Journal articles on the topic 'Azaacène'

To see the other types of publications on this topic, follow the link: Azaacène.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Azaacène.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jakobi, Dörthe, André Schumann, and Rainer Beckert. "Integrating the fluorene substructure into azaacenes: syntheses of novel fluorophores." Zeitschrift für Naturforschung B 73, no. 7 (July 26, 2018): 493–500. http://dx.doi.org/10.1515/znb-2018-0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract In this study, we report on the syntheses of novel angular fused azaacenes. For this purpose, the synthesis of the bis-diamine 2 (TABEF) could be shortened and optimized. The condensation reaction of 2 with different types of 1,2-diketones yielded new azaacene derivatives of types 10, 11 and 12. Analogously, 2 was cyclized with thionyl chloride to give the piazthiol derivative 13. The optical and electrochemical properties of all new compounds were investigated by UV/Vis absorption, fluorescence emission spectroscopy and cyclovoltammetric measurements.
2

Wen, Keke, Xiao Pan, Songyan Feng, Wenpeng Wu, Xugeng Guo, and Jinglai Zhang. "Improving the electron transport performance by changing side chains in sulfur-containing azaacenes: a combined theoretical investigation on free molecules and an adsorption system." New Journal of Chemistry 43, no. 14 (2019): 5414–22. http://dx.doi.org/10.1039/c8nj06408c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elter, Maximilian, Lukas Ahrens, Stella M. Luo, Frank Rominger, Jan Freudenberg, Dennis D. Cao, and Uwe H. F. Bunz. "Cata ‐Annulated Azaacene Bisimides." Chemistry – A European Journal 27, no. 48 (July 29, 2021): 12284–88. http://dx.doi.org/10.1002/chem.202101573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guevara-Level, Patricia, Simon Pascal, Olivier Siri, and Denis Jacquemin. "First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes." Physical Chemistry Chemical Physics 21, no. 41 (2019): 22910–18. http://dx.doi.org/10.1039/c9cp04835a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Zongrui, Renping Li, Kexiang Zhao, Fei Yu, Jianfeng Zhao, Yonggang Zhen, and Qichun Zhang. "A co-crystallization strategy toward high-performance n-type organic semiconductors through charge transport switching from p-type planar azaacene derivatives." Journal of Materials Chemistry C 10, no. 7 (2022): 2757–62. http://dx.doi.org/10.1039/d1tc04610a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gu, Pei-Yang, Zilong Wang, Fang-Xing Xiao, Zongqiong Lin, Rongbin Song, Qing-Feng Xu, Jian-Mei Lu, Bin Liu, and Qichun Zhang. "An ambipolar azaacene as a stable photocathode for metal-free light-driven water reduction." Materials Chemistry Frontiers 1, no. 3 (2017): 495–98. http://dx.doi.org/10.1039/c6qm00113k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gu, Pei-Yang, Guangfeng Liu, Jun Zhao, Naoki Aratani, Xin Ye, Yang Liu, Hiroko Yamada, et al. "Understanding the structure-determining solid fluorescence of an azaacene derivative." Journal of Materials Chemistry C 5, no. 34 (2017): 8869–74. http://dx.doi.org/10.1039/c7tc03089d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Three different single crystal forms of an azaacene derivative with different fluorescence quantum yields have been obtained and the relationship between their structures and fluorescence have been studied.
8

Wang, Zilong, Zongrui Wang, Yecheng Zhou, Peiyang Gu, Guangfeng Liu, Kexiang Zhao, Lina Nie, et al. "Structure engineering: extending the length of azaacene derivatives through quinone bridges." Journal of Materials Chemistry C 6, no. 14 (2018): 3628–33. http://dx.doi.org/10.1039/c8tc00628h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

An, Cunbin, Xin Guo, and Martin Baumgarten. "Highly Ordered Phenanthroline-Fused Azaacene." Crystal Growth & Design 15, no. 11 (October 6, 2015): 5240–45. http://dx.doi.org/10.1021/acs.cgd.5b00701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Das, Rajorshi, Michael Linseis, Stefan M. Schupp, Franciska S. Gogesch, Lukas Schmidt-Mende, and Rainer F. Winter. "Organic binary charge-transfer compounds of 2,2′ : 6′,2′′ : 6′′,6-trioxotriphenylamine and a pyrene-annulated azaacene as donors." RSC Advances 13, no. 6 (2023): 3652–60. http://dx.doi.org/10.1039/d2ra07322f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Three binary charge-transfer (CT) compounds resulting from the donor 2,2′ : 6′,2′′ : 6′′,6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported.
11

Zhao, Jianfeng, Kai Chen, Bing Yang, Yanni Zhang, Caixia Zhu, Yinxiang Li, Qichun Zhang, Linghai Xie, and Wei Huang. "Surficial nanoporous carbon with high pyridinic/pyrrolic N-Doping from sp3/sp2-N-rich azaacene dye for lithium storage." RSC Advances 7, no. 85 (2017): 53770–77. http://dx.doi.org/10.1039/c7ra07850a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Dye to carbon: Two rationally designed pyridinic/pyrrolic N-doped porous carbons as anodic materials could be achieved by carbonizing π-conjugated azaacene dye born with high ratio sp3/sp2-N.
12

Müller, Matthias, Silke Koser, Olena Tverskoy, Frank Rominger, Jan Freudenberg, and Uwe H. F. Bunz. "Thiadiazolo‐Azaacenes." Chemistry – A European Journal 25, no. 24 (March 26, 2019): 6082–86. http://dx.doi.org/10.1002/chem.201900462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mateos-Martín, Javier, Marco Carini, Manuel Melle-Franco, and Aurelio Mateo-Alonso. "Increasing and dispersing strain in pyrene-fused azaacenes." Chemical Communications 56, no. 77 (2020): 11457–60. http://dx.doi.org/10.1039/d0cc04735j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mora‐Fuentes, Juan P., Ilias Papadopoulos, Dominik Thiel, Roberto Álvarez‐Boto, Diego Cortizo‐Lacalle, Timothy Clark, Manuel Melle‐Franco, Dirk M. Guldi, and Aurelio Mateo‐Alonso. "Singlet Fission in Pyrene‐Fused Azaacene Dimers." Angewandte Chemie International Edition 59, no. 3 (November 27, 2019): 1113–17. http://dx.doi.org/10.1002/anie.201911529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ahrens, Lukas, Julian Butscher, Victor Brosius, Frank Rominger, Jan Freudenberg, Yana Vaynzof, and Uwe H. F. Bunz. "Azaacene Dimers: Acceptor Materials with a Twist." Chemistry – A European Journal 26, no. 2 (December 19, 2019): 412–18. http://dx.doi.org/10.1002/chem.201904683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mora‐Fuentes, Juan P., Ilias Papadopoulos, Dominik Thiel, Roberto Álvarez‐Boto, Diego Cortizo‐Lacalle, Timothy Clark, Manuel Melle‐Franco, Dirk M. Guldi, and Aurelio Mateo‐Alonso. "Singlet Fission in Pyrene‐Fused Azaacene Dimers." Angewandte Chemie 132, no. 3 (November 27, 2019): 1129–33. http://dx.doi.org/10.1002/ange.201911529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gu, Pei-Yang, Zilong Wang, and Qichun Zhang. "Azaacenes as active elements for sensing and bio applications." Journal of Materials Chemistry B 4, no. 44 (2016): 7060–74. http://dx.doi.org/10.1039/c6tb02052f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wu, Yuechao, Yi Jin, Jianguo Xu, Yanwen Lv, and Jiangang Yu. "Recent Progress in the Synthesis and Applications of Azaacenes." Current Organic Chemistry 24, no. 8 (June 23, 2020): 885–99. http://dx.doi.org/10.2174/1385272824999200427081309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Partial substitution of CH groups in the skeletons of linearly fused phenyl rings provides an appreciable possibility to tailor their properties. Among them, azaacenes induced from a partial substitution of oligoacenes by nitrogen are one of the most promising derivatives with a view of their potential application in organic electronic devices as a novel organic n-type semiconductor. Hence this review focuses on recent progress in the synthesis of azaacenes and their applications beyond organic field-effect transistors (OFETs) such as organic light-emitting diodes (OLEDs), phototransistors, photoelectrical chemical cells, organic memory, solar cells, conductors and sensors.
19

Ding, Fangwei, Debin Xia, Congwu Ge, Zhenchao Kang, Yulin Yang, Ruiqing Fan, Kaifeng Lin, and Xike Gao. "Indenone-fused N-heteroacenes." Journal of Materials Chemistry C 7, no. 45 (2019): 14314–19. http://dx.doi.org/10.1039/c9tc04962b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

More, Sandeep, Sunil Choudhary, Alexander Higelin, Ingo Krossing, Manuel Melle-Franco, and Aurelio Mateo-Alonso. "Twisted pyrene-fused azaacenes." Chemical Communications 50, no. 16 (2014): 1976. http://dx.doi.org/10.1039/c3cc48742c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Inoue, Yuki, Daisuke Sakamaki, Yusuke Tsutsui, Masayuki Gon, Yoshiki Chujo, and Shu Seki. "Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality." Journal of the American Chemical Society 140, no. 23 (May 21, 2018): 7152–58. http://dx.doi.org/10.1021/jacs.8b02689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhang, Zhongbo, and Qichun Zhang. "Recent progress in well-defined higher azaacenes (n ≥ 6): synthesis, molecular packing, and applications." Materials Chemistry Frontiers 4, no. 12 (2020): 3419–32. http://dx.doi.org/10.1039/c9qm00656g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this review, we will focus on the recent progress in the synthetic strategies, photo-electronic properties, molecular packing modes and applications of azaacenes (n ≥ 6) with single-crystal structures.
23

Intorp, Sebastian N., Manuel Hodecker, Matthias Müller, Olena Tverskoy, Marco Rosenkranz, Evgenia Dmitrieva, Alexey A. Popov, et al. "Quinoidal Azaacenes: 99 % Diradical Character." Angewandte Chemie 132, no. 30 (April 28, 2020): 12496–501. http://dx.doi.org/10.1002/ange.201915977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Intorp, Sebastian N., Manuel Hodecker, Matthias Müller, Olena Tverskoy, Marco Rosenkranz, Evgenia Dmitrieva, Alexey A. Popov, et al. "Quinoidal Azaacenes: 99 % Diradical Character." Angewandte Chemie International Edition 59, no. 30 (April 28, 2020): 12396–401. http://dx.doi.org/10.1002/anie.201915977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ganschow, Michael, Silke Koser, Manuel Hodecker, Frank Rominger, Jan Freudenberg, Andreas Dreuw, and Uwe H. F. Bunz. "Azaacenes Bearing Five-Membered Rings." Chemistry - A European Journal 24, no. 51 (August 10, 2018): 13667–75. http://dx.doi.org/10.1002/chem.201802900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Müller, Matthias, Hilmar Reiss, Olena Tverskoy, Frank Rominger, Jan Freudenberg, and Uwe H. F. Bunz. "Stabilization by Benzannulation: Butterfly Azaacenes." Chemistry - A European Journal 24, no. 49 (August 5, 2018): 12801–5. http://dx.doi.org/10.1002/chem.201803118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

More, Sandeep, Rajesh Bhosale, and Aurelio Mateo-Alonso. "Low-LUMO Pyrene-Fused Azaacenes." Chemistry - A European Journal 20, no. 34 (February 23, 2014): 10626–31. http://dx.doi.org/10.1002/chem.201304461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Pengxin, Lanlan Deng, Zengtao Han, Xiaolong Zhao, Zhe Zhang, and Shuhui Huo. "Benzo[de]isoquinoline-1,3-dione condensed asymmetric azaacenes as strong acceptors." RSC Advances 12, no. 21 (2022): 13480–86. http://dx.doi.org/10.1039/d2ra01074g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Three benzo[de]isoquinoline-1,3-dione (BQD) condensed asymmetric azaacenes, BQD-TZ, BQD-AP andBQD-PA, with different end groups, have been successfully synthesized and their structures were confirmed by single-crystal X-ray diffraction.
29

Kang, Fangyuan, Jie Yang, and Qichun Zhang. "Recent progress in pyrazinacenes containing nonbenzenoid rings: synthesis, properties and applications." Journal of Materials Chemistry C 10, no. 7 (2022): 2475–93. http://dx.doi.org/10.1039/d1tc04340d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This review focuses on the recent progress in the inclusion of a nonbenzenoid ring into the π-backbone of azaacenes, which can largely tune absorption, energy levels, and antiaromaticity, and produce exciting size-dependent properties.
30

Miao, Shaobin, Jason Ji, Lei Zhu, Christopher Klug, and Mark Smith. "Synthesis of Large Pyrene-Fused Azaacenes." Synthesis 47, no. 06 (January 16, 2015): 871–74. http://dx.doi.org/10.1055/s-0034-1379965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schleper, A., Constantin-Christian Voll, Jens Engelhart, and Timothy Swager. "Iptycene-Containing Azaacenes with Tunable Luminescence." Synlett 28, no. 20 (July 19, 2017): 2783–89. http://dx.doi.org/10.1055/s-0036-1589503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An optimized route toward iptycene-capped, p-dibromo-quinoxalinophenazine was developed, increasing the yield significantly from literature procedures. New iptycene-containing symmetrical aza­acenes were synthesized from this intermediate using Suzuki–Miyaura cross-coupling, and their photophysical properties were evaluated. Tuning the substituents allows modulating emission wavelengths across the visible spectrum. Substitution with 3-methoxy-2-methylthiophene exhibits a quantum yield of 35%. The (triisopropylsilyl)acetylene product has a quantum yield of 38% and serves as a model compound for the synthesis of polymers based on this electrooptically active molecular motif.
32

More, Sandeep, Sunil Choudhary, Alexander Higelin, Ingo Krossing, Manuel Melle-Franco, and Aurelio Mateo-Alonso. "ChemInform Abstract: Twisted Pyrene-Fused Azaacenes." ChemInform 45, no. 11 (February 27, 2014): no. http://dx.doi.org/10.1002/chin.201411108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Takeda, Takashi, Tomohiro Ikemoto, Shunsuke Yamamoto, Wakana Matsuda, Shu Seki, Masaya Mitsuishi, and Tomoyuki Akutagawa. "Preparation, Electronic and Liquid Crystalline Properties of Electron-Accepting Azaacene Derivatives." ACS Omega 3, no. 10 (October 19, 2018): 13694–703. http://dx.doi.org/10.1021/acsomega.8b01943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Chao, Huapeng Ruan, Zhongtao Feng, Yong Fang, Shuxuan Tang, Yue Zhao, Gengwen Tan, Yuanting Su, and Xinping Wang. "Crystalline Diradical Dianions of Pyrene‐Fused Azaacenes." Angewandte Chemie 132, no. 29 (May 18, 2020): 11892–97. http://dx.doi.org/10.1002/ange.202001842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Chao, Huapeng Ruan, Zhongtao Feng, Yong Fang, Shuxuan Tang, Yue Zhao, Gengwen Tan, Yuanting Su, and Xinping Wang. "Crystalline Diradical Dianions of Pyrene‐Fused Azaacenes." Angewandte Chemie International Edition 59, no. 29 (May 18, 2020): 11794–99. http://dx.doi.org/10.1002/anie.202001842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Min, Yang, Chuandong Dou, Hongkun Tian, Yanhou Geng, Jun Liu, and Lixiang Wang. "n-Type Azaacenes Containing B←N Units." Angewandte Chemie 130, no. 7 (February 2, 2018): 2018–22. http://dx.doi.org/10.1002/ange.201712986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hahn, Sebastian, Silke Koser, Manuel Hodecker, Pascal Seete, Frank Rominger, Ognjen Š. Miljanić, Andreas Dreuw, and Uwe H. F. Bunz. "Phenylene Bridged Cyclic Azaacenes: Dimers and Trimers." Chemistry - A European Journal 24, no. 27 (March 12, 2018): 6968–74. http://dx.doi.org/10.1002/chem.201705704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Min, Yang, Chuandong Dou, Hongkun Tian, Yanhou Geng, Jun Liu, and Lixiang Wang. "n-Type Azaacenes Containing B←N Units." Angewandte Chemie International Edition 57, no. 7 (February 2, 2018): 2000–2004. http://dx.doi.org/10.1002/anie.201712986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kotwica, Kamil, Ireneusz Wielgus, and Adam Proń. "Azaacenes Based Electroactive Materials: Preparation, Structure, Electrochemistry, Spectroscopy and Applications—A Critical Review." Materials 14, no. 18 (September 8, 2021): 5155. http://dx.doi.org/10.3390/ma14185155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300–310) to yield, for the first time, a set of normalized data, which could be directly compared.
40

Gozalvez, Cristian, Jose L. Zafra, Akinori Saeki, Manuel Melle-Franco, Juan Casado, and Aurelio Mateo-Alonso. "Charge transport modulation in pseudorotaxane 1D stacks of acene and azaacene derivatives." Chemical Science 10, no. 9 (2019): 2743–49. http://dx.doi.org/10.1039/c8sc04845b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Acenes have received a lot of attention because of their inherent and tunable absorbing, emissive, and charge transport properties for electronic, photovoltaic, and singlet fission applications, among others.
41

Zeplichal, Marc, Joshua Gies, Johannes Bernd, Dilan Kancious Winslaws, Tieyan Chang, Yu-Sheng Chen, Steven H. Strauss, Olga V. Boltalina, and Andreas Terfort. "Fluorinated Azaacenes: Efficient Syntheses, Structures, and Electrochemical Properties." Journal of Fluorine Chemistry 257-258 (May 2022): 109960. http://dx.doi.org/10.1016/j.jfluchem.2022.109960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Engelhart, Jens U., Benjamin D. Lindner, Olena Tverskoy, Frank Rominger, and Uwe H. F. Bunz. "Large Azaacenes: Pyridine Rings Reacting Like Carbonyl Groups." Organic Letters 14, no. 4 (February 8, 2012): 1008–11. http://dx.doi.org/10.1021/ol203334u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Junbo, Shao Chen, Zilong Wang, and Qichun Zhang. "Pyrene-fused Acenes and Azaacenes: Synthesis and Applications." Chemical Record 16, no. 3 (May 24, 2016): 1518–30. http://dx.doi.org/10.1002/tcr.201600015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gu, Pei-Yang, Ning Wang, Anyang Wu, Zilong Wang, Miaomiao Tian, Zhisheng Fu, Xiao Wei Sun, and Qichun Zhang. "An Azaacene Derivative as Promising Electron-Transport Layer for Inverted Perovskite Solar Cells." Chemistry - An Asian Journal 11, no. 15 (July 12, 2016): 2135–38. http://dx.doi.org/10.1002/asia.201600856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ganschow, Michael, Silke Koser, Sebastian Hahn, Frank Rominger, Jan Freudenberg, and Uwe H. F. Bunz. "Dibenzobarrelene-Based Azaacenes: Emitters in Organic Light-Emitting Diodes." Chemistry - A European Journal 23, no. 18 (March 3, 2017): 4415–21. http://dx.doi.org/10.1002/chem.201605820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Liao, Hailiang, Chengyi Xiao, Mahesh Kumar Ravva, Liping Yao, Yaping Yu, Yinghe Yang, Weimin Zhang, et al. "Fused Pyrazine‐ and Carbazole‐Containing Azaacenes: Synthesis and Properties." ChemPlusChem 84, no. 9 (July 23, 2019): 1257–62. http://dx.doi.org/10.1002/cplu.201900383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Müller, Matthias, Silke Koser, Olena Tverskoy, Frank Rominger, Jan Freudenberg, and Uwe H. F. Bunz. "Cover Feature: Thiadiazolo‐Azaacenes (Chem. Eur. J. 24/2019)." Chemistry – A European Journal 25, no. 24 (March 26, 2019): 6041. http://dx.doi.org/10.1002/chem.201901123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Min, Yang, Chuandong Dou, Dan Liu, Huanli Dong, and Jun Liu. "Quadruply B←N-Fused Dibenzo-azaacene with High Electron Affinity and High Electron Mobility." Journal of the American Chemical Society 141, no. 42 (October 2, 2019): 17015–21. http://dx.doi.org/10.1021/jacs.9b09640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Min, Yang, Changshuai Dong, Hongkun Tian, Jun Liu, and Lixiang Wang. "B←N-Incorporated Dibenzo-azaacenes as n-Type Thermoelectric Materials." ACS Applied Materials & Interfaces 13, no. 28 (July 6, 2021): 33321–27. http://dx.doi.org/10.1021/acsami.1c08514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Li, Linan, Ying Gao, Chuandong Dou, and Jun Liu. "B⟵N-containing azaacenes with propynyl groups on boron atoms." Chinese Chemical Letters 31, no. 5 (May 2020): 1193–96. http://dx.doi.org/10.1016/j.cclet.2019.11.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography