Journal articles on the topic 'Azetines'

To see the other types of publications on this topic, follow the link: Azetines.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Azetines.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Baumann, Andreas N., Michael Eisold, Arif Music, Geoffrey Haas, Yu Min Kiw, and Dorian Didier. "Methods for the Synthesis of Substituted Azetines." Organic Letters 19, no. 20 (October 4, 2017): 5681–84. http://dx.doi.org/10.1021/acs.orglett.7b02847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hodgson, David M., Christopher I. Pearson, and Madiha Kazmi. "Generation and Electrophile Trapping of N-Boc-2-lithio-2-azetine: Synthesis of 2-Substituted 2-Azetines." Organic Letters 16, no. 3 (January 10, 2014): 856–59. http://dx.doi.org/10.1021/ol403626k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hodgson, David M., Christopher I. Pearson, and Madiha Kazmi. "ChemInform Abstract: Generation and Electrophile Trapping of N-Boc-2-lithio-2-azetine: Synthesis of 2-Substituted 2-Azetines." ChemInform 45, no. 29 (July 3, 2014): no. http://dx.doi.org/10.1002/chin.201429118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Didier, Dorian, and Felix Reiners. "Uncommon Four‐Membered Building Blocks – Cyclobutenes, Azetines and Thietes." Chemical Record 21, no. 5 (March 18, 2021): 1144–60. http://dx.doi.org/10.1002/tcr.202100011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baumann, Andreas N., Michael Eisold, Arif Music, Geoffrey Haas, Yu Min Kiw, and Dorian Didier. "Correction to Methods for the Synthesis of Substituted Azetines." Organic Letters 19, no. 24 (November 22, 2017): 6763. http://dx.doi.org/10.1021/acs.orglett.7b03520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dejaegher, Yves, Sven Mangelinckx, and Norbert De Kimpe. "Rearrangement of 2-Aryl-3,3-dichloroazetidines: Intermediacy of 2-Azetines." Journal of Organic Chemistry 67, no. 7 (April 2002): 2075–81. http://dx.doi.org/10.1021/jo010914j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marichev, Kostiantyn O., Kan Wang, Kuiyong Dong, Nicole Greco, Lynée A. Massey, Yongming Deng, Hadi Arman, and Michael P. Doyle. "Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)‐Catalyzed Imido‐Ylide [3+1]‐Cycloaddition with Metallo‐Enolcarbenes." Angewandte Chemie International Edition 58, no. 45 (September 24, 2019): 16188–92. http://dx.doi.org/10.1002/anie.201909929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marichev, Kostiantyn O., Kan Wang, Kuiyong Dong, Nicole Greco, Lynée A. Massey, Yongming Deng, Hadi Arman, and Michael P. Doyle. "Synthesis of Chiral Tetrasubstituted Azetidines from Donor–Acceptor Azetines via Asymmetric Copper(I)‐Catalyzed Imido‐Ylide [3+1]‐Cycloaddition with Metallo‐Enolcarbenes." Angewandte Chemie 131, no. 45 (September 24, 2019): 16334–38. http://dx.doi.org/10.1002/ange.201909929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dejaegher, Yves, Sven Mangelinckx, and Norbert De Kimpe. "ChemInform Abstract: Rearrangement of 2-Aryl-3,3-dichloroazetidines: Intermediacy of 2-Azetines." ChemInform 33, no. 36 (May 20, 2010): no. http://dx.doi.org/10.1002/chin.200236110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MacNevin, Christopher J., Rhonda L. Moore, and Dennis C. Liotta. "Stereoselective Synthesis of Quaternary Center Bearing Azetines and Their β-Amino Acid Derivatives." Journal of Organic Chemistry 73, no. 4 (February 2008): 1264–69. http://dx.doi.org/10.1021/jo7018202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hemming, Karl, Musharraf N. Khan, Paul A. O'Gorman, and Arnaud Pitard. "1,2,4-Oxadiazoles from cycloreversions of oxadiazabicyclo[3.2.0]heptenes: 1-azetines as thiocyanate equivalents." Tetrahedron 69, no. 4 (January 2013): 1279–84. http://dx.doi.org/10.1016/j.tet.2012.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Luheshi, Abdul-Basset N., Robert K. Smalley, P. D. Kennewell, and R. Westwood. "1,3-Dipolar cycloadditions of 2-ethoxy- and 2-(ethylthio)-1-azetines with nitrilimines." Tetrahedron Letters 31, no. 1 (January 1990): 127–30. http://dx.doi.org/10.1016/s0040-4039(00)94352-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Giubellina, Nicola, Wim Aelterman, and Norbert De Kimpe. "Use of 3-halo-1-azaallylic anions in heterocyclic chemistry." Pure and Applied Chemistry 75, no. 10 (January 1, 2003): 1433–42. http://dx.doi.org/10.1351/pac200375101433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The synthetic potential of lithio 3-halo-1-azaallylic anions as building blocks in organic chemistry and especially in heterocyclic chemistry will be highlighted by the synthesis of functionalized imines, obtained after reaction of 3-halo-1-azaallylic anions with het- eroatom-substituted electrophiles. Thus, the latter generated functionalized imines are suitable building blocks for the synthesis of a whole range of heterocycles and physiologically active compounds, including agrochemicals and pharmaceuticals. 3-Halo-1-azaallylic anions were used in the synthesis of N-alkyl-3,3-dichloroazetidines, 2,3-disubstituted pyrroles, piperidines, 2-substituted pyridines, 2-alkoxytetrahydrofurans,etc., from which a large range of useful and interesting chemicals can be produced, e.g., 2-azetines and 9-alkyl- 2-phenyl-3a-beta,4,6,7,8,9,9a-beta,9b-beta-octahydro-1H-pyrrolo [3,4,h]quinoline-1,3-diones. The utility of the present methodology is demonstrated by the synthesis of the pheromone (S)-manicone, the sulfur-containing flavor compound 2-[(methylthio)methyl ]-2-butenal, and some agrochemical and pharmaceutical compounds.
14

Hara, Shunya, and Shigekazu Ito. "TiCl 4 ‐Mediated [2+2] Cycloaddition for Synthesis of Isolable CF 3 ‐Substituted 2‐Azetines." Asian Journal of Organic Chemistry 10, no. 4 (March 17, 2021): 788–92. http://dx.doi.org/10.1002/ajoc.202100082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lopez, Steven A., and K. N. Houk. "Substituent Effects on Rates and Torquoselectivities of Electrocyclic Ring-Openings of N-Substituted 2-Azetines." Journal of Organic Chemistry 79, no. 13 (June 12, 2014): 6189–95. http://dx.doi.org/10.1021/jo500919s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mangelinckx, Sven, Veronique Van Speybroeck, Peter Vansteenkiste, Michel Waroquier, and Norbert De Kimpe. "Experimental and Computational Study of the Conrotatory Ring Opening of Various 3-Chloro-2-azetines." Journal of Organic Chemistry 73, no. 14 (July 2008): 5481–88. http://dx.doi.org/10.1021/jo800522b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Barluenga, José, Lorena Riesgo, Giacomo Lonzi, Miguel Tomás, and Luis A. López. "Copper(I)-Catalyzed [3+1] Cycloaddition of Alkenyldiazoacetates and Iminoiodinanes: Easy Access to Substituted 2-Azetines." Chemistry - A European Journal 18, no. 30 (June 21, 2012): 9221–24. http://dx.doi.org/10.1002/chem.201200998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Santos, Bruna S., Ana L. Cardoso, Ana Matos Beja, Manuela Ramos Silva, José A. Paixão, Francisco Palacios, and Teresa M. V. D. Pinho e Melo. "Diastereoselective Aza-Baylis-Hillman Reactions: Synthesis of Chiral α-Allenylamines and 2-Azetines from Allenic Esters." European Journal of Organic Chemistry 2010, no. 17 (April 30, 2010): 3249–56. http://dx.doi.org/10.1002/ejoc.200901415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Singh, Atul K., Ruchi Chawla, and Lal Dhar S. Yadav. "Retracted article: Convenient access to strained trisubstituted 2-azetines from enals and chloramine-T in aqueous media." Green Chemistry 14, no. 12 (2012): 3325. http://dx.doi.org/10.1039/c2gc36331c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Luheshi, Abdul-Basset N., Robert K. Smalley, Peter D. Kennewell, and Robert Westwood. "1,3-Dipolar cycloadditions of 2-ethoxy- and 2-(ethylthio)-1-azetines with nitrile oxides and nitrile ylides." Tetrahedron Letters 31, no. 1 (January 1990): 123–26. http://dx.doi.org/10.1016/s0040-4039(00)94351-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Singh, Atul K., Ruchi Chawla, and Lal Dhar S. Yadav. "ChemInform Abstract: Convenient Access to Strained Trisubstituted 2-Azetines from Enals and Chloramine-T in Aqueous Media." ChemInform 44, no. 15 (March 25, 2013): no. http://dx.doi.org/10.1002/chin.201315087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Santos, Bruna S., Ana L. Cardoso, Ana Matos Beja, Manuela Ramos Silva, Jose A. Paixao, Francisco Palacios, and Teresa M. V. D. Pinho e Melo. "ChemInform Abstract: Diastereoselective Aza-Baylis-Hillman Reactions: Synthesis of Chiral α-Allenylamines and 2-Azetines from Allenic Esters." ChemInform 41, no. 44 (October 7, 2010): no. http://dx.doi.org/10.1002/chin.201044029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Barluenga, Jose, Lorena Riesgo, Giacomo Lonzi, Miguel Tomas, and Luis A. Lopez. "ChemInform Abstract: Copper(I)-Catalyzed [3 + 1] Cycloaddition of Alkenyldiazoacetates and Iminoiodinanes: Easy Access to Substituted 2-Azetines." ChemInform 43, no. 50 (November 29, 2012): no. http://dx.doi.org/10.1002/chin.201250101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Funes-Ardoiz, Ignacio, Jairo González, Javier Santamaría, and Diego Sampedro. "Understanding the Mechanism of the Divergent Reactivity of Non-Heteroatom-Stabilized Chromium Carbene Complexes with Furfural Imines: Formation of Benzofurans and Azetines." Journal of Organic Chemistry 81, no. 4 (February 4, 2016): 1565–70. http://dx.doi.org/10.1021/acs.joc.5b02729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shindoh, Naoya, Kazuo Kitaura, Yoshiji Takemoto, and Kiyosei Takasu. "Catalyst-Controlled Torquoselectivity Switch in the 4π Ring-Opening Reaction of 2-Amino-2-azetines Giving β-Substituted α,β-Unsaturated Amidines." Journal of the American Chemical Society 133, no. 22 (June 8, 2011): 8470–73. http://dx.doi.org/10.1021/ja202576e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marchand, Alan P., D. Rajagopal, Simon G. Bott, and Thomas G. Archibald. "Reactions of 1-ethyl-3-azabicyclo[1.1.0]butane with electrophiles. A facile entry into new, N-substituted 3-ethylideneazetidines and 2-azetines." Journal of Organic Chemistry 59, no. 7 (April 1994): 1608–12. http://dx.doi.org/10.1021/jo00086a008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hemming, Karl, Paul A. O’Gorman, and Michael I. Page. "The synthesis of azabicyclo[4.2.1]nonenes by the addition of a cyclopropenone to 4-vinyl substituted 1-azetines—isomers of the homotropane nucleus." Tetrahedron Letters 47, no. 4 (January 2006): 425–28. http://dx.doi.org/10.1016/j.tetlet.2005.11.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Hemming, Karl, Abdul-Bassett N. Luheshi, Alan D. Redhouse, Robert K. Smalley, J. Robin Thompson, Peter D. Kennewell, and R. Westwood. "1,3-dipolar cycloadditions of 2-Ethoxy- and 2-(ethylthio)-1-azetines with nitrile oxides, nitrile ylides and nitrilimines: An unexpected 1,2,4-triazole formation." Tetrahedron 49, no. 20 (January 1993): 4383–408. http://dx.doi.org/10.1016/s0040-4020(01)85755-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jung, Michael E., and Yong Mi Choi. "New synthesis of 2-azetines and 1-azabutadienes and the use of the latter in Diels-Alder reactions: total synthesis of (.+-.)-.delta.-coniceine." Journal of Organic Chemistry 56, no. 24 (November 1991): 6729–30. http://dx.doi.org/10.1021/jo00024a001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

MARCHAND, A. P., D. RAJAGOPAL, S. G. BOTT, and T. G. ARCHIBALD. "ChemInform Abstract: Reactions of 1-Aza-3-ethylbicyclo(1.1.0)butane with Electrophiles. A Facile Entry into New, N-Substituted 3-Ethylideneazetidines and 2- Azetines." ChemInform 25, no. 36 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199436134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

JUNG, M. E., and Y. M. CHOI. "ChemInform Abstract: New Synthesis of 2-Azetines and 1-Azabutadienes and the Use of the Latter in Diels-Alder Reactions: Total Synthesis of (.+-.)-δ- Coniceine." ChemInform 23, no. 18 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199218169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

HEMMING, K., A. B. N. LUHESHI, A. D. REDHOUSE, R. K. SMALLEY, J. R. THOMPSON, P. D. KENNEWELL, and R. WESTWOOD. "ChemInform Abstract: 1,3-Dipolar Cycloadditions of 2-Ethoxy- and 2-(Ethylthio)-1-azetines with Nitrile Oxides, Nitrile Ylides and Nitrilimines: An Unexpected 1, 2,4-Triazole Formation." ChemInform 24, no. 39 (August 20, 2010): no. http://dx.doi.org/10.1002/chin.199339086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yan, Hao, Xincheng Li, Chunxiang Wang, and Boshun Wan. "Silver-catalyzed cyclization of nitrones with 2-azetine: a radical approach to 2,3-disubstituted quinolines." Organic Chemistry Frontiers 4, no. 9 (2017): 1833–38. http://dx.doi.org/10.1039/c7qo00405b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mughal, Haseeb, and Michal Szostak. "Recent advances in the synthesis and reactivity of azetidines: strain-driven character of the four-membered heterocycle." Organic & Biomolecular Chemistry 19, no. 15 (2021): 3274–86. http://dx.doi.org/10.1039/d1ob00061f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Azetidines represent one of the most important four-membered heterocycles in organic synthesis. We provide an overview of the synthesis, reactivity and application of azetidines with a focus on the most recent advances, trends and future directions.
35

Reidl, Tyler W., and Laura L. Anderson. "Divergent Functionalizations of Azetidines and Unsaturated Azetidines." Asian Journal of Organic Chemistry 8, no. 7 (June 3, 2019): 931–45. http://dx.doi.org/10.1002/ajoc.201900229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brianna Barbu. "Azetidines, assemble!" C&EN Global Enterprise 102, no. 20 (July 1, 2024): 5. http://dx.doi.org/10.1021/cen-10220-scicon7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mehra, Vishu, Isha Lumb, Amit Anand, and Vipan Kumar. "Recent advances in synthetic facets of immensely reactive azetidines." RSC Adv. 7, no. 72 (2017): 45763–83. http://dx.doi.org/10.1039/c7ra08884a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Peipiņš, Vilnis, Krista Suta, and Māris Turks. "Study on Synthesis of N-Protected 2-Triazolyl Azetidines." Key Engineering Materials 762 (February 2018): 19–24. http://dx.doi.org/10.4028/www.scientific.net/kem.762.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Azetidine derivatives are interesting scaffolds in terms of medicinal chemistry. They can be regarded as structural homologs of aziridines. Herein we report synthetic approach to the novel N-protected 2-triazolyl azetidines which are structurally similar to our previously described aziridine derivatives with matrix metalloproteinase-2 inhihbitory activities. The synthetic rout includes ring closing of ethyl 2,4-dibromobutanoate, selective reduction of ester to aldehyde and transformation of the latter to terminal alkyne by Ohira-Bestmann reagent. 2-Ethynyl azetidines as key intermediates were transformed into triazole derivatives by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction.
39

Fawcett, Alexander. "Recent advances in the chemistry of bicyclo- and 1-azabicyclo[1.1.0]butanes." Pure and Applied Chemistry 92, no. 5 (May 26, 2020): 751–65. http://dx.doi.org/10.1515/pac-2019-1007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractBicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butanes are structurally unique compounds that exhibit diverse chemistry. Bicyclo[1.1.0]butane is a four-membered carbocycle with a bridging C(1)-C(3) bond and 1-azabicyclo[1.1.0]butane is an analog of bicyclo[1.1.0]butane featuring a nitrogen atom at one bridgehead. These structures are highly strained, allowing them to participate in a range of strain-releasing reactions which typically cleave the central, strained bond to deliver cyclobutanes or azetidines. However, despite these molecules being discovered in the 1950s and 1960s, and possessing a myriad of alluring chemical features, the chemistry and applications of bicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butanes remain underexplored. In the past 5 years, there has been a resurgent interest in their chemistry driven by the pharmaceutical industry’s increasing desire for new methods to access cyclobutanes and azetidines. This short review intends to provide a timely summary of the most recent developments in the chemistry of bicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butane to highlight the diverse chemistry they can access, their value as synthetic precursors to cyclobutanes and azetidines, and to identify areas for future research.
40

Ghorai, Manas K., Subhomoy Das, Kalpataru Das, and Amit Kumar. "Stereoselective synthesis of activated 2-arylazetidines via imino-aldol reaction." Organic & Biomolecular Chemistry 13, no. 34 (2015): 9042–49. http://dx.doi.org/10.1039/c5ob01140j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Musci, Pantaleo, Marco Colella, Angela Altomare, Giuseppe Romanazzi, Nadeem S. Sheikh, Leonardo Degennaro, and Renzo Luisi. "Dynamic Phenomena and Complexation Effects in the α-Lithiation and Asymmetric Functionalization of Azetidines." Molecules 27, no. 9 (April 29, 2022): 2847. http://dx.doi.org/10.3390/molecules27092847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this work it is demonstrated that enantiomerically enriched N-alkyl 2-oxazolinylazetidines undergo exclusive α-lithiation, and that the resulting lithiated intermediate is chemically stable but configurationally labile under the given experimental conditions that afford enantioenriched N-alkyl-2,2-disubstituted azetidines. Although this study reveals the configurational instability of the diastereomeric lithiated azetidines, it points out an interesting stereoconvergence of such lithiated intermediates towards the thermodynamically stable species, making the overall process highly stereoselective (er > 95:5, dr > 85:15) after trapping with electrophiles. This peculiar behavior has been rationalized by considering the dynamics at the azetidine nitrogen atom, the inversion at the C-Li center supported by in situ FT-IR experiments, and DFT calculations that suggested the presence of η3-coordinated species for diastereomeric lithiated azetidines. The described situation contrasted with the demonstrated stability of the smaller lithiated aziridine analogue. The capability of oxazolinylazetidines to undergo different reaction patterns with organolithium bases supports the model termed “dynamic control of reactivity” of relevance in organolithium chemistry. It has been demonstrated that only 2,2-substituted oxazolinylazetidines with suitable stereochemical requirements could undergo C=N addition of organolithiums in non-coordinating solvents, leading to useful precursors of chiral (er > 95:5) ketoazetidines.
42

Vinayak, Sumiti, Rajiv S. Jumani, Peter Miller, Muhammad M. Hasan, Briana I. McLeod, Jayesh Tandel, Erin E. Stebbins, et al. "Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase." Science Translational Medicine 12, no. 563 (September 30, 2020): eaba8412. http://dx.doi.org/10.1126/scitranslmed.aba8412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cryptosporidium is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three Cryptosporidium parvum isolates with EC50’s in 1% serum of <0.4 to 96 nM, had comparable potencies against Cryptosporidium hominis and C. parvum, and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of C. parvum phenylalanyl-tRNA synthetase (CpPheRS) as the mode of action of this new lead series. Introduction of mutations directly into the C. parvum pheRS gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant ChPheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.
43

Roy, Tony, Sachin Suresh Bhojgude, Trinadh Kaicharla, Manikandan Thangaraj, Bikash Garai, and Akkattu T. Biju. "Employing carboxylic acids in aryne multicomponent coupling triggered by aziridines/azetidines." Organic Chemistry Frontiers 3, no. 1 (2016): 71–76. http://dx.doi.org/10.1039/c5qo00328h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The transition-metal-free aryne multicomponent coupling (MCC) involving carboxylic acids initiated by aziridines/azetidines leading to the synthesis of N-aryl β/γ-amino alcohol derivatives has been developed.
44

Parmar, Dixit, Lena Henkel, Josef Dib, and Magnus Rueping. "Iron catalysed cross-couplings of azetidines – application to the formal synthesis of a pharmacologically active molecule." Chemical Communications 51, no. 11 (2015): 2111–13. http://dx.doi.org/10.1039/c4cc09337b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A protocol for the cross-coupling of azetidines with aryl, heteroaryl, vinyl and alkyl Grignard reagents has been developed under iron catalysis. In addition, a short formal synthesis of a pharmacologically active molecule was demonstrated.
45

Gomathy, Subramanian. "MOLECULAR DOCKING STUDIES, IN SILICO ADMET SCREENING OF SELECTED NOVEL AZETIDINE SUBSTITUTED NAPHTHALENE’S TARGETING PROTEASE ENZYME AGAINST SARS COV-19." Journal of Medical pharmaceutical and allied sciences 10, no. 6 (November 15, 2021): 3986–91. http://dx.doi.org/10.22270/jmpas.v10i6.2505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The emergence and dissemination of SARS COVID-19 has resulted in a high death rate, necessitating a large-scale search for viable antiSARS COVID-19 therapeutics. The binding mechanisms of 25 azetidines bearing naphthalene derivatives as Anti-SARS COVID-19 inhibitors, targeting protease enzyme via molecular docking, ADME and Toxicity Prediction (TOPKAT) investigations were investigated in this work, and they were compared to the FDA-approved medicine remdesivir. Compounds 22, 18, 17, 14 had the highest Lib Dock score among the 25 derivatives, with the X-ray crystallographic structure of M pro (PDB ID: 6LU7) revealing important interactions with residues Glu166, Gln192, Ala191, Thr190, Ser144, Cys145. These findings imply that these azetidine derivatives may be useful in the development of more effective anti-SARS COVID-19 agents. Keywords: Main protease enzyme, SARS COVID-19, Azetidines, Naphthalenes, In-silicoscreening
46

Andresini, Michael, Leonardo Degennaro, and Renzo Luisi. "The renaissance of strained 1-azabicyclo[1.1.0]butanes as useful reagents for the synthesis of functionalized azetidines." Organic & Biomolecular Chemistry 18, no. 30 (2020): 5798–810. http://dx.doi.org/10.1039/d0ob01251c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Since their discovery in the late 1960s, 1-azabicyclo[1.1.0]butanes have demonstrated to be interesting precursors of azetidines, because of the peculiar reactivity of the C3–N bond that allows double functionalization in the 1,3 positions.
47

Dave, Paritosh R., Rajagopal Duddu, Rao Surapaneni, and Richard Gilardi. "Diels-Alder reactions ofN-acetyl-2-azetine." Tetrahedron Letters 40, no. 3 (January 1999): 443–46. http://dx.doi.org/10.1016/s0040-4039(98)02506-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Crunkhorn, Sarah. "Bicyclic azetidines treat cryptosporidiosis." Nature Reviews Drug Discovery 19, no. 12 (November 2, 2020): 838. http://dx.doi.org/10.1038/d41573-020-00193-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Christmann, M., R. de Figueiredo, and R. Fröhlich. "Synthesis of Chiral Azetidines." Synfacts 2006, no. 9 (September 2006): 0879. http://dx.doi.org/10.1055/s-2006-942066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Antermite, Daniele, Leonardo Degennaro, and Renzo Luisi. "Recent advances in the chemistry of metallated azetidines." Organic & Biomolecular Chemistry 15, no. 1 (2017): 34–50. http://dx.doi.org/10.1039/c6ob01665k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The almost unexplored four-membered azetidines represent a particularly interesting class of molecules, among the family of saturated nitrogen heterocycles. This review reports recent developments in direct metal-based functionalization of the azetidine ring, focusing on the regio- and stereoselectivity of these reactions.

To the bibliography