Academic literature on the topic 'Avocado orchard soils'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Avocado orchard soils.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Avocado orchard soils"

1

Merrington, G., S. L. Rogers, and L. Van Zwieten. "The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard." Soil Research 40, no. 5 (2002): 749. http://dx.doi.org/10.1071/sr01084.

Full text
Abstract:
The impact of copper-based fungicides on soil microbial function in an avocado orchard was assessed. Copper (Cu) residues (280 and 340 mg/kg, respectively) in surface soils (0-2 cm) of an established avocado orchard were shown to be significantly (n = 6, P ≤ 0.05) greater than a nearby reference site under natural vegetation (13 mg/kg). The bioavailable fraction of Cu in these soils was also shown to be significantly greater (2.15 and 1.29 mg/kg, c. pCu2+ 8.64) than in the reference site (0.71 mg/kg, c. pCu2+ 9.2), as measured by ion-selective electrode in CaCl2 extraction. Similar trends were observed for the 2-10 cm soil profile. Data suggest that the Cu residues are responsible for significant reductions in biomass carbon (Cmic) even though the orchard soils had similar or elevated levels of total organic carbon (Corg). The Cmic : Corg ratio was significantly lower in all of the Cu contaminated soils, and a significant correlation was observed between CaCl2-extractable Cu in the surface soils and Cmic (n = 16, r2 = 0.68, P b 0.01). Soil respiration in surface soils from the orchard were elevated (6.04 and 5.57 mg CO2-C/kg.day) compared with the reference soil (3.04 mg CO2-C/kg.day), and the metabolic quotient (qCO2) was also significantly greater.
APA, Harvard, Vancouver, ISO, and other styles
2

Arima, Eugenio Y., Audrey Denvir, Kenneth R. Young, Antonio González-Rodríguez, and Felipe García-Oliva. "Modelling avocado-driven deforestation in Michoacán, Mexico." Environmental Research Letters 17, no. 3 (February 23, 2022): 034015. http://dx.doi.org/10.1088/1748-9326/ac5419.

Full text
Abstract:
Abstract As demand for avocado climbs, avocado production in Michoacán—Mexico’s biggest avocado growing region—expands into new places. We use a spatial probit model to project the geographic distribution of likely future avocado expansion and analyze those results to determine (a) threats to specific forest types and (b) how the distribution of avocado is shifting spatially under current and future climate scenarios. Our results suggest that avocado expansion in Michoacán is strongly driven by distance to existing agriculture, roads, and localities, as well as the dwindling availability of Andosol soils. As future expansion ensues, it presents risk of forest loss across various forest types, with pine-oak forest, mesophilic montane forest, and oyamel fir forest being of particular concern. Moreover, our results suggest that avocado production will occupy wider ranges in terms of temperature, precipitation, slope steepness and soil. The model predicts that climate change will alter the spatial distribution of avocado plantings, expanding into forest types at lower and at higher elevations. Forest loss threatens ecosystem degradation, and a wider avocado crop production footprint could lead to orchard establishment into dwindling forests that host a high diversity of native oaks and charismatic species, including the monarch butterfly.
APA, Harvard, Vancouver, ISO, and other styles
3

Haas, Jerry H., and John A. Menge. "VA-mycorrhizal fungi and soil characteristics in avocado (Persea americana Mill.) orchard soils." Plant and Soil 127, no. 2 (October 1990): 207–12. http://dx.doi.org/10.1007/bf00014427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsanis, Ioannis K., Konstantinos D. Seiradakis, Sofia Sarchani, Ioanna S. Panagea, Dimitrios D. Alexakis, and Aristeidis G. Koutroulis. "The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment." Land 10, no. 9 (September 12, 2021): 964. http://dx.doi.org/10.3390/land10090964.

Full text
Abstract:
The risk of erosion is particularly high in Mediterranean areas, especially in areas that are subject to a not so effective agricultural management–or with some omissions–, land abandonment or wildfires. Soils on Crete are under imminent threat of desertification, characterized by loss of vegetation, water erosion, and subsequently, loss of soil. Several large-scale studies have estimated average soil erosion on the island between 6 and 8 Mg/ha/year, but more localized investigations assess soil losses one order of magnitude higher. An experiment initiated in 2017, under the framework of the SoilCare H2020 EU project, aimed to evaluate the effect of different management practices on the soil erosion. The experiment was set up in control versus treatment experimental design including different sets of treatments, targeting the most important cultivations on Crete (olive orchards, vineyards, fruit orchards). The minimum-to-no tillage practice was adopted as an erosion mitigation practice for the olive orchard study site, while for the vineyard site, the cover crop practice was used. For the fruit orchard field, the crop-type change procedure (orange to avocado) was used. The experiment demonstrated that soil-improving cropping techniques have an important impact on soil erosion, and as a result, on soil water conservation that is of primary importance, especially for the Mediterranean dry regions. The demonstration of the findings is of practical use to most stakeholders, especially those that live and work with the local land.
APA, Harvard, Vancouver, ISO, and other styles
5

Reyes-Martín, Marino Pedro, Irene Ortiz-Bernad, Antonio M. Lallena, Layla M. San-Emeterio, M. Lourdes Martínez-Cartas, and Emilia Fernández Ondoño. "Reuse of Pruning Waste from Subtropical Fruit Trees and Urban Gardens as a Source of Nutrients: Changes in the Physical, Chemical, and Biological Properties of the Soil." Applied Sciences 12, no. 1 (December 25, 2021): 193. http://dx.doi.org/10.3390/app12010193.

Full text
Abstract:
A field experiment was conducted on the Andalusian coast (Granada, Southern Spain) to study the time course of nutrient release into the soil after the addition of bagged pruning waste from subtropical orchard trees (avocado, cherimoya, and mango) and urban garden waste over three two-year periods. N, P, and K concentrations were greater in the garden waste, whilst avocado and cherimoya pruning waste registered the highest values for Mg. In general, micronutrient contents were low in all waste, especially Cu. Macronutrient release followed a three-phase dynamic: fast initial release, intermediate stabilization, and final increase. Garden waste showed a similar time course in all three trees and released greater concentrations of K and P. The annual decomposition rate factor k was negative for N and Ca in the avocado tree, indicating strong biological activity in this plot. Avocado, cherimoya, and garden waste showed a good microbial degradation, improving soil quality by increasing carbon and nitrogen contents as well as soil microbial activity. As for the mango tree, its special microclimatic conditions appeared to favor waste photodegradation, thus eliminating nutrients that were not incorporated into the soil. Soil enzymatic activities increased in the avocado and cherimoya trees with the addition of all waste. In the mango tree, only an increase in urease was detected after the addition of garden waste. Our results suggest that the time course of organic waste in different subtropical trees grown on similar soils is significantly conditioned by the microclimatic characteristics.
APA, Harvard, Vancouver, ISO, and other styles
6

Van Zwieten, Lukas, Josh Rust, Tim Kingston, Graham Merrington, and Steven Morris. "Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils." Science of The Total Environment 329, no. 1-3 (August 2004): 29–41. http://dx.doi.org/10.1016/j.scitotenv.2004.02.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Crowley, David E., Woody Smith, Ben Faber, and John A. Manthey. "Zinc Fertilization of Avocado Trees." HortScience 31, no. 2 (April 1996): 224–29. http://dx.doi.org/10.21273/hortsci.31.2.224.

Full text
Abstract:
Methods for Zn fertilization of `Hass' avocado (Persea americana Mill.) trees were evaluated in a 2-year field experiment on a commercial orchard located on a calcareous soil (pH 7.8) in Ventura County, Calif. The fertilization methods included soil- or irrigation-applied ZnSO4; irrigation-applied Zn chelate (Zn-EDTA); trunk injection of Zn(NO3)2, and foliar applications of ZnSO4, ZnO, or Zn metalosate. Other experiments evaluated the influence of various surfactants on the Zn contents of leaves treated with foliar-applied materials and on the retention and translocation of radiolabeled 65ZnSO4 and 65Zn metalosate after application to the leaf surface. In the field experiment, tree responses to fertilization with soil-applied materials were affected significantly by their initial status, such that only trees having <50 μg·g–1 had significant increases in foliar Zn contents after fertilization. Among the three soil and irrigation treatments, ZnSO4 applied at 3.2 kg ZnSO4 per tree either as a quarterly irrigation or annually as a soil application was the most effective and increased leaf tissue Zn concentrations to 75 and 90 μg·g–1, respectively. Foliar-applied ZnSO4, ZnO, and Zn metalosate with Zn at 5.4, 0.8, and 0.9 g·liter–1, respectively, also resulted in increased leaf Zn concentrations. However, experiments with 65Zn applied to leaves of greenhouse seedlings showed that <1% of Zn applied as ZnSO4 or Zn metalosate was actually taken up by the leaf tissue and that there was little translocation of Zn into leaf parenchyma tissue adjacent to the application spots or into the leaves above or below the treated leaves. Given these problems with foliar Zn, fertilization using soil- or irrigation-applied ZnSO4 may provide the most reliable method for correction of Zn deficiency in avocado on calcareous soils.
APA, Harvard, Vancouver, ISO, and other styles
8

Nuñez-Elisea, R., B. Schaffer, M. Zekri, S. K. O'Hair, and J. H. Crane. "533 Monitoring Soil Water Content in Tropical Fruit Orchards in Southern Florida with Multi-sensor Capacitance Probes and Tensiometers." HortScience 35, no. 3 (June 2000): 487C—487. http://dx.doi.org/10.21273/hortsci.35.3.487c.

Full text
Abstract:
Tropical fruit trees in southern Florida are grown in porous, oolitic limestone soil that has very low organic matter content and water-holding capacity. Thus, trees require frequent irrigation during dry periods. In these soils, a quantitative basis for monitoring soil water content to determine when and how much to irrigate has been lacking. Multi-sensor capacitance probes (EnviroSCAN™, Sentek, Australia) were installed in commercial carambola, lime, and avocado orchards to continuously monitor changes in soil water content at depths of 10, 20, 30, and 50 cm. Eight probes were installed per orchard. Volumetric soil water content was recorded at 15-min intervals with a solar-powered datalogger. Results were downloaded to a laptop computer twice a week. Monitoring the rate of soil water depletion (evapotranspiration) allowed irrigation before the onset of water stress. The time at which soil reached field capacity could be determined after each irrigation (or rain) event. Soil water tension was recorded periodically using low-tension (0–40 cbars) tensiometers placed adjacent to selected capacitance probes at 10- and 30-cm depths. Soil water tension was better correlated with volumetric soil water content at a 10-cm depth than at 30-cm depth. Using multi-sensor capacitance probes is a highly accurate, although relatively expensive, method of monitoring soil water content for scheduling irrigation in tropical fruit orchards. Whereas tensiometers require periodic maintenance, the multi-sensor capacitance probe system has been virtually maintenance free. The correlation between soil water content and soil water tension obtained in situ indicates that tensiometers are a less precise, but considerably cheaper, alternative for scheduling irrigation in tropical fruit orchards in southern Florida.
APA, Harvard, Vancouver, ISO, and other styles
9

Kuwano, Biana Harumi, Adriana Knob, Dáfila Santos Lima Fagotti, Nagib Jorge Melém Júnior, Leandro Godoy, Raquel Cátia Diehl, Cristina Célia Krawulski, et al. "Soil quality indicators in a rhodic kandiudult under different uses in northern Parana, Brazil." Revista Brasileira de Ciência do Solo 38, no. 1 (February 2014): 50–59. http://dx.doi.org/10.1590/s0100-06832014000100005.

Full text
Abstract:
Sustainable use of soil, maintaining or improving its quality, is one of the goals of diversification in farmlands. From this point of view, bioindicators associated with C, N and P cycling can be used in assessments of land-use effects on soil quality. The aim of this study was to investigate chemical, microbiological and biochemical properties of soil associated with C, N and P under different land uses in a farm property with diversified activity in northern Parana, Brazil. Seven areas under different land uses were assessed: fragment of native Atlantic Forest; growing of peach-palm (Bactrys gasipaes); sugarcane ratoon (Saccharum officinarum) recently harvested, under renewal; growing of coffee (Coffea arabica) intercropped with tree species; recent reforestation (1 year) with native tree species, previously under annual crops; annual crops under no-tillage, rye (Cecale cereale); secondary forest, regenerated after abandonment (for 20 years) of an avocado (Persea americana) orchard. The soil under coffee, recent reforestation and secondary forest showed higher concentrations of organic carbon, but microbial biomass and enzyme activities were higher in soils under native forest and secondary forest, which also showed the lowest metabolic coefficient, followed by the peach-palm area. The lowest content of water-dispersible clay was found in the soil under native forest, differing from soils under sugarcane and secondary forest. Soil cover and soil use affected total organic C contents and soil enzyme and microbial activities, such that more intensive agricultural uses had deeper impacts on the indicators assessed. Calculation of the mean soil quality index showed that the secondary forest was closest to the fragment of native forest, followed by the peach-palm area, coffee-growing area, annual crop area, the area of recent reforestation and the sugarcane ratoon area.
APA, Harvard, Vancouver, ISO, and other styles
10

Marques, J. R., P. J. Hofman, and A. H. Wearing. "Between-tree variation in fruit quality and fruit mineral concentrations of Hass avocados." Australian Journal of Experimental Agriculture 46, no. 9 (2006): 1195. http://dx.doi.org/10.1071/ea04051.

Full text
Abstract:
Inconsistent internal fruit quality in Hass avocados affects consumer confidence. To determine the influence of individual trees on fruit quality, Hass avocado fruit were harvested from adjacent trees of similar external appearance in 3 commercial orchards in 1998 and 1 orchard in 1999. The trees in each orchard were grown with similar commercial practices and in similar soil types. Within each location, there were significant (P<0.05) differences in the mean ripe fruit quality between trees with respect to fruit body rot severity (mainly anthracnose) with and without cold storage, internal disorders severity due to diffuse discolouration and vascular browning (after cold storage), days to ripen, percentage dry matter, and the percentage of the skin area with purple-black colour when ripe. These effects were also noted in the same orchard in 1999. There were significant (P<0.05) differences in fruit flesh calcium, magnesium, potassium, boron and zinc concentrations between trees. Significant (P<0.05) correlations were observed between average fruit mineral concentrations in each tree (particularly calcium, magnesium and potassium) and body rot severity, percentage dry matter and fruit mass. There was little conclusive evidence that characteristics such as the growth of the non-suberised roots or the degree of scion under- or overgrowth was involved in these tree effects; however, differences between trees with respect to other rootstock characteristics may be involved. The inconsistency of the correlations across sites and years suggested that other factors apart from tree influences could also affect the relationship between fruit minerals and fruit quality.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Avocado orchard soils"

1

Cordero-Irizarry, Patricia Marie. "Soil Carbon as A Soil Quality Indicator of A Fruit Orchard In Puerto Rico." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618594104520193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keen, Bradley Paul, University of Western Sydney, College of Health and Science, and School of Natural Sciences. "Microbial ecology of phytophthora cinnamomi suppressive soils : a study of biological suppression of P. cinnamomi in sub-tropical avocado orchards on the east coast of Australia." 2006. http://handle.uws.edu.au:8081/1959.7/16038.

Full text
Abstract:
This study focuses on the soil- and water-borne plant pathogen Phytophthora cinnamomi Rands and the phenomenon of P. cinnamomi suppressive soil. In particular, this thesis reports on the outcome of field surveys and glasshouse assays undertaken to locate P. cinnamomi suppressive soils and to confirm the involvement of biological processes in suppression. The potential role of cellulase and laminarinase in suppression was investigated and a molecular technique known as length heterogeneity PCR (LH-PCR) was used to analyse the structure and diversity of bacterial and fungal communities in avocado orchard soils that were suppressive and conducive to P. cinnamomi. Four avocado orchards with P. cinnamomi suppressive soils were identified and soils were ã-irradiated to destroy their suppressive capacity, thus confirming biological suppression. Suppression was also partially transferred to ã-irradiated and conducive soils by mixing with 10% suppressive avocado soils. Cellulase and laminarinase activities measured in avocado orchard soils inoculated with P. cinnamomi were not associated with disease severity in lupin seedlings during glasshouse assays involving the same soil samples. Minor shifts in bacterial and fungal community structure were observed in response to mixing conducive and irradiated soils with suppressive soils. This was associated with decreased disease severity in avocado seedlings in these treatments. The shift in bacterial community structure was partially determined by the appearance and increased abundance of several bacterial 16S rDNA sequences, which were unique to the suppressive soils, in the mixed soil treatments. It is suggested that the bacteria and fungi from which these sequences originated may be involved in suppression and further work should be undertaken to determine their identity and confirm their potential role in the development and maintenance of P. cinnamomi suppressive soils.
Doctor of Philosophy (PhD)
APA, Harvard, Vancouver, ISO, and other styles
3

Keen, Bradley Paul. "Microbial ecology of phytophthora cinnamomi suppressive soils : a study of biological suppression of P. cinnamomi in sub-tropical avocado orchards on the east coast of Australia." Thesis, 2006. http://handle.uws.edu.au:8081/1959.7/16038.

Full text
Abstract:
This study focuses on the soil- and water-borne plant pathogen Phytophthora cinnamomi Rands and the phenomenon of P. cinnamomi suppressive soil. In particular, this thesis reports on the outcome of field surveys and glasshouse assays undertaken to locate P. cinnamomi suppressive soils and to confirm the involvement of biological processes in suppression. The potential role of cellulase and laminarinase in suppression was investigated and a molecular technique known as length heterogeneity PCR (LH-PCR) was used to analyse the structure and diversity of bacterial and fungal communities in avocado orchard soils that were suppressive and conducive to P. cinnamomi. Four avocado orchards with P. cinnamomi suppressive soils were identified and soils were ã-irradiated to destroy their suppressive capacity, thus confirming biological suppression. Suppression was also partially transferred to ã-irradiated and conducive soils by mixing with 10% suppressive avocado soils. Cellulase and laminarinase activities measured in avocado orchard soils inoculated with P. cinnamomi were not associated with disease severity in lupin seedlings during glasshouse assays involving the same soil samples. Minor shifts in bacterial and fungal community structure were observed in response to mixing conducive and irradiated soils with suppressive soils. This was associated with decreased disease severity in avocado seedlings in these treatments. The shift in bacterial community structure was partially determined by the appearance and increased abundance of several bacterial 16S rDNA sequences, which were unique to the suppressive soils, in the mixed soil treatments. It is suggested that the bacteria and fungi from which these sequences originated may be involved in suppression and further work should be undertaken to determine their identity and confirm their potential role in the development and maintenance of P. cinnamomi suppressive soils.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography