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1161–71. http://dx.doi.org/10.3762/bjoc.8.129.
Full textAfsar, Ashfaq, Laurence M. Harwood, Michael J. Hudson, James Westwood, and Andreas Geist. "Effective separation of the actinides Am(iii) and Cm(iii) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines." Chemical Communications 51, no. 27 (2015): 5860–63. http://dx.doi.org/10.1039/c5cc00567a.
Full textPurushottam, Landa, Srinivasa Rao Adusumalli, Maheshwerreddy Chilamari, and Vishal Rai. "Chemoselective and site-selective peptide and native protein modification enabled by aldehyde auto-oxidation." Chemical Communications 53, no. 5 (2017): 959–62. http://dx.doi.org/10.1039/c6cc09555k.
Full textPhan, Hoang Anh T., Sam G. Giannakoulias, Taylor M. Barrett, Chunxiao Liu, and E. James Petersson. "Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L." Chemical Science 12, no. 32 (2021): 10825–35. http://dx.doi.org/10.1039/d1sc00785h.
Full textLiu, Baizhen. "Blood Cell Count and Detection Method Based on YOLO." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 594–99. http://dx.doi.org/10.54097/hset.v27i.3822.
Full textWang, Chenchen, and Rampi Ramprasad. "Novel Hybrid Polymer Dielectrics Based on Group 14 Chemical Motifs." International Journal of High Speed Electronics and Systems 23, no. 01n02 (March 2014): 1420002. http://dx.doi.org/10.1142/s012915641420002x.
Full textCheloha, Ross W., Akira Maeda, Thomas Dean, Thomas J. Gardella, and Samuel H. Gellman. "Backbone modification of a polypeptide drug alters duration of action in vivo." Nature Biotechnology 32, no. 7 (June 15, 2014): 653–55. http://dx.doi.org/10.1038/nbt.2920.
Full text