Journal articles on the topic 'Avalanche photodiode operated in Geiger mode'

To see the other types of publications on this topic, follow the link: Avalanche photodiode operated in Geiger mode.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Avalanche photodiode operated in Geiger mode.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sugihara, K., E. Yagyu, and Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode." Journal of Applied Physics 99, no. 12 (June 15, 2006): 124502. http://dx.doi.org/10.1063/1.2207575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karve, G., S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune, et al. "Origin of dark counts in In0.53Ga0.47As∕In0.52Al0.48As avalanche photodiodes operated in Geiger mode." Applied Physics Letters 86, no. 6 (February 7, 2005): 063505. http://dx.doi.org/10.1063/1.1861498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salzmann, Hans, Per Nielsen, and Chris Gowers. "Digital single-photon-avalanche-diode arrays for time-of-flight Thomson scattering diagnostics." Review of Scientific Instruments 93, no. 8 (August 1, 2022): 083517. http://dx.doi.org/10.1063/5.0095252.

Full text
Abstract:
The collection optics of Thomson scattering systems for plasma devices are designed with maximum possible étendue to keep the required laser energy low. If the spatial resolution along the laser beam is performed by a time-of-flight method, then the detectors, in addition to a large sensitive area, must offer a high frequency bandwidth. Up until now, only microchannel-plate photomultipliers meet these requirements. Here, we investigate the potential use of digital avalanche photodiode arrays operated in the Geiger mode as alternative detectors. In this mode of operation, each array will serve as a fast, sensitive detector. The use of these detectors will lead to significant improvements of the Thomson scattering diagnostic. Most important of these will be a better spatial resolution, down to about 2 cm without deconvolution. Furthermore, the lifetime of the detectors will be increased; the detectors will cover the whole blue wing of the scattered spectrum when using a single wavelength laser, and this will enable measurements of electron temperature and density profiles at kHz repetition rates.
APA, Harvard, Vancouver, ISO, and other styles
4

Kang, Jong-Ik, Hyuk-Kee Sung, Hyungtak Kim, Eugene Chong, and Ho-Young Cha. "Diode quenching for Geiger mode avalanche photodiode." IEICE Electronics Express 15, no. 9 (2018): 20180062. http://dx.doi.org/10.1587/elex.15.20180062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sciacca, Emilio, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini. "Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays." IEEE Electron Device Letters 29, no. 3 (March 2008): 218–20. http://dx.doi.org/10.1109/led.2007.915373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blazej, Josef. "Photon number resolving in geiger mode avalanche photodiode photon counters." Journal of Modern Optics 51, no. 9-10 (June 1, 2004): 1491–97. http://dx.doi.org/10.1080/09500340408235287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kolb, Kimberly E., Donald F. Figer, Joong Lee, and Brandon J. Hanold. "Radiation tolerance of a Geiger-mode avalanche photodiode imaging array." Journal of Astronomical Telescopes, Instruments, and Systems 2, no. 3 (July 6, 2016): 036001. http://dx.doi.org/10.1117/1.jatis.2.3.036001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Liang, Shaokun Han, Wenze Xia, and Jieyu Lei. "Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems." Review of Scientific Instruments 89, no. 2 (February 2018): 023105. http://dx.doi.org/10.1063/1.4989748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aull, Brian F., Erik K. Duerr, Jonathan P. Frechette, K. Alexander McIntosh, Daniel R. Schuette, and Richard D. Younger. "Large-Format Geiger-Mode Avalanche Photodiode Arrays and Readout Circuits." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 2 (March 2018): 1–10. http://dx.doi.org/10.1109/jstqe.2017.2736440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Liang, Shaokun Han, and Jieyu Lei. "Optical attenuator for Geiger mode avalanche photodiode laser detection systems." Optik - International Journal for Light and Electron Optics 153 (January 2018): 144–55. http://dx.doi.org/10.1016/j.ijleo.2017.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Lianghui, Dong Zhou, Hai Lu, Wenkai Liu, Xiaofan Mo, Fangfang Ren, Dunjun Chen, et al. "4H–SiC Avalanche Photodiode Linear Array Operating in Geiger Mode." IEEE Photonics Journal 9, no. 5 (October 2017): 1–7. http://dx.doi.org/10.1109/jphot.2017.2750686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aull, Brian. "Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits." Sensors 16, no. 4 (April 8, 2016): 495. http://dx.doi.org/10.3390/s16040495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gatt, Philip, Steven Johnson, and Terry Nichols. "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics." Applied Optics 48, no. 17 (June 8, 2009): 3261. http://dx.doi.org/10.1364/ao.48.003261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gatt, Philip, Steven Johnson, and Terry Nichols. "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics." Applied Optics 48, no. 17 (June 8, 2009): 3262. http://dx.doi.org/10.1364/ao.48.003262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

KAGAWA, T. "Design of Deep Guard Ring for Geiger Mode Operation Avalanche Photodiode." IEICE Transactions on Electronics E88-C, no. 11 (November 1, 2005): 2136–40. http://dx.doi.org/10.1093/ietele/e88-c.11.2136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Grzesik, Michael, Robert Bailey, Joe Mahan, and Jim Ampe. "Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays." Journal of Electronic Materials 44, no. 11 (September 11, 2015): 4187–90. http://dx.doi.org/10.1007/s11664-015-3975-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong, Byung Wook Kim, and Dong Jo Park. "Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode." Review of Scientific Instruments 81, no. 3 (March 2010): 033109. http://dx.doi.org/10.1063/1.3374109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang Dinan, 王弟男, 陈长青 Chen Changqing, and 王挺峰 Wang Tingfeng. "A Study on Photon Counting Detection Principle of Geiger-Mode Avalanche Photodiode." Laser & Optoelectronics Progress 49, no. 12 (2012): 121202. http://dx.doi.org/10.3788/lop49.121202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ng, J. S., C. H. Tan, G. J. Rees, and J. P. R. David. "Effects of dead space on breakdown probability in Geiger mode avalanche photodiode." Journal of Modern Optics 54, no. 2-3 (January 20, 2007): 353–60. http://dx.doi.org/10.1080/09500340600753814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Johnson, I., Z. Sadygov, O. Bunk, A. Menzel, F. Pfeiffer, and D. Renker. "A Geiger-mode avalanche photodiode array for X-ray photon correlation spectroscopy." Journal of Synchrotron Radiation 16, no. 1 (November 21, 2008): 105–9. http://dx.doi.org/10.1107/s0909049508034365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Qiaoli, Li Xu, Yuxin Jin, Shifeng Zhang, Yitong Wang, Anqi Hu, and Xia Guo. "Ultraviolet Response in Coplanar Silicon Avalanche Photodiodes with CMOS Compatibility." Sensors 22, no. 10 (May 20, 2022): 3873. http://dx.doi.org/10.3390/s22103873.

Full text
Abstract:
Highly sensitive ultraviolet (UV) photodetectors are highly desired for industrial and scientific applications. However, the responsivity of silicon photodiodes in the UV wavelength band is relatively low due to high-density Si/SiO2 interface states. In this paper, a coplanar avalanche photodiode (APD) was developed with a virtual guard ring design. When working in Geiger mode, it exhibited a strong UV response. The responsivity of 4 × 103 A/W (corresponding to a gain of 8 × 106) at 261 nm is measured under the incident power of 0.6 μW with an excess bias of 1.5 V. To the best of our knowledge, the maximum 3-dB bandwidth of 1.4 GHz is the first report ever for a Si APD when working in the Geiger mode in spite of the absence of an integrated CMOS read-out circuit.
APA, Harvard, Vancouver, ISO, and other styles
22

Qu, Chengzhi, Yan Zhang, Yang Yang, and Shuang Wang. "Discrete probabilistic detection model for a Geiger-mode avalanche photodiode array with crosstalk." Optics Letters 46, no. 6 (March 15, 2021): 1442. http://dx.doi.org/10.1364/ol.419204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kolb, Kimberly. "Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors." Optical Engineering 53, no. 8 (March 31, 2014): 081904. http://dx.doi.org/10.1117/1.oe.53.8.081904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Henriksson, Markus. "Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array." Optical Engineering 57, no. 09 (September 12, 2018): 1. http://dx.doi.org/10.1117/1.oe.57.9.093104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zhou, Xin, Jianfeng Sun, Peng Jiang, Di Liu, and Qi Wang. "Influence investigation on ranging performance for range-gated Geiger-mode avalanche photodiode ladar." Applied Optics 57, no. 10 (March 30, 2018): 2667. http://dx.doi.org/10.1364/ao.57.002667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Viterbini, Maurizio, Sergio Nozzoli, Massimo Poli, Alberto Adriani, Francesco Nozzoli, Angelina Ottaviano, and Stefano Ponzo. "Voltage breakdown follower avoids hard thermal constraints in a Geiger mode avalanche photodiode." Applied Optics 35, no. 27 (September 20, 1996): 5345. http://dx.doi.org/10.1364/ao.35.005345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Luu, Jane X., and Leaf A. Jiang. "Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays." Applied Optics 45, no. 16 (June 1, 2006): 3798. http://dx.doi.org/10.1364/ao.45.003798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Qu, Hui-Ming, Yi-Fan Zhang, Zhong-Jie Ji, and Qian Chen. "The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode." Laser Physics Letters 10, no. 10 (August 14, 2013): 105201. http://dx.doi.org/10.1088/1612-2011/10/10/105201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kindt, W. J., N. H. Shahrjerdy, and H. W. van Zeijl. "A silicon avalanche photodiode for single optical photon counting in the Geiger mode." Sensors and Actuators A: Physical 60, no. 1-3 (May 1997): 98–102. http://dx.doi.org/10.1016/s0924-4247(97)01356-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Peng, Zhao, Zhang Yan, Hua Yuming, and Qian Weiping. "Look-back-upon tree recurrence method for Geiger-mode avalanche photodiode performance prediction." Optics Letters 40, no. 16 (August 10, 2015): 3822. http://dx.doi.org/10.1364/ol.40.003822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yafan Shi, Yafan Shi, Zhaohui Li Zhaohui Li, Baicheng Feng Baicheng Feng, Peiqin Yan Peiqin Yan, Bingcheng Du Bingcheng Du, Hui Zhou Hui Zhou, Haifeng Pan Haifeng Pan, and and Guang Wu and Guang Wu. "Enhanced solar-blind ultraviolet single-photon detection with a Geiger-mode silicon avalanche photodiode." Chinese Optics Letters 14, no. 3 (2016): 030401–30404. http://dx.doi.org/10.3788/col201614.030401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Luo, Hanjun, Benlian Xu, Huigang Xu, Jingbo Chen, and Yadan Fu. "Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array." Journal of Modern Optics 62, no. 9 (February 3, 2015): 761–68. http://dx.doi.org/10.1080/09500340.2015.1005703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Itzler, Mark A., Uppili Krishnamachari, Mark Entwistle, Xudong Jiang, Mark Owens, and Krystyna Slomkowski. "Dark Count Statistics in Geiger-Mode Avalanche Photodiode Cameras for 3-D Imaging LADAR." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 6 (November 2014): 318–28. http://dx.doi.org/10.1109/jstqe.2014.2321525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Carroll, M. S., K. Childs, R. Jarecki, T. Bauer, and K. Saiz. "Ge–Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection." Applied Physics Letters 93, no. 18 (November 3, 2008): 183511. http://dx.doi.org/10.1063/1.3020297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ge, Peng, Cong Chen, Zhen Shang, Yanen Fan, Jingjing Guo, Zibo Zhuang, and Jialong Ge. "Three-Dimensional Laser Imaging Based on a Photon-Counting Avalanche Photodiode Array." EPJ Web of Conferences 237 (2020): 07026. http://dx.doi.org/10.1051/epjconf/202023707026.

Full text
Abstract:
Photon-counting detector array is very desired for high-resolution laser imaging based on direct time-of-flight measurement. Such systems have potential applications in remote sensing with long distances. We will perform three-dimensional imaging using a large InGaAs Geiger-mode avalanche photodiode array which has single-photon sensitivity. To improve the image quality with only a few photon detections, the photon counting imaging process is analyzed and a regularization method based on pixel spatial correlation is employed for image reconstruction. The performance of the method is compared with that of conventional maximum likelihood estimation on intensity and range image reconstructions of a building about six hundred meters away.
APA, Harvard, Vancouver, ISO, and other styles
36

Vilella, E., and A. Diéguez. "Avoiding sensor blindness in Geiger mode avalanche photodiode arrays fabricated in a conventional CMOS process." Journal of Instrumentation 6, no. 12 (December 2, 2011): C12005. http://dx.doi.org/10.1088/1748-0221/6/12/c12005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Vilella, E., A. Comerma, O. Alonso, D. Gascon, and A. Diéguez. "Gated Geiger mode avalanche photodiode pixels with integrated readout electronics for low noise photon detection." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (December 2012): 218–21. http://dx.doi.org/10.1016/j.nima.2011.12.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ke, Shaoying, Shaoming Lin, Wei Huang, Jianyuan Wang, Buwen cheng, Kun Liang, Cheng Li, and Songyan Chen. "Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode." Journal of Physics D: Applied Physics 50, no. 5 (January 10, 2017): 055106. http://dx.doi.org/10.1088/1361-6463/aa52b9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Aull, Brian F., Robert K. Reich, Christopher M. Ward, David M. Craig, Douglas J. Young, and Robert L. Johnson. "Detection Statistics in Geiger-Mode Avalanche Photodiode Quad-Cell Arrays With Crosstalk and Dead Time." IEEE Sensors Journal 15, no. 4 (April 2015): 2133–43. http://dx.doi.org/10.1109/jsen.2014.2367235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Buchner, Andre, Stefan Hadrath, Roman Burkard, Florian M. Kolb, Jennifer Ruskowski, Manuel Ligges, and Anton Grabmaier. "Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes." Sensors 21, no. 8 (April 20, 2021): 2887. http://dx.doi.org/10.3390/s21082887.

Full text
Abstract:
Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.
APA, Harvard, Vancouver, ISO, and other styles
41

Luo, Hanjun, Zhengbiao Ouyang, Qiang Liu, Zhiliang Chen, and Hualan Lu. "Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system." Journal of Modern Optics 64, no. 18 (May 17, 2017): 1898–906. http://dx.doi.org/10.1080/09500340.2017.1326636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lee, Kiwon, Byoungwook Lee, Sunwoong Yoon, Jung-ho Hong, and Kyounghoon Yang. "A Low Noise Planar-Type Avalanche Photodiode using a Single-Diffusion Process in Geiger-Mode Operation." Japanese Journal of Applied Physics 52, no. 7R (July 1, 2013): 072201. http://dx.doi.org/10.7567/jjap.52.072201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ke, Shaoying, Shaoming Lin, Danfeng Mao, Xiaoli Ji, Wei Huang, Jianfang Xu, Cheng Li, and Songyan Chen. "Interface State Calculation of the Wafer-Bonded Ge/Si Single-Photon Avalanche Photodiode in Geiger Mode." IEEE Transactions on Electron Devices 64, no. 6 (June 2017): 2556–63. http://dx.doi.org/10.1109/ted.2017.2696579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Mingguo, Xiaogang Bai, Chong Hu, Xiangyi Guo, Joe C. Campbell, Zhong Pan, and Mark M. Tashima. "Low Dark Count Rate and High Single-Photon Detection Efficiency Avalanche Photodiode in Geiger-Mode Operation." IEEE Photonics Technology Letters 19, no. 6 (March 2007): 378–80. http://dx.doi.org/10.1109/lpt.2007.891939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhou, Peng, Zhengjun Wei, Changjun Liao, Chunfei Li, and Shuqiong Yuan. "A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation." Journal of Physics D: Applied Physics 41, no. 15 (June 30, 2008): 155101. http://dx.doi.org/10.1088/0022-3727/41/15/155101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stoykov, A., R. Scheuermann, and K. Sedlak. "A time resolution study with a plastic scintillator read out by a Geiger-mode Avalanche Photodiode." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (December 2012): 202–5. http://dx.doi.org/10.1016/j.nima.2011.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong, and Byung Wook Kim. "Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode." Optics Communications 283, no. 2 (January 2010): 304–8. http://dx.doi.org/10.1016/j.optcom.2009.10.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Zhou, Xin, Jian-Feng Sun, Peng Jiang, Di Liu, Xiao-Jing Shi, and Qi Wang. "Research of detecting the laser’s secondary reflected echo from target by using Geiger-mode avalanche photodiode." Optics Communications 433 (February 2019): 1–9. http://dx.doi.org/10.1016/j.optcom.2018.09.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong, Byung Wook Kim, and Dong Jo Park. "Time-of-Flight Analysis of Three-Dimensional Imaging Laser Radar Using A Geiger-Mode Avalanche Photodiode." Japanese Journal of Applied Physics 49, no. 2 (February 22, 2010): 026601. http://dx.doi.org/10.1143/jjap.49.026601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lü, Hua. "Experimental Characterization of APD and Design of Quenching Circuit for Single-Photon Detection." Applied Mechanics and Materials 246-247 (December 2012): 273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.273.

Full text
Abstract:
In this paper, we experimentally characterize the Inga As/Imp avalanche photodiode (APD), which is working in Geiger mode, so as to choose the single photon detector for quantum communication. Due to the fact that bias of APD tends to be flat after avalanche, we first adopt the methodology of passive quenching to determine dark breakdown voltage. Experiment results indicate that temperature reduction will widen the optimal operating region and increase the optimal multiplication; therefore APD will be more sensitive. Epitaxial APD is the best choice for single-photon detection among the APDs we have tested for its low noise level and high signal-to-noise ratio (SNR). Finally, we design a mixed passive-active quenching integrated circuit with gate control, which is quick with the quenching time of about 25ns and has controllable dead time with minimum of about 60ns.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography