Academic literature on the topic 'Bacillus cereus group species'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Bacillus cereus group species.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Bacillus cereus group species"

1

McIntyre, Lorraine, Kathryn Bernard, Daniel Beniac, Judith L. Isaac-Renton, and David Craig Naseby. "Identification of Bacillus cereus Group Species Associated with Food Poisoning Outbreaks in British Columbia, Canada." Applied and Environmental Microbiology 74, no. 23 (October 10, 2008): 7451–53. http://dx.doi.org/10.1128/aem.01284-08.

Full text
Abstract:
ABSTRACT Food poisoning laboratories identify Bacillus cereus using routine methods that may not differentiate all Bacillus cereus group species. We recharacterized Bacillus food-poisoning strains from 39 outbreaks and identified B. cereus in 23 outbreaks, B. thuringiensis in 4, B. mycoides in 1, and mixed strains of Bacillus in 11 outbreaks.
APA, Harvard, Vancouver, ISO, and other styles
2

Helgason, Erlendur, Ole Andreas Økstad, Dominique A. Caugant, Henning A. Johansen, Agnes Fouet, Michéle Mock, Ida Hegna, and Anne-Brit Kolstø. "Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One Species on the Basis of Genetic Evidence." Applied and Environmental Microbiology 66, no. 6 (June 1, 2000): 2627–30. http://dx.doi.org/10.1128/aem.66.6.2627-2630.2000.

Full text
Abstract:
ABSTRACT Bacillus anthracis, Bacillus cereus, andBacillus thuringiensis are members of the Bacillus cereus group of bacteria, demonstrating widely different phenotypes and pathological effects. B. anthracis causes the acute fatal disease anthrax and is a potential biological weapon due to its high toxicity. B. thuringiensis produces intracellular protein crystals toxic to a wide number of insect larvae and is the most commonly used biological pesticide worldwide. B. cereus is a probably ubiquitous soil bacterium and an opportunistic pathogen that is a common cause of food poisoning. In contrast to the differences in phenotypes, we show by multilocus enzyme electrophoresis and by sequence analysis of nine chromosomal genes thatB. anthracis should be considered a lineage of B. cereus. This determination is not only a formal matter of taxonomy but may also have consequences with respect to virulence and the potential of horizontal gene transfer within the B. cereus group.
APA, Harvard, Vancouver, ISO, and other styles
3

Vilas-Bôas, G. T., A. P. S. Peruca, and O. M. N. Arantes. "Biology and taxonomy ofBacillus cereus,Bacillus anthracis, andBacillus thuringiensis." Canadian Journal of Microbiology 53, no. 6 (June 2007): 673–87. http://dx.doi.org/10.1139/w07-029.

Full text
Abstract:
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.
APA, Harvard, Vancouver, ISO, and other styles
4

Daffonchio, Daniele, Sara Borin, Giuseppe Frova, Romina Gallo, Elena Mori, Renato Fani, and Claudia Sorlini. "A Randomly Amplified Polymorphic DNA Marker Specific for the Bacillus cereus Group Is Diagnostic forBacillus anthracis." Applied and Environmental Microbiology 65, no. 3 (March 1, 1999): 1298–303. http://dx.doi.org/10.1128/aem.65.3.1298-1303.1999.

Full text
Abstract:
ABSTRACT Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species fromBacillus cereus, Bacillus thuringiensis, andBacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of theB. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a putative (366-nucleotide) open reading frame highly homologous to the ypuA gene of Bacillus subtilis. The restriction analysis of the SG-850 fragment withAluI distinguished B. anthracis from the other species of the B. cereus group.
APA, Harvard, Vancouver, ISO, and other styles
5

Harmon, Stanley M., Donald A. Kautter, and Gayle Lancette. "Lipid Globule Staining to Aid in Differentiating Bacillus Species." Journal of AOAC INTERNATIONAL 74, no. 4 (July 1, 1991): 649–51. http://dx.doi.org/10.1093/jaoac/74.4.649.

Full text
Abstract:
Abstract The use of the lipid globule stain to aid in differentiating the Bacillus cereus group (i.e., B. cereus, B. cereus var. mycoldes, and B. thurlnglensls) from other Bacillus species was investigated. Smears from colonies grown on suitable agar were made on precleaned slides, stained, and examined microscopically for characteristic deep blue lipid globules. The study included a total of 649 cultures of Bacillus species plus 143 Incompletely characterized Bacillus isolates from food. Only B. cereus, B. cereus var. mycoldes, B. thurlnglensls, B. megaterlum, and B. sphaerlcus were consistently positive for lipid globules, although at times, a few cells of B. aneurlnolyilcus and B. thlamlnolytlcus were also positive. The lipid globule stain procedure Is of value In differentiating Bacillus species, especially when performed by an experienced analyst and used in conjunction with tests for cell and spore morphology.
APA, Harvard, Vancouver, ISO, and other styles
6

Rahman, Md-Mafizur, Sang-Jin Lim, and Yung-Chul Park. "Molecular Identification of Bacillus Isolated from Korean Water Deer (Hydropotes inermis argyropus) and Striped Field Mouse (Apodemus agrarius) Feces by Using an SNP-Based 16S Ribosomal Marker." Animals 12, no. 8 (April 10, 2022): 979. http://dx.doi.org/10.3390/ani12080979.

Full text
Abstract:
Ambiguous, heterogeneous, endospore-forming Bacillus species, notably Bacillus cereus, often produce fatal toxins that threaten human health. We identified Bacillus from wild animal fecal samples (n = 80), including the Korean water deer (n = 25) and striped field mouse (n = 55). Using traditional culture-based methods, 25 animal fecal samples (31.25%; 25/80) were found to be positive for Bacillus species, whereas using molecular techniques, 19 samples (23.75%; 19/80) were found to be positive for the same. In addition, we designed a Bacillus species-specific 16S ribosomal RNA (rRNA) gene marker and utilized it to identify 19 samples by means of PCR amplification and sequencing, using at least one colony from the 19 Bacillus positive samples. The recovered sequences were matched to sequences of three Bacillus species (B. cereus, B. amyloliquefaciens, and B. megaterium) from the GenBank database. Moreover, the phylogenetic tree generated in this study established specific clades for the Bacillus group. In addition, to differentiate between B. cereus, B. anthracis, and B. thuringiensis, we designed a single nucleotide polymorphism (SNP)-based primer by identifying SNPs in the alignment of 16S rRNA gene sequences of B. cereus group strains. The SNPs were used to design primer sets for discrimination between highly similar species from the B. cereus group. The study could be used in surveillance of agricultural fresh-produce-associated Bacillus outbreaks, for accurate identification of each Bacillus species, and in the development of control measures.
APA, Harvard, Vancouver, ISO, and other styles
7

Guinebretière, Marie-Hélène, Sandrine Auger, Nathalie Galleron, Matthias Contzen, Benoit De Sarrau, Marie-Laure De Buyser, Gilles Lamberet, et al. "Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning." International Journal of Systematic and Evolutionary Microbiology 63, Pt_1 (January 1, 2013): 31–40. http://dx.doi.org/10.1099/ijs.0.030627-0.

Full text
Abstract:
An aerobic endospore-forming bacillus (NVH 391-98T) was isolated during a severe food poisoning outbreak in France in 1998, and four other similar strains have since been isolated, also mostly from food poisoning cases. Based on 16S rRNA gene sequence similarity, these strains were shown to belong to the Bacillus cereus Group (over 97 % similarity with the current Group species) and phylogenetic distance from other validly described species of the genus Bacillus was less than 95 %. Based on 16S rRNA gene sequence similarity and MLST data, these novel strains were shown to form a robust and well-separated cluster in the B. cereus Group, and constituted the most distant cluster from species of this Group. Major fatty acids (iso-C15 : 0, C16 : 0, iso-C17 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C13 : 0) supported the affiliation of these strains to the genus Bacillus , and more specifically to the B. cereus Group. NVH 391-98T taxon was more specifically characterized by an abundance of iso-C15 : 0 and low amounts of iso-C13 : 0 compared with other members of the B. cereus Group. Genome similarity together with DNA–DNA hybridization values and physiological and biochemical tests made it possible to genotypically and phenotypically differentiate NVH 391-98T taxon from the six current B. cereus Group species. NVH 391-98T therefore represents a novel species, for which the name Bacillus cytotoxicus sp. nov. is proposed, with the type strain NVH 391-98T ( = DSM 22905T = CIP 110041T).
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Wonyong, Ji-Yeon Kim, Sung-Lim Cho, Sun-Woo Nam, Jong-Wook Shin, Yang-Soo Kim, and Hyoung-Shik Shin. "Glycosyltransferase – a specific marker for the discrimination of Bacillus anthracis from the Bacillus cereus group." Journal of Medical Microbiology 57, no. 3 (March 1, 2008): 279–86. http://dx.doi.org/10.1099/jmm.0.47642-0.

Full text
Abstract:
Bacillus anthracis, the aetiological agent of anthrax, has been taxonomically classified with the Bacillus cereus group, which comprises B. cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides and Bacillus weihenstephanensis. Although the pathogenesis and ecological manifestations may be different, B. anthracis shares a high degree of DNA sequence similarity with its group member species. As a result, the discrimination of B. anthracis from its close relatives in the B. cereus group is still quite difficult. Suppression subtractive hybridization (SSH) was performed to search for genomic differences between a B. anthracis Korean isolate CR and the most closely related B. cereus type strain KCTC 3624T. Two-hundred and five B. anthracis CR clones obtained by SSH underwent Southern hybridization, and comparative sequences were analysed using the blast program from the National Center for Biotechnology Information (NCBI). Subsequently, primer sets based on the glycosyltransferase group 1 family protein gene specific to B. anthracis were designed from the sequences of subtracted clones, and their specificities were evaluated using eight B. anthracis, 33 B. cereus, 10 B. thuringiensis, six B. mycoides, one B. pseudomycoides, one B. weihenstephanensis and 19 strains from 11 other representative Bacillus species. PCR primers specific for the glycosyltransferase group 1 family protein gene did not amplify the desired products from any of the Bacillus strains under examination, except B. anthracis alone. These findings may be useful in the future development of efficient diagnostic tools for the rapid identification of B. anthracis from other members of the B. cereus group.
APA, Harvard, Vancouver, ISO, and other styles
9

Zegeye, Ephrem Debebe, Brajabandhu Pradhan, Ann-Katrin Llarena, and Marina Aspholm. "Enigmatic Pilus-Like Endospore Appendages of Bacillus cereus Group Species." International Journal of Molecular Sciences 22, no. 22 (November 16, 2021): 12367. http://dx.doi.org/10.3390/ijms222212367.

Full text
Abstract:
The endospores (spores) of many Bacillus cereus sensu lato species are decorated with multiple hair/pilus-like appendages. Although they have been observed for more than 50 years, all efforts to characterize these fibers in detail have failed until now, largely due to their extraordinary resilience to proteolytic digestion and chemical solubilization. A recent structural analysis of B. cereus endospore appendages (Enas) using cryo-electron microscopy has revealed the structure of two distinct fiber morphologies: the longer and more abundant “Staggered-type” (S-Ena) and the shorter “Ladder-like” type (L-Ena), which further enabled the identification of the genes encoding the S-Ena. Ena homologs are widely and uniquely distributed among B. cereus sensu lato species, suggesting that appendages play important functional roles in these species. The discovery of ena genes is expected to facilitate functional studies involving Ena-depleted mutant spores to explore the role of Enas in the interaction between spores and their environment. Given the importance of B. cereus spores for the food industry and in medicine, there is a need for a better understanding of their biological functions and physicochemical properties. In this review, we discuss the current understanding of the Ena structure and the potential roles these remarkable fibers may play in the adhesion of spores to biotic and abiotic surfaces, aggregation, and biofilm formation.
APA, Harvard, Vancouver, ISO, and other styles
10

LIN, S. F., H. SCHRAFT, and M. W. GRIFFITHS. "Identification of Bacillus cereus by Fourier Transform Infrared Spectroscopy (FTIR)." Journal of Food Protection 61, no. 7 (July 1, 1998): 921–23. http://dx.doi.org/10.4315/0362-028x-61.7.921.

Full text
Abstract:
The objective of this study was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) for rapid identification of Bacillus cereus isolates. Ten B. cereus group isolates (comprising B. cereus, Bacillus mycoides, and Bacillus thuringiensis strains), five other Bacillus spp., and five non-Bacillus spp. were used. Two types of media, brain heart infusion (BHI) and Trypticase soy agar (TSA), were tested. The results indicated that all B. cereus group isolates produced characteristic absorbance peaks at wave numbers between 1738 and 1740 cm−1 These peaks were not affected by the growth medium. None of the other bacteria tested showed a similar peak after growth on BHI or TSA. Absorbance peaks between 1800 and 1500 cm−1 of members of the B. cereus group had different shapes and sizes, suggesting that FTIR may be useful for rapid identification of species within the B. cereus group.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Bacillus cereus group species"

1

Barker, Margaret. "Population structure of the Bacillus cereus group." Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/2145.

Full text
Abstract:
The Bacillus cereus group of bacteria comprises B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis and B. weihenstephanensis. Species status has been allocated to these taxa largely according to pathogenic properties. B. anthracis is the causative agent of anthrax in ungulates and humans. B. thuringiensis is primarily an insect pathogen and B. cereus is associated with food poisoning and occasionally soft tissue infections in humans. One hundred and forty-six strains of the B. cereus group were examined by multilocus sequence typing (MLST) in which partial sequences for seven housekeeping genes (glpF, gmk, ilvD, pta, pur, pycA and tpi) were generated to provide a definitive sequence type (ST) for each strain. Statistical analyses of the data using pairwise comparisons between groups for (i) Fst (gene flow), (ii) shared mutations and (iii) fixed differences confirmed that the present designation of separate species status for members of the B. cereus group was inappropriate. Comparison of neighbour joining (NJ) trees derived from the concatenated sequence data with trees constructed for each allele individually indicated limited recombination between strains and a largely clonal structure to the group. Three major clades were recovered: clade 1 was made up of B. anthracis, B. cereus and rare B. ringiensis strains; clade 2 comprised a heterogeneous mixture of B. thuringiensis and B. cereus strains while clade 3 was composed of strains of B. cereus, B. mycoides and B. weihenstephanensis. Two B. pseudomycoides strains were distant outliers from the main tree. Four lineages were recognised in both clades 1 and 2 based on shared mutations within the lineages and fixed differences between them. B. anthracis strains and the emetic toxin-producing strains of B. cereus formed two clones within clade 1. A clonal group of entomopathogenic B. thuringiensis strains was identified in clade 2 and named the ‘Sotto’ lineage (after the predicted founder group). Strains of B. cereus that had been isolated from human wound infections and septicaemia, on the other hand, were distributed over clades 1 and 2, and were not restricted to a particular clonal group. Similarly, some serotypes of B. thuringiensis were found to have a clonal structure while others were heterogeneous. Representative strains from several serotypes of B. thuringiensis were examined by the RAPD (random amplified polymorphic DNA) method. Serovars israelensis and thuringiensis were strongly clonal, morrisoni and tolworthi were partially clonal while darmstadiensis and canadensis were heterogeneous. Serotype, MLST profile and RAPD did not always correlate with delta-endotoxin cry gene content. This may be due to the cry genes being located on plasmids and subject to transfer between strains. MLST does not support the separate species status of B. anthracis, B. cereus, B. mycoides, B. pseudomycoides, B. thuringiensis and B. weihenstephanensis and an alternative classification based on DNA sequence data is proposed based on three main clades with nine distinct lineages. The proposed lineages were named to be consistent with current nomenclature, as far as possible.
APA, Harvard, Vancouver, ISO, and other styles
2

Oh, Mi Hwa School of Chemical Engineering &amp Industrial Chemistry UNSW. "Ecology of toxigenic bacillus species in rice products." Awarded by:University of New South Wales. School of Chemical Engineering and Industrial Chemistry, 2006. http://handle.unsw.edu.au/1959.4/23942.

Full text
Abstract:
Bacillus cereus is the most prevalent pathogenic Bacillus species found in foods, causing food spoilage and two types of toxin-mediated food poisoning known as the diarrhoeal and emetic syndromes. Other Bacillus species, particularly B. subtilis, B. licheniformis, B. brevis, B. pumilus and B. thuringensis, have also been recognised as food poisoning bacteria of increasing concern, with reports of outbreaks of diarrhoeal or emetic food poisoning. This study involved a systematic ecological investigation of Bacillus species isolated from rice products, commonly associated with Bacillus emetic food poisoning, using cultural and molecular methods. A centrifugation-plating method, more sensitive than the conventional spread plating method, was developed and used to determine the occurrence and biodiversity of Bacillus species in rice, a well known source of B. cereus. Eight different Bacillus species, B. cereus/B. thuringiensis, B. mycoides, B. subtilis/B. mojavensis, B. licheniformis, B. pumilus, B. sphaericus/B. fusiformis and B. megaterium, as well as Paenibacillus species, identified by partial rDNA sequencing, were isolated from raw (uncooked) and cooked rice products. The diversity of the isolates at the subspecies (strain) level was investigated using the RAPD-PCR typing technique, which proved to be useful for differentiating strains of bacilli, revealing broad diversity among the strains. Generally, different genotypes were found in raw and cooked rice, with some isolates of the same RAPD pattern found in both raw and cooked rice. The toxigenic potential of Bacillus isolates were also determined by molecular and immunological analysis as well as an MEKC method, developed in this study for quantitative analysis of the emetic toxin, cereulide. The results revealed that most isolates from the B. cereus group were potentially or actually toxigenic and some isolates were able to produce both diarrhoeal and emetic toxins. Other Bacillus species outside the B. cereus group were also shown to produce cereulide.
APA, Harvard, Vancouver, ISO, and other styles
3

Pires, Fazion Fernanda. "Role of plasmids of Bacillus cereus group in insect larvae." Thesis, Paris, Institut agronomique, vétérinaire et forestier de France, 2017. http://www.theses.fr/2017IAVF0005/document.

Full text
Abstract:
Bacillus cereus (Bc) et Bacillus thuringiensis (Bt) sont deux espèces génétiquement proches. Bc est une bactérie pathogène que peuvent causer des gastro-entérites d’origine aliméntaire. Bt est une bactérie entomopathogène, dont le cycle de vie dans la larve d’insecte est contrôlé par des systèmes de quorum sensing, comme le système Rap/Phr, que régule processus tels que la sporulation, la formation de biofilm et la conjugaison. La présence des ces genès a été identifiée dans les plasmides, et ces eleménts ont été associés à l’adaptation des spécies dans sont niche ecologique. Le but de cette étude est de comprendre le rôle des plasmides dans ces bactéries. Pour la première étude l’insecte larvae, le niche privilegie de Bt, ont été infectées par souches de Bc et Bt, avec un contenu plasmidique diffèrent. Le fitness a été evallué par le comptage de cellules végétatives et spores dans quatre temps. Les souches de Bt et Bc ont été classées dans cinq groups par rapport à sont fitness. Dans ces groups le plasmide a affecté le fitness de la bactérie positive ou négativement. Les résultats ont démontré que les souches du group du B. cereus que reçoivent a pathogène plasmid ne est pas suffisant pour une augmentation effectif de la population bactérienne, i.e., coloniser l’hôte. La deuxième étude a permis caractériser le système rap/phr porté par le plasmide cryptique pHT8_1. Les résultats démontrent que la protéine Rap8 inhibe la sporulation dans la l’insecte. L’activité de cette protéine est inhibée par le peptide de signalisation Phr8. Le système Rap/Phr8_1 a permis les bactéries exercer un strict contrôle sur la sporulation, un processus important pour assurer la survie et la dissémination des bactéries. L’ensemble des résultats de la deuxième étude montrent que les plasmides peuvent fournir avantages pour l’adaptation et evolution de B. thuringiensis dans son niche ecologique, alors que les résultats de la première étude indiqués que les souches de Bc group doivent avoir un contenu génétique approprié pour exhiber un fitness élévé en permettant une optimal multiplication and dissemination de populations bactérienne dans l’insect larvae
Bacillus cereus (Bc) and Bacillus thuringiensis (Bt) are two closely related species. Bc is a pathogenic species responsible for gastroenteritis by food-borne. Bt is an entomopathogenic bacterium, which the lifecycle in insect larvae is controlled by quorum sensing systems, such as Rap/Phr, which regulates processes such as sporulation, biofilm formation and conjugation. The presence of these genes in plasmids has been described, furthermore, plasmids have been involved in bacterial adaptation to their ecological niche. In order to understand the role of the plasmids to these species, two complementary works were carried out. First, insect larvae, a privileged ecological niche of Bt strains, were infected with Bc and Bt strains harboring different plasmid contents. Their fitness were evaluated by vegetative cells and spore counts at four time points. Bt and Bc strains were classified into five groups according to the bacterial fitness. In these groups, the plasmid affects positively or negatively the bacterial fitness. The results demonstrated that for B. cereus group strains, getting a pathogenicity plasmid is not enough to effectively increase bacterial population, colonizing insect hosts. The second study characterized the rap/phr system encoded by the cryptic plasmid pHT8_1. The Rap8 protein inhibited the sporulation process in insect larvae. This protein was directly inhibited by the active signaling peptide Phr8. The Rap8/Phr8 system may allow the bacteria to exert a tight control of the sporulation process in the host cadaver for optimizing the multiplication, the survival and the dissemination of the bacteria. Thus, the results of the second study showed that the plasmids can provide advantages for the adaptation and the evolution of B. thuringiensis in its ecological niche, while the results of the first study indicate that B. cereus group strains must have a suitable genetic background to display a high fitness allowing optimal multiplication and dissemination of the bacterial population within insect larvae
APA, Harvard, Vancouver, ISO, and other styles
4

Atkinson, Deborah Jane. "Stress response and inorganic poly-phosphate in the Bacillus group bacteria." Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.538113.

Full text
Abstract:
This thesis concentrates on the Bacillus cereus group of organisms and interactions that they may encounter in their natural environment. Inorganic polyphosphate has been identified as an important factor of stress and survival in B. cereus. One of the aims of this project was to create knock out mutants of certain enzymes involved in polyphosphate metabolism in B. anthracis, the etiological agent of anthrax. Unfortunately, even though B. anthracis is very closely related to B. cereus and despite the application of published methods it was not possible to create these B. anthracis knockout mutants. In order to address the importance of inorganic polyphosphate in B. anthracis, a real time RT‐PCR assay was developed to monitor the mRNA levels of these enzymes when the bacterium is faced with harsh nutrient environments Real time RT‐PCR analysis showed that mRNA levels of the metabolizing enzymes were upregulated in low nutrient conditions but that the profiles of gene expression were varied when grown in a chemically defined media. In addition to abiotic stresses such as low nutrients, B. anthracis is also likely to face biotic stress such as predation by amoeba in the soil. Investigations were performed into the outcome of the interaction of B. cereus group bacteria with a model amoeba, Acanthamoeba polyphaga. Amoebae are bacterial predators but can also be utilised as hosts by bacterial symbionts and pathogens, such as Legionella pneumophila. It was theorised that amoebae may provide a host environment similar to that of the professional macrophages, which B. anthracis encounters in mammalian infection. These investigations confirmed that the B. cereus group bacteria demonstrate a range of interactions with amoeba cells, from surface attachment through to intracellular persistence. These studies went on to show that B. cereus, B. thuringiensis and B. anthracis can all be engulfed by amoebae when challenged in their vegetative form and that spores were able to survive, and apparently germinate. Finally these studies have identified a new developmental stage of the B. cereus group bacteria. When grown in static conditions, especially in the presence of amoeba, the bacterial cells cease to septate and large (often motile) continuous hyphae like filaments form. These filaments can be seen to “weave” together to form large “rope” like macrofibre structures which can even become visible by eye. Previously this macrofibre growth has also been seen in B. subtilis, suggesting it may be common to the whole genus. In the light of these findings we speculate that this group of pathogens have evolved complex behaviours to interact with soil amoeba in order to facilitate survival in harsh environmental conditions.
APA, Harvard, Vancouver, ISO, and other styles
5

Taylor, J. M. Walsh. "Identification and isolation of emetic toxin producing Bacillus Cereus and heat-stable toxins from other Bacillus species." Thesis, Glasgow Caledonian University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Docherty, Pauline Fletcher. "The survival during milk processing of bacillus cereus with the potential to cause food-borne illness." Thesis, Glasgow Caledonian University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Frentzel, Hendrik [Verfasser]. "Detection, characterization and survival of Bacillus cereus group members in spices and herbs / Hendrik Frentzel." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1135184887/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gdoura, épouse Ben Amor Maroua. "Maitrise des risques de contamination des produits alimentaires tunisiens par le groupe Bacillus cereus." Thesis, Rennes, Agrocampus Ouest, 2019. http://www.theses.fr/2019NSARB324.

Full text
Abstract:
Cette thèse s’est intéressée à évaluer le niveau de risque représenté par les bactéries du groupe Bacillus cereus dans des aliments tunisiens et à tester l’efficacité de leur contrôle par le traitement des surfaces industrielles par des bactériophages. Une collection de 191 isolats a été créée à partir de 687 matrices alimentaires. Près de 40 % des isolats se sont avérés appartenir au groupe, avec une forte diversité génétique (143 profils PFGE et 99 profils ERIC-PCR) et un profil thermique intermédiaire (signatures 16S rDNA-1 m et-2 p). Près de 60 % des isolats du groupe appartiennent au groupe phylogénétique III, potentiellement pathogène. Les spores présentent majoritairement un taux d’adhésion plus fort que les cellules végétatives. Douze groupes toxinogènes ont été mis en évidence.Au moins un des gènes de chacun des complexes NHE et HBL sont présents, associés ou non à bceT, cytK 2 et ces. Après 18 h d’incubation à 30°C, près de 71% des isolats sont cytotoxiques. Différentes combinaisons de facteurs de virulence sont associées au potentiel cytotoxique et un lien apparait clairement entre cytotoxicité et type d’aliment. La collection s’est montrée sensible à de nombreux antibiotiques, alors qu’elle présente une résistance à l'ampicilline et à la novobiocine. Sur les 7 bactériophages sélectionnés, 5 possèdent un profil protéique unique alors qu’ils présentent tous une taille de génome et des profils de restriction similaires. Ils permettent de prévenir et de les traiter la formation de biofilms. Ce travail confirme le risque sanitaire lié à la présence du groupe B. cer
This thesis focused on evaluating the level of risk represented by Bacillus cereus group bacteria in Tunisian food and testing the effectiveness of their control by treating industrial surfaces with bacteriophages. A collection of 191 isolates was created from 687 food matrices. Nearly 40% of the isolates were found to belong to the group, with high genetic diversity (143 PFGE profiles and 99 ERIC-PCR profiles) and an intermediate thermal profile (signatures 16S rDNA-1 m and-2 p). Nearly 60% of the group's isolates belong to the phylogenetic group III, which is potentially pathogenic. Spores have a higher rate of adhesion than vegetative cells. Twelve toxigenic groups have been identified.At least one of the genes of each of the NHE and HBL complexes are present, whether or not associated with bceT, cytK 2 and these. After 18 hours of incubation at 30°C, nearly 71% of the isolates are cytotoxic. Different combinations of virulence factors are associated with cytotoxic potential and a clear link appears between cytotoxicity and food type. The collection has been shown to be sensitive to many antibiotics, while it is resistant to ampicillin and novobiocin. Of the 7 bacteriophages selected, 5 have a unique protein profile while all have similar genome size and restriction profiles. They are used to prevent the formation of biofilms and to treat them. This work confirms the health risk associated with the presence of the B. cereus group in Tunisian foods and the promising role of bacteriophages as biocontrol tools
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandes, Meg da Silva 1984. "Enterococcus spp. e Bacillus cereus isolados do processamento de ricota: patogenicidade, formação de biofilmes multiespécie e detecção de autoindutores AI-2 = Enterococcus spp. and Bacillus cereus isolated from ricotta processing: pathogenicity, multi-species biofilm formation and detection of the autoinducer AI-2." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255699.

Full text
Abstract:
Orientadores: Arnaldo Yoshiteru Kuaye, Dirce Yorika Kabuki
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-26T05:00:36Z (GMT). No. of bitstreams: 1 Fernandes_MegdaSilva_D.pdf: 2553051 bytes, checksum: ee968bf858cc0b427d8f6b79c37338b7 (MD5) Previous issue date: 2014
Resumo: Enterococcus faecium e Enterococcus faecalis são espécies de patógenos oportunistas que infectam principalmente imunocomprometidos. Estas espécies são encontradas em produtos lácteos e possuem capacidade de formar biofilme em superfícies que contatam com os alimentos. A sua remoção é muito dependente dos procedimentos de higienização. Os Enterococcus spp. utilizam o sistema de comunicação célula-célula (quorum sensing) para a formação de biofilmes. A formação de biofilme mono e multiespécie, a eficácia dos procedimentos de higienização no controle destes biofilmes e a produção de moléculas sinalizadoras de quorum sensing por cepas de E. faecalis, E. faecium, Bacillus cereus e Listeria monocytogenes foram avaliadas. Os ensaios foram realizados com cupons de aço inoxidável e variando-se a temperatura (7, 25 e 39 °C) e o tempo (0, 1, 2, 4, 6 e 8 dias). Após 1 e 8 dias de contato nas temperaturas de 25 e 39 °C, os cupons foram submetidos a diferentes processos de higienização. Os sanitizantes testados foram: hipoclorito de sódio (0,2%), ácido peracético (0,2%), quaternário de amônio (3,0%) e biguanida (1,0%). A detecção das moléculas sinalizadoras de quorum sensing AI-2 foi realizada através da avaliação do gene luxS e de ensaio biológico de bioluminescência. Nenhum dos micro-organismos avaliados foi capaz de formar biofilmes a 7 ?C. Enterococcus sp. foram capazes de formar biofilmes, com contagens acima de 8 log ufc/cm2 para as temperaturas de 25 e 39 °C após 8 dias de contato. Em cultivo multiespécie, a temperatura 25 °C favoreceu o desenvolvimento do biofilme de L. monocytogenes (contagens acima de 6 log ufc/cm2). Por sua vez, a 39 °C observou-se o efeito negativo no desenvolvimento do biofilme de L. monocytogenes em cultivo misto, com redução significativa nas contagens ao longo do tempo (valores abaixo de 0,4 log ufc/cm2). As contagens de B. cereus, para ambas as temperaturas em diferentes tempos de exposição situaram-se abaixo de 4,1 log ufc/cm2. Em contrapartida, a contagem de esporos de B. cereus evoluiu ao longo do tempo, atingindo contagens em torno de 4,6 log ufc/cm2. A limpeza com tensoativo aniônico complementada por outra etapa (limpeza ácida, limpeza ácida + sanitização ou sanitização) foi capaz de remover os biofilmes mono e multiespécie em todas as condições testadas. O ácido peracético foi o sanitizante mais eficiente e a biguanida o menos eficiente. Todas as cepas de Enterococcus spp. e B. cereus apresentaram o gene luxS e induziram o fenômeno de bioluminescência em Vibrio harveyi BB170, indicando a presença de autoindutores AI-2
Abstract: Enterococcus faecium and Enteroccus faecalis are opportunistic pathogens species that infect mainly immunocompromised individuals. These species are found in dairy products and are capable of forming biofilms on surfaces that contact with food. Their removal is highly dependent on the cleaning procedures. It is known that enterococci use the cell-cell communication (quorum sensing) to biofilm formation. The formation of mono- and multi-species biofilm, the effectiveness of sanitization procedures to control these biofilms and the production of signaling molecules of quorum sensing (AI-2) by strains of E. faecalis, E. faecium, Bacillus cereus and Listeria monocytogenes were evaluated in this work. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39 °C) and times (0, 1, 2, 4, 6 and 8 days). After 1 and 8 days of contact at 25 and 39 °C, the coupons were subjected to different sanitation procedures: anionic tensioactive cleaning, acid-anionic tensioactive cleaning, sanitization, anionic tensioactive cleaning + sanitization, acidic- anionic tensioactive cleaning + sanitization and chlorinated alkaline cleaning. The sanitizers tested were: sodium hypochlorite (0.2%), peracetic acid (0.2%), quaternary ammonium (3%), and biguanide (1%). The detection of AI-2 molecules was performed by evaluating the luxS gene and biological bioluminescence assay. None of the microorganisms evaluated was able to form biofilms at 7 °C. Enterococcus sp. were able to form biofilms, with counts above 8 log CFU/cm2 for the temperatures of 25 and 39 °C after 8 days of contact. In multi-species culture, the temperature of 25 °C favored the development of L. monocytogenes biofilms (counts above 6 log CFU/cm2). On the other hand, at 39 °C it was observed a negative effect in the development of L. monocytogenes biofilms in mixed culture, with a significant reduction in counts over time (values below 0.4 log CFU/cm2). The counts of B. cereus, for both temperatures at different exposure times were below 4.1 log CFU/cm2. In contrast, the spore counts of B. cereus evolved over time, reaching scores of around 4.6 log CFU/cm2. The anionic tensioactive cleaning complemented by an aditional step (acid cleaning, acid cleaning + sanitization or sanitization) was able to remove mono- and multi-species biofilms in all tested conditions. The peracetic acid was the most effective sanitizer and the less efficient was biguanide. All strains of Enterococcus spp. and B. cereus showed the luxS gene and induced the phenomenon of bioluminescence in Vibrio harveyi BB170, indicating the presence of AI-2 autoinducers
Doutorado
Tecnologia de Alimentos
Doutora em Tecnologia de Alimentos
APA, Harvard, Vancouver, ISO, and other styles
10

Dubois, Thomas. "Etude du système de communication cellulaire NprR-NprX au sein du groupe Bacillus cereus." Phd thesis, AgroParisTech, 2012. http://pastel.archives-ouvertes.fr/pastel-00770265.

Full text
Abstract:
Chez les bactéries sporulantes du genre Bacillus, des mécanismes importants tels que la sporulation et la virulence sont régulés par des systèmes de communication cellulaire qui impliquent des peptides de signalisation et des régulateurs de la famille RNPP (Rap, NprR, PlcR, PrgX). L'objectif de mon travail de thèse a été de déterminer le rôle du régulateur NprR chez les bactéries du groupe B. cereus. Ce travail se divise en trois parties complémentaires. La première partie a consisté à montrer que NprR est impliqué dans un système de communication cellulaire. Nous avons montré que NprR est un régulateur transcriptionnel de début de phase stationnaire qui est dépendant du peptide de signalisation NprX. Associé à NprX, NprR active la transcription du gène nprA qui code pour une protéase extracellulaire. Nous avons démontré que le peptide NprX est sécrété, maturé puis réimporté dans la cellule bactérienne par deux systèmes d'oligopeptide perméase (Opp et Npp). Une fois dans la cellule, la forme mature de NprX (vraisemblablement l'heptapeptide SKPDIVG) se lie à NprR et permet la transcription du gène nprA. Nous avons ensuite cherché à déterminer la fonction de ce régulateur au cours du cycle infectieux de B. thuringiensis (Bt) chez l'insecte. Nous avons montré que NprR est actif après la mort de l'insecte et permet aux bactéries de survivre, sous forme de cellules végétatives, dans les cadavres. Une analyse transcriptomique indique que NprR régule l'expression d'au moins 41 gènes qui codent notamment pour des enzymes dégradatives et un locus de gènes impliqués dans la production d'un peptide synthétisé de façon non ribosomique (la kurstakine). Nous avons démontré que les gènes codant pour les enzymes dégradatives s'expriment spécifiquement après la mort de l'hôte et que les produits de ces gènes sont essentiels pour hydrolyser différents substrats (protéines, lipides, chitine), ce qui suggère que Bt a un mode de vie nécrotrophe dans le cadavre. La kurstakine est essentielle pour la survie de Bt pendant son développement nécrotrophe et nous avons montré que cette molécule est nécessaire pour le swarming et la formation de biofilm. Par ailleurs, un mutant du gène nprR ne se développe pas et ne sporule pas efficacement dans le cadavre. L'ensemble de nos résultats indiquent que le necrotrophisme est un mode de vie hautement régulé, qui est essentiel dans le cycle infectieux de Bt car il contribue à la transmission horizontale de ce micro-organisme. Enfin, nous avons étudié la régulation de l'expression des gènes nprR et nprX. Nous avons montré que les gènes nprR-nprX sont co-transcrits à partir d'un promoteur dépendant de sigma-A (PA) situé en amont du gène nprR. La transcription à partir de ce promoteur débute lors de l'entrée en phase stationnaire et est contrôlée par deux régulateurs transcriptionnels: CodY et PlcR. Le répresseur CodY pourrait se lier à l'ADN en amont du promoteur PA et réprimer la transcription des gènes nprR-nprX pendant la phase exponentielle de croissance. Au début de la phase stationnaire, le contrôle négatif de CodY est levé et PlcR active la transcription de nprR-nprX en se liant à une boîte PlcR située en amont de PA. Nos résultats indiquent que nprX est également transcrit indépendamment de nprR à partir de deux promoteurs, PH et PE, respectivement dépendant de sigma-H et sigma-E. Les deux promoteurs permettent d'assurer la transcription de nprX en phase stationnaire tardive alors que la transcription à partir du promoteur PA est achevée. Cette étude met en évidence le role clé des régulateurs CodY, PlcR and Spo0A dans la régulation de l'expression des gènes nprR-nprX.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Bacillus cereus group species"

1

Ehling-Schulz, Monika, Didier Lereclus, and Theresa M. Koehler. "The Bacillus cereus Group: Bacillus Species with Pathogenic Potential." In Gram-Positive Pathogens, 875–902. Washington, DC, USA: ASM Press, 2019. http://dx.doi.org/10.1128/9781683670131.ch55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dale, Jennifer L., and Theresa M. Koehler. "Virulence Gene Regulation in Bacillus anthracis and Other Bacillus cereus Group Species." In Regulation of Bacterial Virulence, 262–80. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555818524.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Økstad, Ole Andreas, and Anne-Brit Kolstø. "Evolution of the Bacillus cereus Group." In Bacillus thuringiensis Biotechnology, 117–29. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3021-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Chengchen, Yan Wang, Chan Yu, Lin Li, Minshun Li, Jin He, Ming Sun, and Ziniu Yu. "Construction and Application in Plasmid Vectors of Bacillus cereus Group." In Bacillus thuringiensis Biotechnology, 185–99. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3021-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drean, Paul, and Edward M. Fox. "Pulsed-Field Gel Electrophoresis of Bacillus cereus Group Strains." In Methods in Molecular Biology, 71–83. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2599-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fouet, Agnès, and Marie Moya. "Virulence Megaplasmids in Bacillus anthracis and Their Relatives in the Bacillus cereus Group." In Microbial Megaplasmids, 187–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85467-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tangahu, Bieby Voijant, Siti Rozaimah Sheikh Abdullah, Hassan Basri, Mushrifah Idris, Nurina Anuar, and Muhammad Mukhlisin. "Biosorption of Lead (Pb) by Three Bacillus species (Bacillus cereus, Bacillus pumilus and Bacillus subtilis) Isolated from Scirpus grossus." In From Sources to Solution, 215–20. Singapore: Springer Singapore, 2013. http://dx.doi.org/10.1007/978-981-4560-70-2_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yin, Wen, Lu Liu, Siyang Xu, and Jin He. "Cyclic di-GMP Signaling Systems in the Gram-Positive Bacillus cereus Group." In Microbial Cyclic Di-Nucleotide Signaling, 261–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33308-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jan, S., and F. Baron. "32. Psychrotrophic heat-resistant bacteria in the sector of pasteurized liquid egg processing: a focus on the Bacillus cereus group." In Handbook of eggs in human function, 577–614. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-804-9_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Savini, Vincenzo. "Bacillus Species Outside the Bacillus cereus Group." In The Diverse Faces of Bacillus cereus, 129–38. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-801474-5.00011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Bacillus cereus group species"

1

Adley, Catherine, Khalil Arshak, Camila Molnar, Kamila Oliwa, and Vijayalakshmi Velusamy. "Design of specific DNA primers to detect the Bacillus cereus group species." In 2009 IEEE Sensors Applications Symposium (SAS). IEEE, 2009. http://dx.doi.org/10.1109/sas.2009.4801807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Velusamy, Vijayalakshmi, Khalil Arshak, Olga Korostynska, Kamila Oliwa, and Catherine Adley. "Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species." In SPIE Defense, Security, and Sensing, edited by Moon S. Kim, Shu-I. Tu, and Kaunglin Chao. SPIE, 2009. http://dx.doi.org/10.1117/12.818631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ullah, S. M. Kamran, and Mahmooda Kazmi. "Aerobic bacterial count & prevalence of bacillus cereus group species in air of selected areas of Karachi." In 2014 11th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2014. http://dx.doi.org/10.1109/ibcast.2014.6778126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fatikunnaja, Mohammad, Sitoresmi Prabaningtyas, Aulia Qori Latifiana, Diah Ayu Eka Fitriana, and Dwi Listyorini. "pycA gene failed to reveal the species of Bacillus cereus group isolated from Ranu Pani East Java." In THE 4TH INTERNATIONAL CONFERENCE ON LIFE SCIENCE AND TECHNOLOGY (ICoLiST). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0111805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maltseva, S. V., A. S. Yakubovich, E. R. Gritskevitch, I. E. Buchenkov, and A. G. Sysa. "ANTAGONISTIC ACTIVITY OF BACTERIA OF THE GENUS BACILLUS ISOLATED FROM SOILS UNDER PROLONGED EXPOSURE TO IONIZING RADIATION IN RELATION TO COLIMORPHOUS BACTERIA." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-1-299-302.

Full text
Abstract:
This paper presents the results of studies of the antagonistic activity of bacteria of the genus Bacillus (Bacillus subtilis, Bacillus thuringiensis, Bacillus mycoides and Bacillus cereus) under prolonged exposure to ionizing radiation in relation to bacteria of the E. coli group. It was found that bacteria of the genus Bacillus exhibit antagonistic activity of varying degrees of severity. It was found that the bacterial strains Bacillus subtilis, Bacillus thuringiensis and Bacillus mycoides showed a high level of antagonistic activity. Low antagonistic activity was characteristic of Bacillus cereus bacteria.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Bacillus cereus group species"

1

Irudayaraj, Joseph, Ze'ev Schmilovitch, Amos Mizrach, Giora Kritzman, and Chitrita DebRoy. Rapid detection of food borne pathogens and non-pathogens in fresh produce using FT-IRS and raman spectroscopy. United States Department of Agriculture, October 2004. http://dx.doi.org/10.32747/2004.7587221.bard.

Full text
Abstract:
Rapid detection of pathogens and hazardous elements in fresh fruits and vegetables after harvest requires the use of advanced sensor technology at each step in the farm-to-consumer or farm-to-processing sequence. Fourier-transform infrared (FTIR) spectroscopy and the complementary Raman spectroscopy, an advanced optical technique based on light scattering will be investigated for rapid and on-site assessment of produce safety. Paving the way toward the development of this innovative methodology, specific original objectives were to (1) identify and distinguish different serotypes of Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and Bacillus cereus by FTIR and Raman spectroscopy, (2) develop spectroscopic fingerprint patterns and detection methodology for fungi such as Aspergillus, Rhizopus, Fusarium, and Penicillium (3) to validate a universal spectroscopic procedure to detect foodborne pathogens and non-pathogens in food systems. The original objectives proposed were very ambitious hence modifications were necessary to fit with the funding. Elaborate experiments were conducted for sensitivity, additionally, testing a wide range of pathogens (more than selected list proposed) was also necessary to demonstrate the robustness of the instruments, most crucially, algorithms for differentiating a specific organism of interest in mixed cultures was conceptualized and validated, and finally neural network and chemometric models were tested on a variety of applications. Food systems tested were apple juice and buffer systems. Pathogens tested include Enterococcus faecium, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Yersinia enterocolitis, Shigella boydii, Staphylococus aureus, Serratiamarcescens, Pseudomonas vulgaris, Vibrio cholerae, Hafniaalvei, Enterobacter cloacae, Enterobacter aerogenes, E. coli (O103, O55, O121, O30 and O26), Aspergillus niger (NRRL 326) and Fusarium verticilliodes (NRRL 13586), Saccharomyces cerevisiae (ATCC 24859), Lactobacillus casei (ATCC 11443), Erwinia carotovora pv. carotovora and Clavibacter michiganense. Sensitivity of the FTIR detection was 103CFU/ml and a clear differentiation was obtained between the different organisms both at the species as well as at the strain level for the tested pathogens. A very crucial step in the direction of analyzing mixed cultures was taken. The vector based algorithm was able to identify a target pathogen of interest in a mixture of up to three organisms. Efforts will be made to extend this to 10-12 key pathogens. The experience gained was very helpful in laying the foundations for extracting the true fingerprint of a specific pathogen irrespective of the background substrate. This is very crucial especially when experimenting with solid samples as well as complex food matrices. Spectroscopic techniques, especially FTIR and Raman methods are being pursued by agencies such as DARPA and Department of Defense to combat homeland security. Through the BARD US-3296-02 feasibility grant, the foundations for detection, sample handling, and the needed algorithms and models were developed. Successive efforts will be made in transferring the methodology to fruit surfaces and to other complex food matrices which can be accomplished with creative sampling methods and experimentation. Even a marginal success in this direction will result in a very significant breakthrough because FTIR and Raman methods, in spite of their limitations are still one of most rapid and nondestructive methods available. Continued interest and efforts in improving the components as well as the refinement of the procedures is bound to result in a significant breakthrough in sensor technology for food safety and biosecurity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography