Academic literature on the topic 'Azaspiracidi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Azaspiracidi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Azaspiracidi"

1

Hamilton, Brett, Mónica Díaz Sierra, Mary Lehane, Ambrose Furey, and Kevin J. James. "The fragmentation pathways of azaspiracids elucidated using positive nanospray hybrid quadrupole time-of-flight (QqTOF) mass spectrometry." Spectroscopy 18, no. 2 (2004): 355–62. http://dx.doi.org/10.1155/2004/949018.

Full text
Abstract:
The azaspiracids, AZA1, AZA2 and AZA3, are the predominant shellfish toxins responsible for the human toxic syndrome, azaspiracid poisoning. Collision induced dissociation (CID) mass spectra were generated for azaspiracids using nano-electrospray ionisation (ESI) with a hybrid quadrupole time-of-flight (QqTOF) mass spectrometer in positive mode. Six main backbone fragmentations of the polyether skeleton of azaspiracids were observed as well as multiple neutral losses of water molecules from the parent and product ions. The characteristic charge-remote fragmentation of the carbon skeleton of azaspiracids produced nitrogenous ions. The three azaspiracids differ from one another by 14 Da due to methylation in the A- and E-rings. Three fragmentation pathways, involving cleavage of the E-ring, C27–C28 and G-ring, gave ions that were common to all azaspiracids. Another three fragmentations involving the A-ring, C-ring and C19–C20, were useful for distinguishing between azaspiracid analogues. Multiple tandem ion‒trap mass spectrometry (MSn) was used to confirm the fragmentation pathways.
APA, Harvard, Vancouver, ISO, and other styles
2

Kilcoyne, Jane, Adela Keogh, Ger Clancy, Patricia LeBlanc, Ian Burton, Michael A. Quilliam, Philipp Hess, and Christopher O. Miles. "Improved Isolation Procedure for Azaspiracids from Shellfish, Structural Elucidation of Azaspiracid-6, and Stability Studies." Journal of Agricultural and Food Chemistry 60, no. 10 (March 2, 2012): 2447–55. http://dx.doi.org/10.1021/jf2048788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abal, Paula, M. Carmen Louzao, María Fraga, Natalia Vilariño, Sara Ferreiro, Mercedes R. Vieytes, and Luis M. Botana. "Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier." Cellular Physiology and Biochemistry 43, no. 1 (2017): 136–46. http://dx.doi.org/10.1159/000480331.

Full text
Abstract:
Background: Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. Methods: The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. Conclusion: After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Trainer, Vera L., and Teri L. King. "SoundToxins: A Research and Monitoring Partnership for Harmful Phytoplankton in Washington State." Toxins 15, no. 3 (March 2, 2023): 189. http://dx.doi.org/10.3390/toxins15030189.

Full text
Abstract:
The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the “eyes on the coast”. This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans.
APA, Harvard, Vancouver, ISO, and other styles
5

Kilcoyne, Jane, Pearse McCarron, Michael J. Twiner, Ciara Nulty, Sheila Crain, Michael A. Quilliam, Frode Rise, Alistair L. Wilkins, and Christopher O. Miles. "Epimers of Azaspiracids: Isolation, Structural Elucidation, Relative LC-MS Response, andin VitroToxicity of 37-epi-Azaspiracid-1." Chemical Research in Toxicology 27, no. 4 (February 7, 2014): 587–600. http://dx.doi.org/10.1021/tx400434b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krock, Bernd, Urban Tillmann, Uwe John, and Allan D. Cembella. "Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea." Harmful Algae 8, no. 2 (January 2009): 254–63. http://dx.doi.org/10.1016/j.hal.2008.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

OFUJI, Katsuya, Masayuki SATAKE, Terry MCMAHON, Kevin J. JAMES, Hideo NAOKI, Yasukatsu OSHIMA, and Takeshi YASUMOTO. "Structures of Azaspiracid Analogs, Azaspiracid-4 and Azaspiracid-5, Causative Toxins of Azaspiracid Poisoning in Europe." Bioscience, Biotechnology, and Biochemistry 65, no. 3 (January 2001): 740–42. http://dx.doi.org/10.1271/bbb.65.740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rossi, Rachele, Carmela Dell’Aversano, Bernd Krock, Patrizia Ciminiello, Isabella Percopo, Urban Tillmann, Vittorio Soprano, and Adriana Zingone. "Mediterranean Azadinium dexteroporum (Dinophyceae) produces six novel azaspiracids and azaspiracid-35: a structural study by a multi-platform mass spectrometry approach." Analytical and Bioanalytical Chemistry 409, no. 4 (November 7, 2016): 1121–34. http://dx.doi.org/10.1007/s00216-016-0037-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jialiang, Xiaohua Li, and David R. Mootoo. "Synthetic and Computational Studies on the ABC Trioxadispiroketal Subunit of the Marine Biotoxin Azaspiracid-1." Natural Product Communications 3, no. 11 (November 2008): 1934578X0800301. http://dx.doi.org/10.1177/1934578x0800301106.

Full text
Abstract:
The trioxadispiroketal residue in the marine biotoxin azaspiracid-1, which exists in a configuration capable of exhibiting a double anomeric effect, is believed to be the thermodynamically most stable bis-spiroketal diastereomer. In order to get insight into how structural factors affect this equilibrium, a simplified ABC trioxadispiroketal analog of azaspiracid-1 was synthesized and subjected to equilbration and computational studies. Compound 7, which represents a double anomeric effect was obtained as the major isomer, together with diastereomers 14 and 15, in a respective ratio of 62:22:16. DFT calculations for 7, 14 and 15 qualitatively matched this observation. These results suggest that while a double anomeric effect may play a major role in the stability of the trioxadispiroketal configuration in the more complex natural product, the substitution pattern of the C ring is also a contributing factor.
APA, Harvard, Vancouver, ISO, and other styles
10

Alfonso, Carmen, Amparo Alfonso, Paz Otero, Paula Rodríguez, Mercedes R. Vieytes, Chris Elliot, Cowan Higgins, and Luis M. Botana. "Purification of five azaspiracids from mussel samples contaminated with DSP toxins and azaspiracids." Journal of Chromatography B 865, no. 1-2 (April 2008): 133–40. http://dx.doi.org/10.1016/j.jchromb.2008.02.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Azaspiracidi"

1

Kenton, Nathaniel T. "Total Synthesis of Azaspiracid-3, C20-epi-Azaspiracid-3, and Structural Definition of the Azaspiracids." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523545452232749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Okumu, Antony A. "Toward Total Synthesis of Azaspiracid-3 and Azaspiracid-34." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461282755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yue, Ding. "Towards the total synthesis of Azaspiracid-3." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284488476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Feng. "Synthesis of The ABCD Domain of The Azaspiracids." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1267992158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mzoughet, Kouassi ahou Judith Elisabeth Patricia. "Physiochemical and proteomic studies on azaspiracid contaminated mussels." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zhigao. "Efforts towards the Total Synthesis of Azaspiracid-3." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366108671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Yong. "Synthetic Studies on Total Synthesis of Azaspiracid-3." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385895424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adu-Ampratwum, Daniel Dr. "Synthesis of the ABCD- and EFGHI-Domains of Azaspiracid-3." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461310628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jauffrais, Thierry. "Ecophysiologie des dinoflagellés du genre Azadinium, production toxinique et transfert trophique vers les mollusques bivalves." Nantes, 2012. http://archive.bu.univ-nantes.fr/pollux/show.action?id=040c4b77-66f9-4f28-b05d-261282d9575f.

Full text
Abstract:
Cette thèse a été menée pour développer une méthode d’analyse et de production des azaspiracides (AZA) à partir de cultures d’A. Spinosum. Elle a aussi eu pour objectif l’étude des facteurs environnementaux et nutritionnels influant sur la croissance et la production toxinique d’A. Spinosum. La mise en évidence du lien entre cet organisme et l'accumulation d’AZA dans les moules, ainsi que la clarification des processus d’accumulation, de détoxification et de biotransformation des AZA dans les moules a par ailleurs été réalisée. Les travaux réalisés sur l’analyse des AZA ont permis de définir une procédure d’analyse fiable qui limite notamment la formation d’artéfacts (esters méthyliques d’AZA). Cette étude a permis d’expliquer la formation des AZA méthylés, de déterminer leur structure et de proposer des solutions pour minimiser la formation de ces composés. Ce travail a aussi démontré la faisabilité d’une production durable d’AZA à partir de cultures d’A. Spinosum et a mis en évidence les principaux facteurs influant sur la croissance d’A. Spinosum et sur la production toxinique. Des expériences de contamination sur des moules ont ensuite été réalisées et ont démontré, pour la première fois, le lien directe entre A. Spinosum et l’accumulation des AZA par les moules. Cette accumulation des toxines est très rapide et atteint des concentrations en AZA qui se situent au-delà du seuil réglementaire après seulement 6 h d’exposition. Ces expériences ont aussi montré une rapide biotransformation des AZA dans les moules. Elles ont par ailleurs clarifié les cinétiques d’apparition des différents analogues d’AZA et ont montré que la détoxification des AZA est bi-phasique. Deux dernières études ont mis en évidence, d’une part, l’effet négatif d’A. Spinosum sur l’activité alimentaire des moules, et, d’autre part, la capacité des moules à accumuler les AZA présents dans le milieu sous formes dissoute ou particulaire
This study has been conducted in order to develop the analysis of AZAs and to produce AZAs from A. Spinosum culture. It also aimed at studying the effect of environmental and nutritional factors on growth and toxin production. The study also demonstrated a link between A. Spinosum and the accumulation of AZAs in shellfish, followed by the clarification of the processes of accumulation, detoxification and biotransformation of AZAs into mussels. A quantitative analysis of AZAs in A. Spinosum cultures was developed, and the formation and structure of the AZA methylated analogues was explained and minimised. This work also demonstrated the feasibility of a sustainable production of AZAs from A. Spinosum culture and highlighted the main factors influencing growth and toxin production of A. Spinosum. Using these results, mussel contaminations were performed and demonstrated for the first time the direct link between A. Spinosum and AZA accumulation into mussels. Furthermore, a rapid AZA accumulation above the regulatory limit was observed within 6 h of exposure. These experiments also highlighted the rapid biotransformation of AZA into analogues in shellfish and clarified their kinetics of appearance. Consequently, AZA biotransformation pathways were proposed for different AZA analogues. AZA detoxification was also studied and showed a detoxification with two compartments. Finally, two recent studies demonstrated the negative effect of A. Spinosum on the feeding activity of mussels as well as the ability of mussels to accumulate AZA from dissolved or particulate forms
APA, Harvard, Vancouver, ISO, and other styles
10

Kuiper, Damien L. "Studies toward the total synthesis of azaspiracid-1 /." 2010. http://hdl.handle.net/1957/14311.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Azaspiracidi"

1

Hess, Philipp, Michael J. Twiner, Jane Kilcoyne, and Silvio Sosa. "Azaspiracid Toxins: Toxicological Profile." In Marine and Freshwater Toxins, 169–91. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6419-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hess, Philipp, Michael J. Twiner, Jane Kilcoyne, and Silvio Sosa. "Azaspiracid Toxins: Toxicological Profile." In Marine and Freshwater Toxins, 1–19. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6650-1_20-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jauffrais, T., V. Séchet, P. Truquet, Zouher Amzil, C. Herrenknecht, and P. Hess. "Effect of Dilution Rate on Azadinium spinosum and Azaspiracid (AZA) Production in Pilot Scale Photobioreactors for the Harvest of AZA1 and -2." In Molluscan Shellfish Safety, 197–204. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6588-7_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia Fern√°ndez, Javier, Daniel O‚ÄôDriscoll, Ambrose Furey, and Kevin James. "Azaspiracids." In Seafood and Freshwater Toxins, 763–73. CRC Press, 2008. http://dx.doi.org/10.1201/9781420007541.ch35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ito, Emiko. "Toxicology of Azaspiracid-1." In Seafood and Freshwater Toxins, 775–84. CRC Press, 2008. http://dx.doi.org/10.1201/9781420007541.ch36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Azaspiracids: Chemistry, Bioconversion, and Determination." In Seafood and Freshwater Toxins, 781–92. CRC Press, 2008. http://dx.doi.org/10.1201/9781420007541-57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hess, Philipp, Pearse McCarron, Bernd Krock, Jane Kilcoyne, and Christopher O. Miles. "Azaspiracids: Chemistry, Biosynthesis, Metabolism, and Detection." In Seafood and Freshwater Toxins, 799–822. CRC Press, 2014. http://dx.doi.org/10.1201/b16662-27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Twiner, Michael J., Philipp Hess, and Gregory J. Doucette. "Azaspiracids: Toxicology, Pharmacology, and Risk Assessment." In Seafood and Freshwater Toxins, 823–56. CRC Press, 2014. http://dx.doi.org/10.1201/b16662-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Pharmacology and Epidemiological Impact of Azaspiracids." In Seafood and Freshwater Toxins, 773–80. CRC Press, 2008. http://dx.doi.org/10.1201/9781420007541-56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ryan, Gavin, Kevin Cunningham, and Michael Ryan. "Pharmacology and Epidemiological Impact of Azaspiracids." In Seafood and Freshwater Toxins, 755–61. CRC Press, 2008. http://dx.doi.org/10.1201/9781420007541.pt11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Azaspiracidi"

1

Vale, Carmen, Andrea Boente-Juncal, Sandra Raposo-García, Celia Costas, M. Carmen Louzao, Paz Otero, and Luis Botana. "Activation of anion channels in human cells after long term exposure to the marine toxin azaspiracid." In 1st International Electronic Conference on Toxins. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iect2021-09114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography