Academic literature on the topic 'Avian evolution'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Avian evolution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Avian evolution"

1

Kurochkin, Evgeny N., Gareth J. Dyke, Sergei V. Saveliev, Evgeny M. Pervushov, and Evgeny V. Popov. "A fossil brain from the Cretaceous of European Russia and avian sensory evolution." Biology Letters 3, no. 3 (April 10, 2007): 309–13. http://dx.doi.org/10.1098/rsbl.2006.0617.

Full text
Abstract:
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis , but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous ( ca 90 Myr ago). This fossil also provides insights into previous ‘bird-like’ brain reconstructions for the most basal avian Archaeopteryx —reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.
APA, Harvard, Vancouver, ISO, and other styles
2

Feduccia, Alan. "Fossils and avian evolution." Nature 414, no. 6863 (November 2001): 507–8. http://dx.doi.org/10.1038/35107144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clarke, Julia A., and Mark A. Norell. "Fossils and avian evolution." Nature 414, no. 6863 (November 2001): 508. http://dx.doi.org/10.1038/35107146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ZINK, ROBERT M. "The evolution of avian migration." Biological Journal of the Linnean Society 104, no. 2 (August 31, 2011): 237–50. http://dx.doi.org/10.1111/j.1095-8312.2011.01752.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suarez, David L. "Evolution of avian influenza viruses." Veterinary Microbiology 74, no. 1-2 (May 2000): 15–27. http://dx.doi.org/10.1016/s0378-1135(00)00161-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Howard., Hildegarde. "FOSSIL EVIDENCE OF AVIAN EVOLUTION." Ibis 92, no. 1 (April 3, 2008): 1–21. http://dx.doi.org/10.1111/j.1474-919x.1950.tb01728.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Hung J., Long H. Lee, Hsiao W. Hsu, Liam C. Kuo, and Ming H. Liao. "Molecular evolution of avian reovirus:." Virology 314, no. 1 (September 2003): 336–49. http://dx.doi.org/10.1016/s0042-6822(03)00415-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Starck, J. Matthias, and Robert Ricklefs. "Symposium: Evolution of avian ontogenies." Journal of Ornithology 135, no. 3 (July 1994): 322–27. http://dx.doi.org/10.1007/bf01639967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Österström, Ola, and Clas Lilja. "Evolution of avian eggshell structure." Journal of Morphology 273, no. 3 (October 10, 2011): 241–47. http://dx.doi.org/10.1002/jmor.11018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sereno, Paul C. "Origin and early evolution of Aves: dinosaurs, ancient birds, and mtDNA sequences." Paleontological Society Special Publications 6 (1992): 267. http://dx.doi.org/10.1017/s2475262200008273.

Full text
Abstract:
Recently a general cladistic framework for early avian evolution has emerged. Postcranial modifications in the wrist joint and elsewhere firmly establish birds as a diversified subgroup of maniraptoran theropods. And the best known Mesozoic avians–Archaeopteryx and Late Cretaceous Hesperornis and Ichthyornis –have been positioned as successive sister taxa to living birds. Within this framework, however, several basic phylogenetic questions need to be addressed: (1) Which maniraptorans are most closely related to birds? (2) How was the modern avian skeleton built during the first third of avian history, between Archaeopteryx and Late Cretaceous Hesperornis and Ichthyornis? (3) And what are the relationships between the major groups of living birds?Avian origins. Synapomorphies listed by Ostrom and others to unite birds and other theropods typically apply to all maniraptorans or higher-level theropod clades, leaving unsettled the question of which maniraptorans constitute the immediate outgroups to birds. Deinonychosauria is confirmed as the sister-group to Aves, based principally on synapomorphies of the pectoral and pelvic girdles. In contrast to some previous suggestions, this study supports monophyly of Deinonychosauria (uniting dromaeosaurids and troodontids), with a single origin of the hyper-extendable, raptorial digit II of the pes.Sinornis and the evolution of powered flight and perching. Archaeopteryx lacks the profound modifications of the avian skeleton that characterize Ichthyornis and modern birds. Recent discovery of Lower Cretaceous birds has brought to light important intermediate stages in the transformation of the avian skeleton. Sparrow-sized Sinornis, discovered in Lower Cretaceous lake deposits in China, exhibits features that are associated with sustained powered flight; the laterally directed glenoid and V-shaped ulnare suggest that the wing was capable of tight flexion during flight. Features unrelated to the flight apparatus, in contrast, have not been altered; the skull is toothed, the manal digits are flexible and clawed, and gastralia are present beneath the rib cage.Higher-level relationships among living birds. The deep branching history of living birds occurred before the end of the Cretaceous and can be reconstructed from anatomical and genetic evidence in living birds. DNA sequences have been obtained from the mitochondrial cytochrome b gene in a variety of living birds. These data are consistent with a basal split between palaeognaths and neognaths and support the basal position of galliforms and anseriforms among neognaths. Piciforms appear to be closely related to passeriforms, and Corvida does not appear to be monophyletic, in contrast to recent DNA-DNA hybridization results.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Avian evolution"

1

Steiger, Silke. "Evolution of avian olfaction." Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-91757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Steiger, Silke S. Fidler Andrew Eric Kempenaers B. Mueller Jakob C. "Evolution of avian olfaction." Connect to this title online (Universität München site) Connect to this title online (Deutsche Nationalbibliothek site), 2008. http://d-nb.info/991247264/34.

Full text
Abstract:
Thesis (doctoral)--Ludwig-Maximilians-Universität München, 2008.
Title from PDF t.p. (viewed on Jan. 8, 2009). Some chapters co-authored with others. Includes bibliographical references (p. 117-127).
APA, Harvard, Vancouver, ISO, and other styles
3

Steiger, Silke S. "Evolution of avian olfaction." kostenfrei, 2008. http://edoc.ub.uni-muenchen.de/9175/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Maxwell, Erin. "Evolution of avian ossification sequences." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21942.

Full text
Abstract:
The relative timing and sequence of events during embryonic development plays an important role in adult shape and thus in evolution. The sequence in which bones form in the developing embryo should therefore contain a component capable of revealing evolutionary history, however processes relating to ossification sequence and the sequences themselves are poorly known and rarely discussed. In this thesis, I describe the embryonic skeletal development of Meleagris gallopavo, Sterna hirundo, Somateria mollissima, Anas platyrhynchos, Cairina moschata, Dromaius novaehollandiae, Rhea americana and Struthio camelus for the first time in the scientific literature, focusing on ossification. All species exhibited intraspecific variation in ossification sequence, but the level of polymorphism present was generally quite low. Specimens collected from the wild did not show more variability in ossification sequence than those incubated under constant conditions in the lab. Dermal bones did not always ossify before endochondral bones, nor did neural-crest derived elements always form before elements derived from the paraxial mesoderm. All of this suggests that the factors controlling ossification sequence are complex, and more than one variable may play a role. In order to examine sequences in a more explicit phylogenetic context, I converted them into a form that is easily analyzed (event-pairs) and used these as characters for phylogenetic reconstruction. While this technique is plagued with problems involving logical and biological non-independence, it is an efficient tool for surveying conservation and divergence in ossification sequences at different levels of phylogenetic relatedness. I also reconstructed shifts on an accepted topology. The analysis indicates that ossification sequences are influenced by relative evolutionary reduction or expansion in element size. Reduced elements ossify late in sequence, and also temporally later, as measured by stage. Enlarged elements
Le temps de formation et la séquence d'événements du développement embryonnaire jouent un rôle important dans la forme adulte et dans l'évolution. La séquence selon laquelle les os se forment dans l'embryon devrait donc contenir des informations capables de révéler l'histoire évolutionnaire. Cependant, les facteurs qui influencent la séquence d'ossification et les séquences elles-mêmes sont mal compris et rarement étudiés. Dans cette thèse, je décris le développement squelettique embryonnaire chez Meleagris gallopavo, Sterna hirundo, Somateria mollissima, Anas platyrhynchos, Cairina moschata, Dromaius novaehollandiae, Rhea americana et Struthio camelus pour la première fois dans la littérature scientifique, en me concentrant sur l'ossification. Une variabilité intraspécifique entre les séquences d'ossification a été observée chez toutes espèces, mais le niveau de polymorphisme était généralement bas. Les spécimens d'espèces sauvages n'ont pas montré plus de variabilité dans la séquence d'ossification que ceux incubés dans les conditions constantes du laboratoire. Les os membraneux n'ossifient pas toujours avant les os de cartilage, et les os dérivés de la crête neurale ne se forment pas toujours avant les éléments dérivés du mésoderme paraxial. Ceci suggère que les facteurs qui contrôlent la séquence d'ossification sont complexes et que plus qu'une facteur peuvent y jouer un rôle. Afin d'examiner les séquences dans un contexte phylogénetique, je les ai convertis en une forme facile à analyser (‘paires d'événements') et ai utilisé les caractères de séquence d'ossification pour la reconstruction phylogénetique. Bien que cette technique présente des problèmes liés à un manque d'indépendence logique et biologique, c'est un outil efficace pour examiner la conservation et la divergence des séquences d'ossification à différents niveaux de rélation phylogénetique. J'ai aussi reconstruit les changements$
APA, Harvard, Vancouver, ISO, and other styles
5

Wharton, Deborah Susan. "The evolution of the avian brain." Thesis, University of Bristol, 2002. http://hdl.handle.net/1983/04463ee9-0d16-4d96-a891-d09f0f3661c0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uebbing, Severin. "On the Evolution of the Avian Transcriptome." Doctoral thesis, Uppsala universitet, Evolutionsbiologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-259487.

Full text
Abstract:
Change in gene expression is a powerful tool for evolution, because seemingly small expression changes can contribute important steps towards adaptation without necessarily affecting the whole organism. There is still much to learn about how gene expression evolves on genome- and population-wide levels, especially in non-model organisms. This thesis addresses some important questions in gene expression evolution via the quantitative measurement of RNA and protein levels in birds. First, I confirmed the state of incomplete dosage compensation in birds by sequencing the transcriptome of collared flycatchers (Ficedula albicollis). I showed that pleiotropy governs the evolution of expression male-bias from the Z chromosome. Sex-linked genes in females were more highly expressed than half the male expression level, indicative of a partial up-regulation. A comparison with data from ostrich (Struthio camelus), a bird with non-degenerated sex chromosomes, showed that sex-linked expression male-bias evolved following sex chromosome degradation. Second, using a combination of RNA sequencing and proteome mass spectrometry in chicken (Gallus gallus), I asked whether complete dosage compensation was achieved through regulation at translation. I showed that this was not the case and that incomplete dosage compensation extends to the protein level in birds. In addition, sex-linked genes showed more often an increased amount of regulation at translational level than autosomal genes. Third, I investigated gene expression divergence between collared and pied flycatchers (Ficedula hypoleuca) using RNA sequencing in multiple tissues and individuals. Tissues differed in the degree of expression variance and in the number of divergent genes, which I identified using expression QST. Variance within species was negatively correlated with expression breadth and protein interactivity, indicating that evolutionary constraints act predominantly within interbreeding populations. Among genes unique to one of the species, I identified one gene, DPP7, falling into a large genomic deletion fixed in pied flycatchers. Fourth, I investigated allele-specific expression (ASE) in the two flycatcher populations. ASE was identified from genetic variants within transcripts using RNA sequencing reads. We developed a Bayesian negative binomial approach that gained statistical power by estimating expression variance from combined SNPs within a transcript and overdispersion from the whole dataset.
APA, Harvard, Vancouver, ISO, and other styles
7

Felice, Ryan N. "Evolution and Integration of Avian Caudal Skeletal Morphology." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1427117367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vicario, Andrade Alba. "Development and evolution of the avian extended amygdala." Doctoral thesis, Universitat de Lleida, 2015. http://hdl.handle.net/10803/314572.

Full text
Abstract:
En esta Tesis Doctoral hemos identificado los componentes de la amígdala extendida (EA) de aves, en base a su posición topológica, perfil genético y origen embrionario. En EA central de pollo y pinzón, identificamos las masas intercaladas y amígdala central, con células de origen estriatal dorsal y/o ventral, pero con subpoblaciones menores de otros orígenes. Además, el núcleo lateral de la estria terminal, de origen palidal, contiene subpoblaciones de células inmigrantes de origen estriatal, preóptico o eminencial. En EA medial del pinzón, hemos identificado distintas subpoblaciones celulares en la amígdala medial y el núcleo medial de la estria terminal con origen palidal, preóptico, hipotalámico o eminencial. Nuestros datos indican que EA está formada por múltiples corredores celulares con distinto origen y perfil genético, lo que supone un cambio de paradigma para entender la conectividad y función de cada tipo celular en el control de las emociones, motivación y comportamiento social.
In this Ph.D. Dissertation, we have identified the components of the avian extended amygdala (EA), based on their topological position, genetic profile and embryonic origin. In central EA of chicken and zebra finch, we identified the intercalated masses and the central amygdala, with cells derived from the dorsal and/or ventral striatal domains, but with minor subpopulations from other origins. Moreover, the lateral bed nucleus of the stria terminalis, with pallidal origin, contains subpopulations of immigrant cells with striatal, preoptic or eminential origins. In medial EA of zebra finch, we identified different cell subpopulations with pallidal, preoptic, hypothalamic or eminential origins. Our data indicate that EA is formed by multiple cell corridors with different origin and genetic profile, which opens new venues for investigating the connections and function of each neuron subtype in the control of emotions, motivation and social behavior.
En aquesta Tesi Doctoral hem identificat els components de l'amígdala estesa (EA) d'aus, en base a la seva posició topològica, perfil genètic i origen embrionari. En EA central de pollastre i pinsà, hem identificat les masses intercalades i l'amígdala central, amb cèl·lules estriatals dorsal i/o ventral, però amb subpoblacions menors d'altres orígens. A més, el nucli lateral de l’estria terminal, d'origen palidal, conté subpoblacions de cèl·lules immigrants d'origen estriatal, preòptic o eminèncial. En EA medial del pinsà, hem identificat diferents subpoblacions cel·lulars en l'amígdala medial i el nucli medial de l’estria terminal amb origen palidal, preòptic, hipotalàmic o eminèncial. Les nostres dades indiquen que EA està formada per múltiples corredors cel·lulars amb diferent origen i perfil genètic, la qual cosa suposa un canvi de paradigma per entendre la connectivitat i funció de cada tipus cel·lular en el control de les emocions, motivació i comportament social.
APA, Harvard, Vancouver, ISO, and other styles
9

Lindholm, Anna Kristina. "Evolution of host defences against avian brood parasitism." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Middleton, Kevin Mallory. "Morphology, evolution, and function of the avian hallux /." View online version; access limited to Brown University users, 2003. http://wwwlib.umi.com/dissertations/fullcit/3087312.

Full text
Abstract:
Thesis (Ph.D.)--Brown University, 2003.
Available in film copy from University Microfilms International. Vita. Thesis advisor: Stephen M. Gatesy. Includes bibliographical references (leaves 117-147). Also available online.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Avian evolution"

1

Mayr, Gerald. Avian Evolution. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119020677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kraus, Robert H. S., ed. Avian Genomics in Ecology and Evolution. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16477-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

The evolution of avian breeding systems. Oxford: Oxford University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Avian embryology. 2nd ed. Amsterdam: Elsevier Academic Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

L, Lockwood Julie, and Cassey Phillip, eds. Avian invasions: The ecology and evolution of exotic birds. Oxford: Oxford University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alessandra, Pica, ed. The avian erythrocyte: Its phylogenetic odyssey. Enfield, NH: Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Griesser, Michael. The role of nepotism and competition for the evolution of avian families. New York: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Society of Avian Paleontology and Evolution. Symposium. Avian paleontology at the close of the 20th century: Proceedings of the 4th International Meeting of the Society of Avian Paleontology and Evolution, Washington, D.C., 4-7 June 1996. Edited by Olson Storrs L, Wellnhofer Peter, and Smithsonian Institution Press. Washington, D.C: Smithsonian Institution Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kurochkin, E. N., and M. V. Kali︠a︡kin. Problemy ėvoli︠u︡t︠s︡ii ptit︠s︡: Sistematika, morfologii︠a︡, ėkologii︠a︡ i povedenie : Materialy mezhdunarodnoĭ konferent︠s︡ii pami︠a︡ti E.N. Kurochkina (Zvenigorodskai︠a︡ biologicheskai︠a︡ stant︠s︡ii︠a︡ MGU, 23-25 senti︠a︡bri︠a︡ 2013 g.) = Avian evolution : systematics, morphology, ecology, and behavior : Materials of the International conference in memory of E.N. Kurochkin. Moskva: Tovarishchestvo nauchnykh izdaniĭ KMK, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

O’Connor, Jingmai Kathleen, Corwin Sullivan, and Daniel J. Field, eds. Early Avian Evolution. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-302-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Avian evolution"

1

Damas, Joana, Rebecca E. O’Connor, Darren K. Griffin, and Denis M. Larkin. "Avian Chromosomal Evolution." In Avian Genomics in Ecology and Evolution, 69–92. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16477-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Starck, J. M. "Evolution of Avian Ontogenies." In Current Ornithology, 275–366. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-9582-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Helbig, Andreas J. "Evolution of Bird Migration: A Phylogenetic and Biogeographic Perspective." In Avian Migration, 3–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05957-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rappole, John H., and Karl-L. Schuchmann. "Ecology and Evolution of Hummingbird Population Movements and Migration." In Avian Migration, 39–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05957-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ricklefs, Robert E. "Avian Energetics, Ecology, and Evolution." In Avian Energetics and Nutritional Ecology, 1–30. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0425-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guigueno, Mélanie F., and Spencer G. Sealy. "Implications of Nest Sanitation in the Evolution of Egg Rejection." In Avian Brood Parasitism, 385–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73138-4_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Krüger, Oliver, and Martina Pauli. "Evolution of Avian Brood Parasitism and Phylogenetic History of Brood Parasites." In Avian Brood Parasitism, 43–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73138-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Canchao, Wei Liang, and Anders Pape Møller. "Egg Color Polymorphism in Brood Parasites and Their Hosts: Adaptation and Evolution." In Avian Brood Parasitism, 345–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73138-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Organ, Chris L., and Scott V. Edwards. "Major Events in Avian Genome Evolution." In Living Dinosaurs, 325–37. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119990475.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moskát, Csaba, Mark E. Hauber, and Matthew I. M. Louder. "The Evolution of Nest Sharing and Nest Mate Killing Strategies in Brood Parasites." In Avian Brood Parasitism, 475–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-73138-4_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Avian evolution"

1

PEPPERBERG, IRENE. "AN AVIAN MODEL FOR LANGUAGE EVOLUTION." In Proceedings of the 8th International Conference (EVOLANG8). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295222_0097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mosley, Liam, and Dhananjai M. Rao. "Analyzing Evolution of Avian Influenza using detailed Genotypic and Antigenic Models and Phylodynamic Simulation." In The 2019 Conference on Artificial Life. Cambridge, MA: MIT Press, 2019. http://dx.doi.org/10.1162/isal_a_00165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mosley, Liam, and Dhananjai M. Rao. "Analyzing Evolution of Avian Influenza using detailed Genotypic and Antigenic Models and Phylodynamic Simulation." In The 2019 Conference on Artificial Life. Cambridge, MA: MIT Press, 2019. http://dx.doi.org/10.1162/isal_a_00165.xml.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soulopoulou, Polyxeni, Juan Marco Molina, Maria Padilla Blanco, and Petros Damos. "Interrelationship between Environmental Drivers and Avian Biodiversity in a Mediterranean Like Natura 2000 Wetland and Implications for Conservation Management <sup>†</sup>." In 1st International Electronic Conference on Biological Diversity, Ecology and Evolution. Basel, Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/bdee2021-09488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buskohl, Philip R., Russell A. Gould, and Jonathan T. Butcher. "Biomechanical Analysis of Embryonic Atrioventricular Valvulogenesis." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53791.

Full text
Abstract:
Heart valve development is directed by a complex interaction of molecular and mechanical cues[1]. Both molecular and mechanical based approaches are needed to clarify these relationships. Many technologies exist for the former, but the short length scale and super-compliant material properties of embryonic valve tissue make conventional mechanical testing techniques ineffective. The pipette aspiration technique has been a useful tool in cell mechanics[2] and has recently been applied to adult valve leaflets[3]. Geometric effects of thin, planar tissues however compromise the utility of aspiration based measurements. Herein, we utilize pipette aspiration and a novel uni-axial micro-tensile testing apparatus to quantify the biomechanical evolution of avian embryonic heart valves. We then relate biomechanical stiffening to changes in underlying structural composition.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Avian evolution"

1

Perk, Shimon, Maricarmen Garcia, Alexander Panshin, Caroline Banet-Noach, Irina Gissin, Mark W. Jackwood, and David Stallknecht. Avian Influenza Virus H9N2: Characterization and Control Strategies. United States Department of Agriculture, June 2007. http://dx.doi.org/10.32747/2007.7709882.bard.

Full text
Abstract:
Control of Avian Influenza (AI) infection is a highly topical subject of major economicimportance for the worldwide poultry industry at the national level and for international trade.H9N2 viruses are endemic in poultry throughout Asia and the Middle East, causing major losses inproduction. Moreover, these viruses pose wider threats since they have been isolated from bothswine and humans. At the same time, study of the AI viruses affords an opportunity to explore anumber of problems of intriguing scientific interest. The overall goal of this project was to developa sound control strategy for avian influenza subtype H9N2 viruses (AI H9N2) in commercialpoultry in Israel. The one-year feasibility study focused on two main goals, namely: to study themolecular characteristics of AI H9N2 circulating during the last seven years in Israel and todevelop tools enabling differentiation between the immune response to vaccination and infectionwith H9N2.Genetic and phylogenetic characterization of 29 selected AI H9N2 isolates (2000-2006)was performed by complete sequencing of hemagglutinin (HA), neuraminidase (NA), and all sixinternal genes [nucleoprotein (NP), polymerase basic 1 (PB1), polymerase basic 2 (PB2),polymerase acid (PA), matrix (M), and nonstructural (NS) genes]; comparative phylogenetic andgenetic analyses of these sequences; and comparative genetic analyses of deduced amino acidsequences of the HA, NA, NS1, and NS2 proteins. The major conclusions of the molecularanalyses were: (1) Israeli isolates, together with other H9N2 viruses isolated in Middle Eastcountries, comprise a single regional sublineage related to the G1-lineage. In addition, Israeliisolates subdivided into three different subgroups. Genetic analysis of these viruses suggests thatthey underwent divergent evolution paths.
APA, Harvard, Vancouver, ISO, and other styles
2

Perk, Simon, Egbert Mundt, Alexander Panshin, Irit Davidson, Irina Shkoda, Ameera AlTori, and Maricarmen Garcia. Characterization and Control Strategies of Low Pathogenic Avian Influenza Virus H9N2. United States Department of Agriculture, November 2012. http://dx.doi.org/10.32747/2012.7697117.bard.

Full text
Abstract:
The avian influenza virus, subtype H9N2 subtype, defined as having a low pathogenicity, causes extensive economical losses in commercial flocks, probably due to management and synergism with other pathogens. AIV H9N2 was first identified in Israel in the year 2000, and since then it became endemic and widespread in Israel. Control by vaccination of commercial flocks with an inactivated vaccine has been introduced since 2007. In face of the continuous H9N2 outbreaks, and the application of the vaccination policy, we aimed in the present study to provide a method of differentiating naturally infected from vaccinated animals (DIVA). The aim of the assay would be detect only antibodies created by a de-novo infection, since the inactivated vaccine virus is not reproducing, and might provide a simple tool for mass detection of novel infections of commercial flocks. To fulfill the overall aim, the project was designed to include four operational objectives: 1. Evaluation of the genetic evolution of AIV in Israel; 2. Assessment of the diagnostic value of an NS1 ELISA; 3. NS1 ELISA as evaluation criteria for measuring the efficacy of vaccination against H9N2 AIV; 4. Development of an AIV H9 subtype specific ELISA systems. Major conclusion and implications drawn from the project were: 1. A continuous genetic change occurred in the collection of H9N2 isolates, and new introductions were identified. It was shown thatthe differences between the HA proteins of viruses used for vaccine productionand local fieldisolatesincreasedin parallelwith the durationand intensity ofvaccine use, therefore, developing a differential assay for the vaccine and the wild type viruses was the project main aim. 2. To assess the diagnostic value of an NS1 ELISA we first performed experimental infection trials using representative viruses of all introductions, and used the sera and recombinant NS1 antigens of the same viruses in homologous and heterologous NS1 ELISA combination. The NS1 ELISA was evidently reactive in all combinations, and did not discriminate significantly between different groups. 3. However, several major drawbacks of the NS1 ELISA were recognized: a) The evaluation of the vaccination effect in challenged birds, showed that the level of the NS1 antibodies dropped due to the vaccination-dependent virus level drop; b) the applicability of the NS1-ELISA was verified on sera of commercial flocks and found to be unusable due to physico-chemical composition of the sera and the recombinant antigen, c) commercial sera showed non-reactivity that might be caused by many factors, including vaccination, uncertainty regarding the infection time, and possibly low antigen avidity, d) NS1 elevated antibody levels for less than 2 months in SPF chicks. Due to the above mentioned reasons we do not recommend the application of the DIVA NS1 ELISA assay for monitoring and differentiation AIV H9N2 naturally-infected from vaccinated commercial birds.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography