Dissertations / Theses on the topic 'Axonal transport'

To see the other types of publications on this topic, follow the link: Axonal transport.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Axonal transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Whiteley, S. J. "Axonal transport in experimental diabetes." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thornhill, Paul. "Neurofilament phosphorylation and axonal transport." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moutaux, Eve. "Régulation du transport axonal par l'activité neuronale : Implication pour le développement des réseaux neuronaux Neuronal activity recruits an axon-resident pool of secretory vesicles to regulate axon branching Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons ALG-2 interacting protein-X (Alix) is required for activity-dependent bulk endocytosis at brain synapses An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks." Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALV024.pdf.

Full text
Abstract:
Pendant le développement, les projections axonales à longue distance se ramifient pour se connecter à leurs cibles. L’établissement et le remodelage de ces connexions est notamment régulé par l’activité neuronale. L’adaptation de la morphologie de l’axone nécessite alors des quantités importantes de matériel sécrétoire et de facteur trophiques comme le BDNF (brain derived neurotrophic factor). Ce matériel est transporté dans des vésicules le long de l’axone depuis le corps cellulaire où il est synthétisé, vers les sites actifs à l’extrémité de l’axone. Si le relargage de vésicules sécrétoires à la synapse est bien étudié, les mécanismes régulant le transport axonal par l’activité sont encore méconnus.Dans ce travail de thèse, nous avons dans un premier temps développé des outils permettant d’étudier les dynamiques intracellulaires dans des réseaux neuronaux. Nous avons ainsi développé une chambre microfluidique permettant de reconstruire in vitro des réseaux neuronaux physiologiques et compatibles avec de la vidéomicroscopie à haute résolution. Nous avons caractérisé l’établissement et la maturation du réseau et validé l’intérêt de ce dispositif microfluidique dans le contexte de la maladie de Huntington. Nous avons ensuite étudié l’évolution des dynamiques intracellulaires avec la maturation du réseau. Nous avons notamment observé une augmentation du transport axonal de vésicules sécrétoires en fonction de l'état de maturation du réseau neuronal. Ces premières observations ont renforcé l’hypothèse d’une régulation directe du transport axonal de vésicules sécrétoires par l’activité neuronale au cours du développement du réseau.Nous avons ainsi fait évoluer la plateforme microfluidique par l’ajout d’un réseau d’électrodes (MEA) qui permet d'étudier les dynamiques intracellulaires tout en contrôlant l’activité neuronale. A l’aide de ce système, nous avons identifié un groupe de vésicules sécrétoires ancré le long de l’axone et recruté en réponse à une haute activité neuronale en direction des sites présynaptiques actifs. Nous avons alors identifié les acteurs impliqués dans ce mécanisme dépendant de l’activité. Nous avons montré que la myosine Va permettait l’attachement des vésicules le long de l’axone dans des structures d’actine dynamique. L’activité neuronale induit une augmentation de calcium le long de l’axone, via l’activation des canaux calciques dépendant du voltage, qui régule la myosine Va et entraine le recrutement des vésicules stockées dans l’axone sur les microtubules. Une fois les acteurs identifiés, nous avons pu mettre en évidence le rôle de ce mécanisme dépendant de l’activité dans la formation de branches axonales pendant le développement. Enfin, nous avons confirmé l’existence de ce groupe de vésicules dépendant de l’activité et résidant dans l’axone in vivo grâce à la mise au point d'un système d’étude du transport axonal sur tranches aigües de cerveau en microscopie biphotonique.L’ensemble de ce travail propose de nouveaux outils in vitro et in vivo pour comprendre les régulations des dynamiques intracellulaires dans des réseaux neuronaux physiologiques. Grâce à ces outils, nous avons identifié un mécanisme de régulation local qui permet l'adressage rapide de facteurs trophiques vers les branches en développement en réponse à l’activité neuronale
During postnatal development, long-distance axonal projections form branches to connect with their targets. Establishment and remodeling of these projections are tightly regulated by neuronal activity and require a large amount of secretory material and trophic factors, such as brain derived neurotrophic factor (BDNF). Axonal transport is responsible for addressing trophic factors packed into vesicles to high demand sites where mechanisms of secretion are well-known. However, mechanisms controlling the preferential targeting of axonal vesicles to active sites in response to neuronal activity are unknown.In this work, we first developed tools to study intracellular dynamics in neuronal networks. We thus developed a microfluidic chamber to reconstruct physiologically-relevant networks in vitro which is compatible with high resolution videomicroscopy. We characterized the formation and maturation of reconstructed networks and we validated the relevance of the microfluidic platform in the context of Huntington’s disease. We then studied the evolution of intracellular dynamics with the maturation of reconstructed neuronal networks in microfluidic chambers. We observed an increase of anterograde axonal transport of secretory vesicles during maturation. These first results lead us to think that neuronal activity could regulate axonal transport of secretory vesicles over maturation of the network.Therefore, we improved the in vitro microfluidic system with a designed microelectrode array (MEA) substrate allowing us to record intracellular dynamics while controlling neuronal activity. Using this system, we identified an axon-resident reserve pool of secretory vesicles recruited upon neuronal activity to rapidly distribute secretory materials to presynaptic sites. We identified the activity-dependent mechanism of recruitment of this axonal pool of vesicles along the axon shaft. We showed that Myosin Va ensures the tethering of vesicles in the axon shaft in axonal actin structures. Specifically, neuronal activity induces a calcium increase after activation of Voltage Gated Calcium Channels along the axon, which regulates Myosin Va and triggers the recruitment of tethered vesicles on microtubules. We then showed the involvement of this activity-dependent pool for axon branches formation during axon development. By developing 2-photon live microscopy of axonal transport in acute slices, we finally confirmed that a pool of axon-resident static vesicles is recruited by neuronal activity in vivo with a similar kinetic.Altogether, this work provides new in vitro and in vivo tools to study intracellular dynamics in physiological networks. Using these tools, we identified the existence of a local mechanism of axonal transport regulation along the axon shaft, allowing rapid supply of trophic factors to developing branches
APA, Harvard, Vancouver, ISO, and other styles
4

Robinson, J. P. "Axonal transport in experimental diabetes mellitus." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tennant, Maria Elizabeth. "Axonal transport in motor neurone disease." Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haghnia, Marjan. "Analysis of axonal transport mutants in Drosophila /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hares, Kelly Marie. "Analysis of axonal transport deficits in multiple sclerosis." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633448.

Full text
Abstract:
Multiple sclerosis (MS) is a complex disease combining both inflammatory and neurodegenerative mechanisms. Current treatments available to MS sufferers all focus on immunosuppression. However, emerging evidence reveals axonal loss taking place alongside inflammation, suggesting protection of axons and subsequent prevention of neuronal loss is a necessary tool for future MS treatments. Mechanisms of axonal injury remain unknown, but dysregulation of axonal transport mechanisms may be important. The aim of this project was to further elucidate the role of axonal transport, including both motor proteins and associated cargoes, in axonal structure and function and to assess the effects of any changes in axonal transport mechanisms in relevance to MS disease pathology. Results from experiments performed in this thesis have shown dose dependent reductions in neurofilament (NF) phosphorylation in axons exposed to inflammatory-mediated reactive oxygen species, nitric oxide (NO). Furthermore, in MS tissue, we have seen reductions in mRNA and protein of kinesin superfamily proteins (KIFs), which are important in maintaining anterograde axonal transport. Lastly, in vitro studies using rat cortical neurons have shown reduced KIFSA and KIF21B gene expression significantly reduces neuronal viability. Phosphorylated neurofilaments (pNFs) are vital in maintaining axonal integrity and function. ,Dysregulation of anterograde axonal motor proteins including, KIFSA, KIF21B and KIF1B is likely to result in reduced transport of structural cytoskeletal components such as p-NFs, compromising axonal structure and integrity, as seen in many neurodegenerative diseases. Therefore, preservation of axonal transport mechanisms and neurofilament phosphorylation may be a potential therapeutic avenue to explore to protect against on-going neurodegeneration in MS and other neurological diseases. Overall, the results presented here offer more insight into the neurodegenerative processes occurring in MS. However, further studies are required to ascertain the direct functional consequences of reduced KIF gene/protein expression on axonal transport and funct ion in the disease course.
APA, Harvard, Vancouver, ISO, and other styles
8

Archer, D. R. "Axonal transport and related responses to nerve injury." Thesis, University of Liverpool, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hill, Josephine Elizabeth. "Investigating mechanisms involved in α-synuclein axonal transport." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weiss, Kurt R. "The role of Huntingtin in fast axonal transport." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/70106.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
Huntington's Disease (HD) is an autosomal dominant, neurodegenerative disease that occurs when an expansion of the polyQ tract of the huntingtin gene expands to greater than ~35 residues. This mutation leads to aggregation of the Huntingtin protein (Htt) and degeneration of striatal and cortex neurons, ultimately causing motor impairment and personality changes. Neither the mechanism by which mutant Htt causes toxicity, nor the endogenous function of wild-type Htt, are well understood. To explore mechanisms of mutant Htt-induced toxicity, we generated and characterized a Drosophila model of HD by expressing a 588 amino acid N-terminal fragment of human Htt with 138 glutamines, and tagged with mRFP (Q138Htt-RFP). We used this model to conduct a screen for genes that modify cytoplasmic aggregation and/or toxicity phenotypes. We identified two classes of interacting suppressors in our screen: those that rescue viability while decreasing Htt expression and aggregation, and those that rescue viability independent of effects on Htt aggregation, suggesting that aggregation and toxicity can be separated. To evaluate the putative function of Htt in fast axonal transport, we characterized the co-localization of the Drosophila Htt homolog tagged with mRFP (dHtt-RFP), and the alterations in axonal transport kinetics associated with a dhtt null. We find that dHtt co-localizes with a subset of cargos including synaptic vesicles and mitochondria, and acts locally on these cargos to increase transport processivity. Finally, we evaluated the effects of Q138Htt-RFP expression on transport kinetics. We find that the majority of transport cargos bypass Q138Htt aggregates, indicating they are not complete blockages of axonal transport. We also observe reduced mitochondrial transport in the absence of aggregates, suggesting aggregate-independent transport defects. Our observations of transport in vivo support a role for wild-type Htt in mediating fast axonal transport of membrane bound organelles, and suggest that mutant Htt can cause aggregation-dependent and -independent defects in axonal transport.
by Kurt R. Weiss.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
11

Ruparelia, A. H. "Axonal transport in mouse models of Down syndrome." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1395925/.

Full text
Abstract:
Down syndrome (DS) is a complex condition resulting in the most common genetic form of intellectual disability. Trisomy of chromosome 21 in humans (Hsa21) causes DS, likely due to overexpression of some of the 500 genes on this chromosome. People with DS are more susceptible to early-onset Alzheimer Disease (AD), and the histopathological and endocytic perturbations that characterise AD are present at an earlier age in people with DS than the general population with AD. They also display aberrant dendritic spine morphology, which is associated with learning and memory deficits. The Ts65Dn mouse model of DS carries 122 genes on its translocated chromosome and recapitulates these DS-associated phenotypes. Neurodegeneration in these mice may be caused by impaired retrograde axonal transport of essential neurotrophic factors. The triplication of the Hsa21-encoded amyloid precursor protein (APP) gene is proposed to cause enlarged early endosomes and a perturbed endocytic pathway that subsequently leads to axonal transport deficits. However the genetic contribution of other Hsa21 genes to axonal transport deficits remains unknown. The research in this thesis aimed to recapitulate the axonal transport, endocytic and dendritic phenotypes in Ts65Dn mice, and to elucidate the contribution of Hsa21 genes, to the pathogenesis of these deleterious phenotypes. Live-cell imaging of quantum dot-labelled brain-derived neurotrophic factor (BDNF) in Ts65Dn hippocampal neurons revealed impaired BDNF axonal transport. Neurons from these mice also displayed a greater number of enlarged early endosomes and reduced dendritic surface area and volume. The Ts1Rhr mouse model encodes 31 duplicated genes that are orthologous to the human DS critical region (DSCR), and has disomic APP expression levels. Ts1Rhr hippocampal neurons also revealed impaired BDNF axonal transport, however endosomal and dendritic morphology was spared. This suggests that in addition to APP, one or more genes orthologous to the human DSCR may be necessary for axonal transport deficits but not for the enlarged early endosome phenotype or dendritic abnormalities. Other putative mechanisms, such as perturbed cytoskeleton and motor protein function, may additionally exacerbate impaired axonal transport of neurotrophins.
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Yinyun. "Computational Modeling of Slow Axonal Transport of Neurofilaments." Ohio University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1373290973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Reis, Gerald Feliz. "Mechanisms of motor activity regulation in axonal transport." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3315202.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed Nov. 5, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
14

Atkins, Melody. "Explorer le lien entre microtubules et formation des circuits moteurs par l’analyse de l’interactome de la Fidgetin-like 1." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS562.

Full text
Abstract:
Lors du développement du système nerveux, la formation de circuits fonctionnels dépend de la capacité des axones à traduire les signaux de guidage perçus dans l’environnement en un remodelage morphologique du cône de croissance, afin qu’il atteigne les bonnes cibles synaptiques. Différentes machineries cellulaires sous-tendent ce remodelage, tels que le trafic membranaire et le cytosquelette. Mon équipe de thèse a identifié l’ATPase Fidgetin-like 1 (Fignl1) comme un acteur phare de la navigation axonale des neurones moteurs spinaux de poisson zèbre, par sa régulation de la dynamique des microtubules. Ma thèse a consisté à préciser les mécanismes cellulaires et moléculaires par lesquels la Fignl1 régule la navigation axonale, en initiant l’analyse de l’interactome de cette ATPase. Une approche gêne candidat, basée sur Rad51 – le seul partenaire d’interaction publié de Fignl1 –, a ainsi pu révéler le rôle de cette recombinase dans la navigation axonale des neurones moteurs spinaux du téléoste, et son association potentielle avec Fignl1 lors de ce processus. D’autre part, l’analyse d’un crible double hybride m’a conduite à identifier un nouveau mécanisme impliquant la Fignl1 en tant que régulateur clé du trafic vésiculaire rétrograde au sein d’axones en développement. Enfin, en me concentrant sur la voie de signalisation netrin 1/DCC, j’ai initié la caractérisation des signalisations de guidage régulant le comportement giratoire du cône de croissance par le biais de la Fignl1. Mes travaux de thèse établissent ainsi le rôle central de la Fignl1 dans la navigation axonale, par ses fonctions multiples dans le remodelage du cytosquelette et la régulation du trafic membranaire
During nervous system development, the wiring of functional circuits requires developing axons to accurately sense and translate environmental guidance signals into morphological changes of the growth cone, enabling it to reach the right synaptic targets. This growth cone remodelling is mediated by the concerted action of different intracellular machineries, such as membrane trafficking and the cytoskeleton. My PhD team has recently identified the Fidgetin-like 1 ATPase (Fignl1) as a critical player of zebrafish spinal motor axon navigation, via its regulation of microtubule dynamics. The aim of my PhD was to further unravel the cellular and molecular mechanisms by which Fignl1 regulates axon navigation, via the analysis of the Fignl1 interactome. A candidate gene approach, focused on the sole published Fignl1 binding partner – Rad51 – first revealed a role for this recombinase in zebrafish motor axon pathfinding, and its potential association with Fignl1 in this process. Additionally, a global approach – based on a yeast two-hybrid screen – led to the identification of a new mechanism involving Fignl1 as a key regulator of retrograde vesicular trafficking in navigating axons. Finally, using the netrin-1/DCC candidate pathway, I have initiated the characterisation of upstream signalling cascades converging onto Fignl1 to regulate axon navigation. Taken together, my PhD results highlight the multifaceted role of Fignl1 in axon pathfinding, via its multiple functions in the regulation of cytoskeletal dynamics and membrane trafficking
APA, Harvard, Vancouver, ISO, and other styles
15

Connor, Robin M. "Mechanisms of axon growth and guidance in the vertebrate nervous system /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17183.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yokota, Satoshi. "Altered Transport Velocity of Axonal Mitochondria in Retinal Ganglion Cells After Laser-Induced Axonal Injury In Vitro." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wu, Linyan, and wu0071@flinders edu au. "BRAIN DERIVED NEUROTROPHIC FACTOR TRANSPORT AND PHYSIOLOGICAL SIGNIFICANCE." Flinders University. Medicine, 2007. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20071204.113001.

Full text
Abstract:
Neurotrophins are important signaling molecules in neuronal survival and differentiation. The precursor forms of neurotrophins (proneurotrophins) are the dominant form of gene products in animals, which are cleaved to generate prodomain and mature neurotrophins, and are sorted to constitutive or regulated secretory pathway and released. Brain-derived neurotrophic factor (BDNF) plays a pivotal role in the brain development and in the pathogenesis of neurological diseases. In Huntington’s disease, the defective transport of BDNF in cortical and striatal neurons and the highly expressed polyQ mutant huntingtin (Htt) result in the degeneration of striatal neurons. The underlying mechanism of BDNF transport and release is remains to be investigated. Current studies were conducted to identify the mechanisms of how BDNF is transported in axons post Golgi trafficking. By using affinity purification and 2D-DIGE assay, we show Huntingtin-associated protein 1 (HAP1) interacts with the prodomain and mature BDNF. The GST pull-down assays have addressed that HAP1 directly binds to the prodomain but not to mature BDNF and this binding is decreased by PolyQ Htt. HAP1 immunoprecipitation shows that less proBDNF is associated with HAP1 in the brain homogenate of Huntington’s disease compared to the control. Co-transfections of HAP1 and BDNF plasmids in PC12 cells show HAP1 is colocalized with proBDNF and the prodomain, but not mature BDNF. ProBDNF was accumulated in the proximal and distal segments of crushed sciatic nerve in wild type mice but not in HAP1-/- mice. The activity-dependent release of the prodomain of BDNF is abolished in HAP1-/- mice. We conclude that HAP1 is the cargo-carrying molecule for proBDNF-containing vesicles and plays an essential role in the transport and release of BDNF in neuronal cells. 20-30% of people have a valine to methionine mutation at codon 66 (Val66Met) in the prodomain BDNF, which results in the retardation of transport and release of BDNF, but the mechanism is not known. Here, GST-pull down assays demonstrate that HAP1 binds Val66Met prodomain with less efficiency than the wild type and PolyQ Htt further reduced the binding, but the PC12 cells colocalization rate is almost the same between wt prodomain/HAP1 and Val66Met prodomain/HAP1, suggesting that the mutation in the prodomain may reduce the release by impairing the cargo-carrying efficiency of HAP1, but the mutation does not disrupt the sorting process. Recent studies have shown that proneurotrophins bind p75NTR and sortilin with high affinity, and trigger apoptosis of neurons in vitro. Here, we show that proBDNF plays a role in the death of axotomized sensory neurons. ProBDNF, p75NTR and sortilin are highly expressed in DRG neurons. The recombinant proBDNF induces the dose-dependent death of PC12 cells and the death activity is completely abolished in the presence of antibodies against the prodomain of BDNF. The exogenous proBDNF enhances the death of axotomized sensory neurons and the antibodies to the prodomain or exogenous sortilin-extracellular domain-Fc fusion molecule reduces the death of axotomized sensory neurons. We conclude that proBDNF induces the death of sensory neurons in neonatal rats and the suppression of endogenous proBDNF rescued the death of axotomized sensory neurons.
APA, Harvard, Vancouver, ISO, and other styles
18

Chakrabarty, Nilaj. "Computational Study of Axonal Transport Mechanisms of Actin and Neurofilaments." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1584441310326918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, Liang. "Single molecule and single particle studies of neuronal axonal transport /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nguyen, Tung Le. "Computational Modeling of Slow Neurofilament Transport along Axons." Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1547036394834075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Talmat-Amar, Yasmina. "Étude de la toxicité neuronale induite par la protéine Tau dans la maladie d’Alzheimer, sur un modèle Invertébré : Drosophila melanogaster." Thesis, Montpellier 1, 2012. http://www.theses.fr/2012MON1T005/document.

Full text
Abstract:
La protéine Tau est une protéine associée aux microtubules, localisée principalement dans les axones. Elle joue un rôle important dans la polymérisation et la stabilisation des microtubules, in vitro. Sa fixation aux microtubules est régulée par de nombreuses kinases et phosphatases. En effet, lorsque Tau est phosphorylée, elle se détache des MTs. Inversement, elle se fixe aux MTs lorsqu’elle est déphosphorylée. Le dysfonctionnement de la protéine Tau est à l’origine de différentes maladies neurodégénératives appelées Tauopathies comme la maladie d’Alzheimer. Dans ce contexte pathologique, Tau est anormalement phosphorylée et s’accumule sous forme de structures neurofibrillaires appelées PFH (paires de filaments hélicoïdaux). Ces structures sont retrouvées dans les neurones en dégénérescence et constituent une des caractéristiques majeures de lésion histopathologique de la MA. Dans le cadre de cette maladie, deux principaux mécanismes de toxicité neuronale induite par la protéine Tau ont été suggérés. La première hypothèse considère que l’hyperphosphorylation de Tau provoque son détachement des microtubules induisant ainsi une déstabilisation du cytosquelette microtubulaire, une altération du transport axonal et une mort neuronale. Selon la seconde hypothèse, la fixation excessive de Tau aux microtubules altèrerait le transport axonal des vésicules et autres organites nécessaires au bon fonctionnement de la synapse. Dans ce cas, l’hyperphosphorylation de Tau et la formation des structures PFH auraient en premier lieu un effet protecteur pour la cellule. Lors de ce travail de thèse, nous avons confronté ces deux théories en utilisant le modèle invertébré : Drosophila melanogaster. Tout d’abord, nous avons étudié l’effet de la perte de fonction de la protéine Tau de drosophile (dTau) sur l’architecture du cytosquelette microtubulaire et sur le transport axonal des neuropeptides. Ce travail nous a permis d’une part, de tester l’hypothèse de l’effet du détachement de la protéine Tau des MTs sur le transport axonal, et d’autre part d’étudier la fonction endogène de la protéine dTau. En effet, le rôle in vivo de la protéine Tau endogène sur la morphologie et la physiologie axonale reste inconnu à ce jour, et ceci probablement dû à une redondance fonctionnelle avec les autres protéines associées aux microtubules (MAPs). Dans cette présente étude nous utilisons le modèle Drosophila melanogaster qui présente l’avantage de n’avoir qu’un seul homologue de la famille Tau/MAP2/MAP4 des mammifères. Nos données montrent pour la première fois, in vivo, que la protéine Tau contrôle la densité des microtubules axonaux, et que la perte de la protéine Tau altère le transport axonal microtubule-dépendant. Cependant, les défauts observés ne semblent pas être suffisant pour induire une neurodégénérescence, mais pourraient néanmoins constituer un défaut apparaissant précocement chez les individus atteints. Dans la seconde partie de cette thèse, nous avons étudié l’hypothèse centrée sur l’effet de la fixation excessive de la protéine Tau humaine aux microtubules. Pour cela, nous avons utilisé des drosophiles transgéniques exprimant différentes isoformes mutées de Tau humain (hTau) mimant différents états de phosphorylation de la protéine Tau et s’attachant différemment aux microtubules. Nos résultats montrent clairement que la fixation de Tau en excès sur les microtubules induit des défauts majeurs du transport axonal et de la libération des neuropeptides. Nous démontrons ainsi que l’un des mécanismes possible de la maladie d’Alzheimer est la fixation précoce excessive de Tau sur les microtubules. Par ailleurs, nos résultats mettent en évidence une limite sérieuse des thérapies visant à inhiber la phophorylation de Tau dans la MA
Tau is a microtubule associated protein that belongs to the MAP structural family. it polymerizes and stabilizes microtubules, in vitro. Tau is found in high amount in axons. The microtubule binding capacity of Tau is regulated by kinases and phophatases. Indeed, when Tau is phosphorylated it desengages from microtubules and when it is dephosphorylated it binds to microtubules and stabilizes them. Tau is involved in several neurodegenerative disorders called tauopathies like the elderly neuropathy, Alzheimer disease (AD). In this neurodegenerative disorder, Tau is abnormally phosphorylated and aggregates to forme neurofibrillary tangles called paired helicoidal filament (PHF), witch is one of the hallmark of AD. Hence, two major hypothesis explaining neurodegeneration in this condition have been suggested. The first hypothesis considers that because of Tau hyperphosphorylation, it detaches from microtubules and starts to form aggregates. Tau detachment from microtubules leads to their destabilization and subsequent defects in axonal transport. These defects in axonal transport lead to synaptic dysfonction and neuronal degeneration. The second hypothesis suggests that an excess of Tau binds onto microtubules, induces axonal transport defects and subsequently neuronal loss. The hyperphosphorylation of Tau and PHF formation would represent a protective response of the cell to prevent axonal defects and neurodegeneresence. The aim of our work is to evaluate these two mechanisms using Drosophila melanogaster model. First, we studied the effect of drosophila Tau (dTau) loss of function on microtubule organisation and axonal transport of neuropeptide in vivo. This work allows us to study the first hypothesis of detachment of Tau from microtubules an its consequences, as well as understanding the endogenous function of dTau. Infact, we took the advantage of drosophila lower genetic redundancy in witch dTau is the only homologue of the mamalian Tau/MAP2/MAP family. Our results demontrated that dTau control axonal microtubule number and that the loss of Tau function affects vesicular axonal transport. However, these defects do not seem to be toxic for the neuron but represent an early event that may progressively become toxic. In the second part of this work we evaluated the second hypothesis. It consists of studying the consequences of an excess of hypophosphorylated Tau bound to microtubules on axonal transport. Our results demontrate for the first time a stronger toxicity of hypophosphorylated Tau for neuronal function compared to pseudophosphoryated Tau. These data demonstrate an important mechanism that could probably be implicated in AD. In addition, our work point out a potentiel limit of a current therapeutic strategy aimed at inhibiting Tau phosphorylation
APA, Harvard, Vancouver, ISO, and other styles
22

Rey, Ulises [Verfasser]. "Presynaptic biogenesis by axonal transport of lysosome-related vesicles / Ulises Rey." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/117081431X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gibbs, K. L. "Modifying axonal transport as a therapeutic strategy for Amyotrophic Lateral Sclerosis." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1472409/.

Full text
Abstract:
Deficits in retrograde axonal transport have been described at a presymptomatic stage in the SOD1G93A mouse model of ALS. The early appearance of transport defects suggests that they may play an important role in disease pathogenesis. However, the causative role of axonal transport deficits in ALS motor neuron degeneration has not yet been demonstrated directly. The goal of my PhD project was to identify pharmacological enhancers of retrograde axonal transport that could be used to prove conclusively whether axonal transport defects play a significant role in ALS pathogenesis. To this aim, I developed and performed a microscopy-based screen for the identification of pharmacological enhancers of retrograde axonal transport in motor neurons. I was able to demonstrate that the accumulation of α-p75NTR and HCT in the cell body of mouse ES-derived motor neurons acts as a sensitive read-out of retrograde axonal transport efficiency and using this assay, I identified and validated two compounds (A1 and E4) that were able to accelerate retrograde axonal transport in motor neurons. Compound A1 was revealed to be an inhibitor of p38 MAPK. Inhibition of p38 MAPK was found to correct deficits in retrograde axonal transport in SOD1G93A motor neurons both in vitro and in vivo. Using genetic and pharmacological approaches, I was able to demonstrate that p38 MAPKα is responsible for the transport deficits observed. Compound E4 was revealed to be an inhibitor of the IGF1 receptor (IGF1R). It was found to accelerate retrograde axonal transport in both wild type and SOD1G93A motor neurons, but had no effect on anterograde transport speeds. In conclusion, this thesis work has identified inhibitors of p38 MAPK and IGF1R as novel modifiers of retrograde axonal transport and demonstrated that inhibitors of p38 MAPKα can be used to determine the role of axonal transport defects in ALS pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
24

Sinadinos, Christopher. "Analysis of axonal transport and molecular chaperones during neurodegeneration in Drosophila." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/183403/.

Full text
Abstract:
Neuronal dysfunction and cell death occurs during neurodegeneration. Animal models that express human disease genes and show neurodegenerative-like pathologies are widely used to study particular molecular systems in early neurodegenerative changes. Axonal transport (AT) is perturbed in several prevalent neurodegenerative diseases. The development of a Huntington’s Disease (HD) model in Drosophila melanogaster larvae is described, in which disease gene expression is directed to motor neurons (Chapter 2). This results in stalling and accumulation of AT vesicles in live animals and a locomotion defect after additional environmental stress. The cause of AT disruption and neuronal dysfunction in most cases of neurodegeneration is unknown, but it is associated with protein misfolding and aggregation that overrides cellular defences such as the heat shock protein (HSP) molecular chaperone system. In addition to HD, this applies to human tauopathies such as Alzheimer’s Disease (AD), which involve axonal misfolding and aggregation of tau. Increased throughput assays to test larval locomotion are developed (Chapter 3) in a Drosophila larval model of tauopathy, in which locomotion defects are detectable under normal environmental conditions. Candidate chemical modulation of this locomotion phenotype is described that targets HSP induction (Chapter 4). The chemicals used result in no detectable change in hsp70 level, lower total tau levels, and worsening of the locomotion defect phenotype. Tissue-specific elevation of hsp70 after hypoxic stress (Chapter 5) protects from acute behavioural disability and reduced survival in aged adult Drosophila expressing human tau in the nervous system. These studies indicate some therapeutic potential for HSP elevation in tau mediated pathology. Nevertheless, further work is required if chemical chaperone induction, and the roles of HSPs in axonal transport and homeostasis during chronic neurodegenerative and acute environmental stress, are to be further explored in these models
APA, Harvard, Vancouver, ISO, and other styles
25

Boulisfane, Nawal. "Etude des bases moléculaires de l'atrophie musculaire spinale." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20113/document.

Full text
Abstract:
L'Atrophie Musculaire spinale (SMA) est une maladie neurodégénérative causée par des mutations du gène SMN1 et caractérisée par la dégénérescence sélective des motoneurones alpha de la moelle épinière. les mécanismes moléculaires de la SMA ne sont aps clairs. cependant, deux hypothèses ont été retenues:D'une part, que la déficience en SMN entraine une perturbation de la biogenèse des snRNPs spliceosomales individuelles et par conséquent des défauts d'épissage. pendant ma thèse, nous avons montré que la déficience en SMN provoquait une diminution des particules tri-snRNPs majeures amis surtout mineures et que cela avait des conséquences sur l'épissage d'un sous-groupe de pré-ARNm contenant des introns mineurs.D'autre part, que la déficience en SMN entraine des altérations de transport d'ARN dans les axones, essentiels pour la survie des motoneurones. A part l'ARNm de la beta-actine et l'ARNm de cpg15 récemment identifié, ceux qui pourraient être transportés par SMN n'ont pas été décrits. nous avons donc identifié les ARN interagissant avec les isoformes a-SMN et SMN-fl dans des cellules neuronales, et montré que certains de ces ARN cibles colocalisent avec SMN dans les axones, suggérant qu'elle est impliquée dans leur transport
Spinal Muscular Atrophy is a neurodegenerative disease caused by mutations in SMN1 gene. SMA is characterized by the loss of alpha-motoneurons of the spinal cord. However, the precise molecular mechanisms underlying the disease are still unkown. two hypotheses have been retained to explain SMA pathigenesis:In one hand, the fact that SMN deficiency leads to a perturbation of individual snRNPs biogenesis and consequently splicing defects. During my PhD, we have shown that SMN deficiency alters the levels of major, but mostly, minor tri-snRNPs. And that leads to splicing defects of a subset of pre-mRNA containing minor introns.In the other hand, that SMN deficiency causes alteration of axonal transport of RNAs crucial to motoneurons survival. Except beta-actin mRNA and the recently identified cpg mRNA, the RNA targets of SMN have not been described. We succeed to identify RNA targets of both a-SMN and SMN-fl isoformes in a neuronal cell line and colocalisation data of some of these targets suggested that SMN could be implicated in the transport of these RNAs
APA, Harvard, Vancouver, ISO, and other styles
26

Garcez, Palha Inês. "mRNA Transport and Translation in the Developing Axons of the Zebrafish Embryo." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066260.

Full text
Abstract:
Au cours des dernières années, la synthèse des protéines axonales a été établie comme un mécanisme important pour réguler correctement la réactivité spatiale et temporelle des neurones aux variations de leur microenvironnement, en particulier lors du développement axonal et de la régénération. Pour cela, les transcrits d'ARNm doivent être localisés dans les axones afin d'être traduits. De fait, plusieurs populations d'ARNm ont été identifiées le long des axones de divers types de neurones vertébrés. Le transport approprié des ARNm du corps cellulaire vers le compartiment axonal nécessite des séquences ou des structures spécifiques, généralement trouvées dans le 3'UTR du transcrit. Seules quelques études ont confirmé que le transport et la traduction des ARNm ont lieu dans les axones des vertébrés vivants et que ces mécanismes peuvent être impliqués dans des fonctions neuronales distinctes, comme le maintien de l'homéostasie axonale, le guidage, la croissance et la ramification axonales. Notre laboratoire a précédemment démontré in vivo la présence d'ARNm spécifiques, comme le transcrit de nefma, dans les axones en croissance chez l'embryon de poisson zèbre. En utilisant un système rapporteur développé au sein du laboratoire, il a été démontré que le transport axonal (ou la rétention au corps cellulaire) de plusieurs transcrits dépendait de leur 3'UTR. Se basant sur ces résultats importants, dans une première partie de ce travail, nous avons cherché à étudier la fonction du transcrit nefma transporté dans les axones en développement de l'embryon de poisson zèbre. En effet, Nefma est une protéine cytosquelette propre aux neurones, dont l'expression est déclenchée lors de la différenciation neuronale. Nous avons montré que l’immunoréactivité 3A10 est réduite à mesure que la concentration de MO augmente et que ce marquage est utile pour tester l'efficacité du MO, suggérant que l'anticorps 3A10 pourrait reconnaître nefma. Nous avons également démontré que les neurones de Mauthner se différencient au bon moment et au bon endroit chez les morphants. De plus, nous avons constaté que le « zigzagging » des axones morphants augmente avec la concentration de MO et que la protéine mbp s'accumule inégalement autour des faisceaux axonaux dans les morphants nefma. Cependant, les défauts de perte de fonction de nefma ne sont pas totalement pénétrants et difficiles à quantifier. En outre, dans une deuxième partie de la présente étude, nous avons mis au point une technique de détection de la traduction axonale d'ARNm spécifiques dans le même modèle in vivo. Pour cela, nous avons développé un système inspiré de la technique «TimeSTAMP» développée par l'équipe de Roger Tsien, qui nous permet d'identifier les sites de traduction en étiquetant de manière ingénieuse les protéines nouvellement synthétisées
In recent years, axonal protein synthesis has been established as an important mechanism to fine regulate spatial and temporal neuronal responsiveness to the varying microenvironment, especially during axonal development and regeneration. For that, mRNA transcripts have to be localized to the axons in order to be translated. In fact, several mRNA populations have been identified along the axons of diverse vertebrate neuronal types. The proper transport from the cell body to the axonal compartment requires specific sequences or mRNA structures, usually found in the 3’UTR of the transcript. Only a few studies have confirmed that mRNA transport and translation take place in axons of living vertebrates, and that these mechanisms can be involved in distinct neuronal functions, as the maintenance of axonal homeostasis, pathfinding, and axonal growth and branching. Our lab previously demonstrated in vivo the presence of specific mRNAs, as nefma transcript, in growing axons of the zebrafish embryo. Thanking advantage of a reporter system developed in the lab, it was shown that axonal transport (or retention at the cell body) of several transcripts depended on their 3’UTR.Building upon these important results, in a first part of this work, we sought to investigate the function of the axonally transported nefma in the developing axons of the zebrafish embryo. Indeed, Nefma is a neuron-specific cytoskeletal protein, which expression is triggered during neuronal differentiation. We showed that the 3A10 signal is reduced as the MO concentration increases and this staining is a useful readout for the efficiency of the MO, suggesting that the 3A10 antibody might recognize nefma. We also demonstrated that the Mauthner neurons differentiate at the right time and place in the morphants. Moreover, we saw that the morphant axons zigzagging increases with increasing MO concentrations and that mbp accumulates in patches around axonal bundles in nefma morphants. However, nefma loss-of-function defects are not totally penetrant and difficult to quantify. Furthermore, in a second part of the present study, we aimed at optimizing a technique facilitating the visualization of axonal translation of specific mRNAs in the same in vivo model. For this, we developed a translation reporter system, inspired on the ‘TimeSTAMP’ technique developed by Roger Tsien’s team, which allows the identification of translation sites along the axons by labeling newly synthesized protein in an ingenious fashion
APA, Harvard, Vancouver, ISO, and other styles
27

Orson, N. V. "A study of in vitro systems for the investigation of axonal transport." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Garcez, Palha Inês. "mRNA Transport and Translation in the Developing Axons of the Zebrafish Embryo." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066260.

Full text
Abstract:
Au cours des dernières années, la synthèse des protéines axonales a été établie comme un mécanisme important pour réguler correctement la réactivité spatiale et temporelle des neurones aux variations de leur microenvironnement, en particulier lors du développement axonal et de la régénération. Pour cela, les transcrits d'ARNm doivent être localisés dans les axones afin d'être traduits. De fait, plusieurs populations d'ARNm ont été identifiées le long des axones de divers types de neurones vertébrés. Le transport approprié des ARNm du corps cellulaire vers le compartiment axonal nécessite des séquences ou des structures spécifiques, généralement trouvées dans le 3'UTR du transcrit. Seules quelques études ont confirmé que le transport et la traduction des ARNm ont lieu dans les axones des vertébrés vivants et que ces mécanismes peuvent être impliqués dans des fonctions neuronales distinctes, comme le maintien de l'homéostasie axonale, le guidage, la croissance et la ramification axonales. Notre laboratoire a précédemment démontré in vivo la présence d'ARNm spécifiques, comme le transcrit de nefma, dans les axones en croissance chez l'embryon de poisson zèbre. En utilisant un système rapporteur développé au sein du laboratoire, il a été démontré que le transport axonal (ou la rétention au corps cellulaire) de plusieurs transcrits dépendait de leur 3'UTR. Se basant sur ces résultats importants, dans une première partie de ce travail, nous avons cherché à étudier la fonction du transcrit nefma transporté dans les axones en développement de l'embryon de poisson zèbre. En effet, Nefma est une protéine cytosquelette propre aux neurones, dont l'expression est déclenchée lors de la différenciation neuronale. Nous avons montré que l’immunoréactivité 3A10 est réduite à mesure que la concentration de MO augmente et que ce marquage est utile pour tester l'efficacité du MO, suggérant que l'anticorps 3A10 pourrait reconnaître nefma. Nous avons également démontré que les neurones de Mauthner se différencient au bon moment et au bon endroit chez les morphants. De plus, nous avons constaté que le « zigzagging » des axones morphants augmente avec la concentration de MO et que la protéine mbp s'accumule inégalement autour des faisceaux axonaux dans les morphants nefma. Cependant, les défauts de perte de fonction de nefma ne sont pas totalement pénétrants et difficiles à quantifier. En outre, dans une deuxième partie de la présente étude, nous avons mis au point une technique de détection de la traduction axonale d'ARNm spécifiques dans le même modèle in vivo. Pour cela, nous avons développé un système inspiré de la technique «TimeSTAMP» développée par l'équipe de Roger Tsien, qui nous permet d'identifier les sites de traduction en étiquetant de manière ingénieuse les protéines nouvellement synthétisées
In recent years, axonal protein synthesis has been established as an important mechanism to fine regulate spatial and temporal neuronal responsiveness to the varying microenvironment, especially during axonal development and regeneration. For that, mRNA transcripts have to be localized to the axons in order to be translated. In fact, several mRNA populations have been identified along the axons of diverse vertebrate neuronal types. The proper transport from the cell body to the axonal compartment requires specific sequences or mRNA structures, usually found in the 3’UTR of the transcript. Only a few studies have confirmed that mRNA transport and translation take place in axons of living vertebrates, and that these mechanisms can be involved in distinct neuronal functions, as the maintenance of axonal homeostasis, pathfinding, and axonal growth and branching. Our lab previously demonstrated in vivo the presence of specific mRNAs, as nefma transcript, in growing axons of the zebrafish embryo. Thanking advantage of a reporter system developed in the lab, it was shown that axonal transport (or retention at the cell body) of several transcripts depended on their 3’UTR.Building upon these important results, in a first part of this work, we sought to investigate the function of the axonally transported nefma in the developing axons of the zebrafish embryo. Indeed, Nefma is a neuron-specific cytoskeletal protein, which expression is triggered during neuronal differentiation. We showed that the 3A10 signal is reduced as the MO concentration increases and this staining is a useful readout for the efficiency of the MO, suggesting that the 3A10 antibody might recognize nefma. We also demonstrated that the Mauthner neurons differentiate at the right time and place in the morphants. Moreover, we saw that the morphant axons zigzagging increases with increasing MO concentrations and that mbp accumulates in patches around axonal bundles in nefma morphants. However, nefma loss-of-function defects are not totally penetrant and difficult to quantify. Furthermore, in a second part of the present study, we aimed at optimizing a technique facilitating the visualization of axonal translation of specific mRNAs in the same in vivo model. For this, we developed a translation reporter system, inspired on the ‘TimeSTAMP’ technique developed by Roger Tsien’s team, which allows the identification of translation sites along the axons by labeling newly synthesized protein in an ingenious fashion
APA, Harvard, Vancouver, ISO, and other styles
29

Ceccaldi, Pierre-Emmanuel. "Inhibition du transport axonal du virus rabique dans le systeme nerveux central." Paris 6, 1989. http://www.theses.fr/1989PA066675.

Full text
Abstract:
Le virus de la rage est un agent infectieux neurotrope qui est transporte de son point d'inoculation peripherique vers le systeme nerveux central par le transport axonal. Des etudes anterieures ont montre que la colchicine, par destabilisation des microtubules, est capable d'inhiber ce transport dans le systeme nerveux peripherique. Le present travail traite de l'inhibition du transport axonal du virus rabique dans le cerveau apres inoculation stereotaxique de virus dans le striatum de rat. Il a ainsi ete possible de produire une inhibition reservible de la dissemination virale par la colchicine. L'action d'autres drogues actives sur le cytosquelette a egalement ete etudiee, ainsi que les moyens de prolonger l'inhibition. Parallelement, des etudes ont ete entreprises in vitro sur un systeme de culture compartimentee de neurones sensitifs de rat, confirmant les resultats d'inhibition obtenus in vivo
APA, Harvard, Vancouver, ISO, and other styles
30

Meng, Min. "A balancing act for axonal outgrowth and synaptic differentiation at the neuromuscular junction /." View abstract or full-text, 2010. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202010%20MENG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mohamed, A. A. "Studies on the innervation of guinea pig adrenal medulla and para-aeortic body." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kesse, W. K. "The innervation of the adult and neonatal rat adrenal medulla- an anterograde and retrograde tracer study." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Morel, Marina. "Régulation du transport des mitochondries dans les neurones et expression des moteurs moléculaires dans le cortex humain: implication pour l'étude des anomalies du transport axoplasmique dans la maladie d'Alzheimer." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209885.

Full text
Abstract:
La maladie d’Alzheimer est la maladie neurodégénérative la plus fréquente dans le monde industrialisé. Sur le plan neuropathologique, cette maladie est caractérisée par deux types de lésions :les plaques séniles et les dégénérescences neurofibrillaires.

Des observations morphologiques précédentes ont permis de mettre en évidence des anomalies du transport axoplasmique dans les neurones chez les patients atteints de la maladie d’Alzheimer. Les mécanismes menant à cette perturbation du transport axoplasmique ne sont pas encore bien établis. La glycogen synthase kinase-3β (GSK-3β) et la cyclin-dependent kinase 5 (Cdk5) associée à son activateur pathologique p25, sont deux kinases clés dont la dérégulation intervient dans la pathogenèse de la maladie d’Alzheimer (MA). Nous avons émis l'hypothèse que ces kinases pourraient jouer un rôle dans la perturbation du transport axoplasmique dans cette maladie.

Dans la première partie de notre travail, nous nous sommes intéressés à l’effet de la GSK-3β et de Cdk5/p25 sur la croissance des neurites (un processus dépendant du transport axoplasmique) dans un modèle cellulaire, les PC12 différenciées prétraitées au NGF.

La surexpression de GSK-3β et de p25 provoque une importante réduction de la croissance neuritique dans ces cellules. Par western blot, nous avons montré que cette réduction est associée à des modifications post-traductionnelles des protéines impliquées dans la régulation du cytosquelette. Ces modifications sont la phosphorylation de la protéine tau et des neurofilaments et l’acétylation de la tubuline α.

Cette étude indique donc que la GSK-3β et la protéine p25 contrôlent négativement la croissance neuritique.

Dans la deuxième partie de notre travail, afin d’étudier la relation entre ces kinases et le transport axoplasmique, nous avons analysé dans des neurones en culture l’effet d’une augmentation d’activité de la GSK-3β et de Cdk5/p25 sur le transport des mitochondries.

Pour étudier le déplacement des mitochondries, les neurones en cultures ont été doublement transfectées avec deux plasmides :un marqueur mitochondrial combiné avec la GSK-3β ou p25. Après transfection, le mouvement des mitochondries a été enregistré grâce à la technique du time-lapse.

L’étude de la fréquence de trois comportements (mouvement antérograde, mouvement rétrograde et état stationnaire) nous a indiqué que les mitochondries sont normalement en position immobile pendant 70 % de leur temps. La surexpression de GSK-3β ou de p25 augmente la fréquence de cet état stationnaire et diminue de manière plus importante les mouvements antérogrades que rétrogrades sans affecter la vitesse des mitochondries. L’observation au microscope électronique a permis de démontrer la persistance du réseau de microtubules dans les cellules surexprimant GSK-3β ou p25.

Le transport des mitochondries est un processus actif faisant intervenir les moteurs moléculaires (kinésine et dynéine) dont le rôle est le transport d’organelles qui repose sur un réseau intact de microtubules.

Cette étude suggère donc que la GSK-3β et p25 contrôlent négativement le transport des mitochondries en agissant au niveau des moteurs moléculaires (kinésine et dynéine) plutôt qu’en détruisant le réseau de microtubules.

Dans la troisième partie de notre travail, nous nous sommes intéressés à l’expression et à la localisation dans le cortex frontal humain et dans le cortex cérébelleux de deux protéines appartenant aux moteurs moléculaires responsables des transports axoplasmiques antérograde et rétrograde :la chaîne légère de la kinésine (KLC1) et la chaîne intermédiaire de la dynéine (DIC).

Nous avons observé une diminution du niveau d’expression de la KLC1 et de la DIC dans le cortex frontal (une zone atteinte dans la MA) mais pas dans le cortex cérébelleux chez les patients atteints de la maladie d’Alzheimer par rapport à des sujets contrôles. Une diminution du niveau d’expression de la tubuline-β3 et de la synaptophysine -deux marqueurs neuronaux- a aussi été observée dans le cortex frontal mais pas dans le cortex cérébelleux. Nous avons aussi démontré une hausse de l’état de phosphorylation de la KLC1 dans un modèle cellulaire surexprimant la GSK-3β. Dans le cortex frontal dans la MA, nous avons observé une augmentation de la forme active de la GSK-3β, et une hausse de la phosphorylation de la KLC1. Cette phosphorylation accrue de la KLC1 diminue son activité de transport des organelles.

Ces anomalies de l’expression et de la phosphorylation des moteurs moléculaires pourraient jouer un rôle dans les perturbations des transports axoplasmiques dans la MA.


Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
34

Charlier, Caroline. "Analyse du transport intracellulaire du bornavirus." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2208/.

Full text
Abstract:
Le Bornavirus (BDV) est un virus neurotrope qui persiste dans le système nerveux central. Son cycle viral est mal caractérisé, en particulier en ce qui concerne les modalités du transport intracellulaire des complexes de réplication viraux (RNP). Afin de visualiser le transport des RNP, nous avons construit un virus recombinant pouvant être marqué de façon fluorescente. L'observation de ce virus par différentes techniques d'imagerie en temps réel nous a permis d'étudier la dynamique des RNP durant les phases précoces de l'infection, ainsi que dans des cellules infectées de façon persistante. Nous avons ensuite étudié les modalités du transport du BDV dans les neurones et nous avons montré que les RNP étaient transportées par les endosomes axonaux. Ces résultats ouvrent de nouvelles perspectives pour une meilleure caractérisation de la biologie du BDV
Borna disease virus (BDV) is a neurotropic virus that establishes long-term persistence in the central nervous system. The cellular cycle of BDV remains poorly understood, in particular concerning the modalities of intracellular transport of viral ribonucleoparticles (RNP). During my Ph. D. , I developed several approaches aiming at a better understanding of the modalities of BDV transport. To track RNP transport in live, infected cells, we constructed a recombinant virus that can be fluorescently labeled. We analyzed viral dynamics in persistently and newly infected cells using live imaging. We also studied the molecular mechanisms of BDV transport in primary cultures of neurons and we demonstrated that RNP are transported by axonal endosomes
APA, Harvard, Vancouver, ISO, and other styles
35

MacFarlane, Brett. "Axoplasmic transport and transepidermal iontophoresis : factors in neurogenic pain management /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe20104.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gibbons-Frendo, Sam. "The amyloid precursor protein and the axonal transport of mitochondria in Alzheimer's disease." Thesis, King's College London (University of London), 2012. https://kclpure.kcl.ac.uk/portal/en/theses/the-amyloid-precursor-protein-and-the-axonal-transport-of-mitochondria-in-alzheimers-disease(ddb5cea4-2469-4104-ad0c-cd545581a45c).html.

Full text
Abstract:
Defects in axonal transport are an early pathological event in Alzheimer’s disease, suggesting that damage to the transport process could contribute to the disease. A large number of cargoes are transported through axons and mitochondria represent a particularly important cargo. This is because mitochondria need to be distributed to axonal regions where their functions in ATP synthesis and the regulation of calcium homeostasis are required. This is particularly important in synaptic regions where neurons have high energy and calcium-buffering requirements. As such, mitochondria are transported bi-directionally through axons and this movement is responsive to physiological stimuli. has been shown to disrupt axonal transport of mitochondria but these studies involved application of synthetic Ap to neuronal culture media. In this thesis, the effect of the expression of a familial Alzheimer’s disease mutant amyloid precursor protein (APP) that increases Ap production (the APP Swedish mutant) on axonal transport of mitochondria was studied. This approach represents a more physiological route for studying the effect of APP and Ap on axonal transport. Mitochondrial axonal transport was monitored in cultured neurons via time-lapse microscopy. Expression of APPswe led to a selective disruption of anterograde but not retrograde axonal transport of mitochondria. Mitochondria are transported anterogradely on the microtubule based molecular motor kinesin-1. Mitochondria attach to kinesin-1 via the outer mitochondrial membrane protein Mirol and the adaptor protein TRAK1. Defective mitochondrial transport induced by APPswe did not affect the binding of kinesin-1 to mitochondria. Rather, APPswe caused mitochondria with associated Mirol, TRAKl and kinesin-1 to detach from the microtubule rails. In order to gain insight into the molecular mechanisms that underlie the APPswe effect on transport and to test potential therapeutic approaches, a number of different Alzheimer’s disease-associated features were experimentally manipulated. In particular, inhibition of APP processing and A|3 production with the y-secretase inhibitor DAPT, inhibition of glycogen synthase kinase-3 and increased tubulin acetylation all rescued the APPswe-induced transport defect. These results provide novel insight into the mechanisms underlying defective axonal transport in Alzheimer’s disease and provide new information on how some proposed Alzheimer’s disease therapeutics might act at a molecular level.
APA, Harvard, Vancouver, ISO, and other styles
37

Bohnert, Stephanie Anne. "Characterisation of the axonal transport dynamics of tetanus toxin in health and disease." Thesis, University College London (University of London), 2006. http://discovery.ucl.ac.uk/1445322/.

Full text
Abstract:
Tetanus toxin is internalised at the neuromuscular junction into vesicular carriers undergoing fast retrograde transport to the spinal cord. We determined the pH regulation of this compartment in living motor neurons using a chimera of the tetanus toxin binding fragment (TeNT He) and a pH-sensitive variant of the green fluorescent protein (ratiometric pHluorin). We have demonstrated that moving retrograde carriers display a narrow range of neutral pHs, which is kept constant during transport. Stationary TeNT Hc-positive organelles instead exhibit a wide spectrum of pHs, ranging from acidic to neutral. This distinct pH regulation is due to a differential targeting of the vacuolar (H*) ATPase (vATPase), which is not present on moving TeNT He compartments. Accordingly, inhibition of the vATPase does not affect axonal retrograde transport of TeNT He. However, a functional vATPase is required for early steps of TeNT He trafficking following endocytosis, and it is localised to axonal vesicles containing TeNT He- Altogether, these findings indicate that the vATPase plays a specific role in early sorting events directing TeNT He to axonal carriers, but not in their subsequent progression along the retrograde transport route. This novel regulatory role for vATPase in a sorting event linked to retrograde transport adds to the numerous functions of this protein complex. Hydrogen peroxide inhibits the vATPase localised to synaptic vesicles, which leads to a disturbed trafficking of neurotransmitters. Increased levels of toxic oxygen radicals have been detected in mice overexpressing human mutant Cu/Zn superoxide dismutase (SOD 1093A) found in patients with familial amyotrophic lateral sclerosis (ALS). These mice develop motor neuron degeneration and muscle paralysis as observed in ALS patients. Evidence suggests that defects in axonal transport play an important role in neurodegeneration. We show that retrograde axonal transport defects are already present in motoneurons of S0D1G93A mice during embryonic development. Surprisingly, crossing S0D1G93A mice with mice, which have a single point mutation in the dynein motor complex (Loa) delays disease progression and significantly increases life span of Loa/SODlG93A mice. Moreover, we observed a complete recovery in axonal transport of these mice, which may be responsible for amelioration of the symptoms. We propose that impaired axonal transport is a prime cause of neuronal death in neurodegenerative disorders such as ALS.
APA, Harvard, Vancouver, ISO, and other styles
38

Johnson, Christopher M. "Investigating the Slow Axonal Transport of Neurofilaments: A Precursor for Optimal Neuronal Signaling." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1452018547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Russo, Gary John. "Miro's GTPase Domains Execute Anterograde and Retrograde Axonal Mitochondrial Transport and Control Morphology." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228167.

Full text
Abstract:
Microtubule-based mitochondrial transport into dendrites and axons is vital for sustaining neuronal function. Transport along microtubules proceeds in a series of plus- and minus-end directed movements facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective long distance transport remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of either antero- or retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We concluded that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport. To determine how Miro achieves this control mechanistically, we introduced point mutations that render each GTPase either constitutively active or inactive. Expression of either first GTPase mutant impaired antero- (inactive) or retrograde motor movements (active) in a direction dependent manner. The active state of the second GTPase domain up-regulated the number of consecutive kinesin motions during anterograde transport but impaired kinesin transport biases while the inactive second GTPase state impaired transport in either direction. Together, these data suggest that Miro's first GTPase domain is major factor that controls the execution of either the antero- or retrograde directional program while Miro's second GTPase may provide a signal that supports or disfavors transport. In addition, the active state of the first and the second GTPase domain increased the length of stationary mitochondria but only the first GTPase domain modified motile mitochondrial lengths. Overexpression of these mutations generated opposing effects. We conclude that both domains control antero- and retrograde transport in a switch-like manner.
APA, Harvard, Vancouver, ISO, and other styles
40

CONVERTINO, Domenica. "Interfacing graphene with peripheral neurons: influence of neurite outgrowth and NGF axonal transport." Doctoral thesis, Scuola Normale Superiore, 2020. http://hdl.handle.net/11384/90468.

Full text
Abstract:
Graphene displays properties that make it appealing for neuroregenerative medicine, yet the potential of large-scale highly-crystalline graphene as a conductive peripheral neural interface has been scarcely investigated. In particular, pristine graphene offers enhanced electrical properties that can be advantageous for nervous system regeneration applications. In this work, we investigate graphene potential as peripheral nerve interface. First, we perform an unprecedented analysis aimed at revealing how the typical polymeric coatings for neural cultures distribute on graphene at the nanometric scale. Second, we examine the impact of graphene on the culture of two established cellular models for peripheral nervous system: PC12 cell line and primary embryonic rat dorsal root ganglion (DRG) neurons, showing a better and faster axonal elongation using graphene. We then observe that the axon elongation in the first days of culture correlates to an altered nerve growth factor (NGF) axonal transport, with a reduced number of retrogradely moving NGF vesicles in favor of stalled vesicles. We thus hypothesize that the axon elongation observed in the first days of culture could be mediated by this pool of NGF vesicles locally retained in the medial/distal parts of axons. Furthermore, we investigate electrophysiological properties and cytoskeletal structure of peripheral neurons. We observe a reduced neural excitability and altered membrane potential together with a reduced inter-microtubular distance on graphene and correlate these electrophysiological and structural reorganizations of axon physiology to the observed vesicle stalling. Finally, the potential of another 2D material as neural interface, tungsten disulfide, is explored.
APA, Harvard, Vancouver, ISO, and other styles
41

Martinat, Cécile. "Etude des mécanismes impliqués dans l ́établissement de l'infection persistante du virus de Theiler dans le système nerveux central de la souris." Paris 6, 2002. http://www.theses.fr/2002PA066537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hill, David Brooks. "Changes in the number of molecular motors driving vesicle transport in PC12 /." Electronic thesis, 2003. http://dspace.zsr.wfu.edu/jspui/handle/10339/206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hinckelmann, Rivas Maria Victoria. "Trafficking Regulation and Energetics." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA11T054/document.

Full text
Abstract:
De plus en plus de preuves montrent que le transport axonal rapide (FAT) joue un rôle crucial au cours des maladies neurodégénératives (NDs). La maladie de Huntington est une maladie neurodégénérative causée par une expansion anormale de polyglutamines dans la partie Nterminale de la protéine huntingtine (HTT) : une grande protéine d’échafaudage impliquée dans la régulation du transport. La présence de HTT mutante comme l’absence de la HTT induisent des défauts de transport chez les mammifères. Chez la Drosophile, la HTT mutante reproduit le phénotype observée chez les mammifères, cependant la fonction conservée de la HTT chez la Drosophile melanogaster (DmHTT) n’est pas encore clairement établie. Ici nous mettons en évidence que DmHTT s’associe aux vésicules, aux microtubules et intéragit avec la proteine dynéine. Dans les neurones corticaux de rat, DmHTT remplace partiellement la HTT de mammifère dans le transport axonal rapide, et les drosophiles invalidées pour la HTT montrent des défauts de transport axonal in vivo. Ces résultats suggèrent que la fonction de la HTT est conservée dans le modèle Drosophile.Le FAT est un processus qui requiert un apport constant d’énergie. Les mitochondries sont les principales sources de production d’ATP de la cellule. Cependant nous avons démontré que le FAT ne dépend non pas de cette source d’énergie là, contrairement à ce que l’on pensait, mais de l’ATP glycolytique produit par les vésicules. La dérégulation de GAPDH ou de PK, les deux enzymes glycolytiques productrices d’ATP, ralentit le transport vésiculaire. Néanmoins, l’invalidation de GAPDH n’affecte pas le transport mitochondrial. En outre, toutes les enzymes glycolytiques sont associées à des vésicules dynamiques et sont capables de produire leur propre ATP. Enfin nous montrons que l’ATP produit est suffisant pour assurer leur propre transport, prouvant l’autonomie énergétique des vésicules pour le transport
Growing evidence support the idea that impairments in Fast Axonal Transport (FAT) play a crucial role in Neurodegenerative Diseases (NDs). Huntington’s Disease is neurodegenerative disorder caused by an abnormal polyglutamine expansion in the N-Terminal part of huntingtin (HTT), a large scaffold protein implicated in transport regulation. Both the presence of the mutated HTT as the loss of HTT leads to transport defects in mammals. In the fruit fly overexpression of the mutant HTT recapitulates the phenotype observed in mammals. However, it is still unclear whether HTT’s function is conserved in D. melanogaster. Here, we show that D. melanogaster HTT (DmHTT) associates with vesicles, microtubules, and interacts with dynein. In rat cortical neurons, DmHTT partially replaces mammalian HTT in fast axonal transport, and DmHTT KO flies show axonal transport defects in vivo. These results suggest that HTT function in transport is conserved in D. melanogaster.FAT is a process that requires a constant supply of energy. Mitochondria are the main producers of ATP in the cell. However, we have demonstrated that FAT does not depend on this source of energy, as previously thought, but it depends on glycolytic ATP produced on vesicles. Perturbing GAPDH or PK, the two ATP generating glycolytic enzymes, slows down vesicular transport. However, knocking down GAPDH does not affect mitochondrial transport. Furthermore, all of the glycolytic enzymes are associated with dynamic vesicles, and are capable of producing their own ATP. Finally, we show that this ATP production is sufficient to sustain their own transport, demonstrating the energetical autonomy of vesicles for transport
APA, Harvard, Vancouver, ISO, and other styles
44

Melemedjian, Ohannes, Dipti Tillu, Jamie Moy, Marina Asiedu, Edward Mandell, Sourav Ghosh, Gregory Dussor, and Theodore Price. "Local translation and retrograde axonal transport of CREB regulates IL-6-induced nociceptive plasticity." BioMed Central, 2014. http://hdl.handle.net/10150/610222.

Full text
Abstract:
Transcriptional regulation of genes by cyclic AMP response element binding protein (CREB) is essential for the maintenance of long-term memory. Moreover, retrograde axonal trafficking of CREB in response to nerve growth factor (NGF) is critical for the survival of developing primary sensory neurons. We have previously demonstrated that hindpaw injection of interleukin-6 (IL-6) induces mechanical hypersensitivity and hyperalgesic priming that is prevented by the local injection of protein synthesis inhibitors. However, proteins that are locally synthesized that might lead to this effect have not been identified. We hypothesized that retrograde axonal trafficking of nascently synthesized CREB might link local, activity-dependent translation to nociceptive plasticity. To test this hypothesis, we determined if IL-6 enhances the expression of CREB and if it subsequently undergoes retrograde axonal transport. IL-6 treatment of sensory neurons in vitro caused an increase in CREB protein and in vivo treatment evoked an increase in CREB in the sciatic nerve consistent with retrograde transport. Importantly, co-injection of IL-6 with the methionine analogue azido-homoalanine (AHA), to assess nascently synthesized proteins, revealed an increase in CREB containing AHA in the sciatic nerve 2hrs post injection, indicating retrograde transport of nascently synthesized CREB. Behaviorally, blockade of retrograde transport by disruption of microtubules or inhibition of dynein or intrathecal injection of cAMP response element (CRE) consensus sequence DNA oligonucleotides, which act as decoys for CREB DNA binding, prevented the development of IL-6-induced mechanical hypersensitivity and hyperalgesic priming. Consistent with previous studies in inflammatory models, intraplantar IL-6 enhanced the expression of BDNF in dorsal root ganglion (DRG). This effect was blocked by inhibition of retrograde axonal transport and by intrathecal CRE oligonucleotides. Collectively, these findings point to a novel mechanism of axonal translation and retrograde trafficking linking locally-generated signals to long-term nociceptive sensitization.
APA, Harvard, Vancouver, ISO, and other styles
45

Alami, Nael H. "The Role of Myosin Va and the Dynein/Dynactin Complex in Neurofilament Axonal Transport." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259091406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Seifert, Anne [Verfasser], Andreas [Gutachter] Hermann, and Stefan [Gutachter] Diez. "Mechanisms of Axonal Transport Defects in ALS / Anne Seifert ; Gutachter: Andreas Hermann, Stefan Diez." Dresden : Technische Universität Dresden, 2021. http://d-nb.info/1235344789/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sawada, Tomoyo. "Parkinson's Disease-Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria." Kyoto University, 2013. http://hdl.handle.net/2433/174792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

左雨鵬 and Yu-pang Eric Cho. "Axonal regrowth and morphological plasticity of retinal ganglion cellsin the adult hamster." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1990. http://hub.hku.hk/bib/B31232188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bodakuntla, Satish. "La régulation de transport neuronale par la polyglutamylation des microtubules." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET036.

Full text
Abstract:
Le transport intracellulaire implique le mouvement de diverses vésicules et organites par des moteurs moléculaires le long des microtubules, et est donc un processus crucial dans toutes les cellules eucaryotes. Les cellules hautement différenciées, complexes et à longue durée de vie telles que les neurones posent un défi particulier pour le maintien d'un transport efficace et étroitement contrôlé tout au long de la vie d'un organisme. Les défauts du transport axonal ont été impliqués dans de nombreuses maladies neurodégénératives et sont actuellement considérés comme l'un des premiers événements de la voie pathogène. Les mécanismes de contrôle du transport intra-neuronal pourraient donc jouer un rôle important dans l'homéostasie neuronale. Un mécanisme qui a été proposé pendant de nombreuses années pour contrôler le transport intracellulaire sont les modifications post-traductionnelles des voies de transport - les microtubules. Dans ma thèse de doctorat, j'ai testé l'hypothèse qu'une modification de tubuline particulièrement enrichie dans les neurones, la polyglutamylation, contrôle le transport axonal.Au cours de mon doctorat, j'ai établi toutes les méthodes nécessaires pour obtenir des neurones avec des niveaux différents de polyglutamylation en utilisant plusieurs modèles de souris. J'ai ensuite mesuré le transport de différentes cargaisons dans ces neurones. Premièrement, j'ai mesuré le transport des mitochondries et démontré qu'une polyglutamylation accrue de la tubuline, qui cause la dégénérescence des neurones, réduit la motilité des mitochondries. Inversement, dans les neurones à polyglutamylation diminuée, le transport des mitochondries était augmenté. Ces résultats suggèrent que la polyglutamylation de la tubuline est un régulateur dynamique du transport des mitochondries. Pour étudier la spécificité de la régulation du transport par la polyglutamylation, j'ai ensuite mesuré le transport d'autres cargos axonaux. Le transport des lysosomes, des endosomes tardifs et des vésicules de BDNF a été, comme pour les mitochondries, affecté négativement par l'hyperglutamylation.En conclusion, j'ai démontré que la polyglutamylation de la tubuline pourrait être un mécanisme général contrôlant le transport axonal. Considérant nos résultats antérieurs, qui montrent que l'hyperglutamylation induit la neurodégénérescence, les défauts du transport axonal pourraient être l'un des principaux mécanismes moléculaires qui induisent la dégénérescence des neurones avec les microtubules hyperglutamylés
Intracellular transport involves transporting various vesicles and organelles by molecular motors along the microtubules, and is thus a crucial process in all eukaryotic cells. Highly differentiated, complex and long-lived cells such as neurons pose a particular challenge for the maintenance of an efficient, tightly controlled transport. Defects in axonal transport have been implicated in many neurodegenerative disorders, and are currently considered as one of the early events in the pathogenic pathway. Mechanisms controlling intra-neuronal transport could thus be important players in neuronal homeostasis. A mechanism that was for many years proposed to control intracellular transport is the posttranslational modification of microtubule tracks. In my PhD thesis I tested the hypothesis that one tubulin modification that is particularly enriched in neurons, polyglutamylation, controls axonal transport.During my PhD, I have established all the necessary methods to obtain neurons with differential levels of polyglutamylation using different mouse models. I have then measured the transport of different cargoes in these neurons. First, I have measured mitochondria transport, and demonstrated that increased tubulin polyglutamylation, as found in neurons that degenerate, reduces the overall motility of mitochondria. Inversely, in neurons with decreased polyglutamylation, I have shown that mitochondria transport is increased. These results suggest that tubulin polyglutamylation is a dynamic regulator of mitochondrial transport. To investigate the specificity of transport regulation by tubulin polyglutamylation, I next measured the transport of other axonal cargoes. Transport of lysosomes, late endosomes and BDNF vesicles was, similar to mitochondria, negatively affected by hyperglutamylation.In conclusion, I have demonstrated that tubulin polyglutamylation could be a general tuning mechanism for axonal transport. Considering our earlier findings, which show that hyperglutamylation induces neurodegeneration, defects in axonal transport could be one of the key molecular mechanisms that induce degeneration of neurons with hyperglutamylation
APA, Harvard, Vancouver, ISO, and other styles
50

Cho, Yu-pang Eric. "Axonal regrowth and morphological plasticity of retinal ganglion cells in the adult hamster /." [Hong Kong : University of Hong Kong], 1990. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12922882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography