Dissertations / Theses on the topic 'Autonomous vehicle safety measures'

To see the other types of publications on this topic, follow the link: Autonomous vehicle safety measures.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Autonomous vehicle safety measures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Volland, Kirk N. "Design, construction and testing of a prototype holonomic autonomous vehicle." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FVolland.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, December 2007.
Thesis Advisor(s): Harkins, Richard. "December 2007." Description based on title screen as viewed on January 24, 2008. Includes bibliographical references (p. 189-192). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
2

Aslansefat, K., Sohag Kabir, Amr R. A. Abdullatif, Vinod Vasudevan, and Y. Papadopoulos. "Toward Improving Confidence in Autonomous Vehicle Software: A Study on Traffic Sign Recognition Systems." IEEE, 2021. http://hdl.handle.net/10454/18591.

Full text
Abstract:
Yes
This article proposes an approach named SafeML II, which applies empirical cumulative distribution function-based statistical distance measures in a designed human-in-the loop procedure to ensure the safety of machine learning-based classifiers in autonomous vehicle software. The application of artificial intelligence (AI) and data-driven decision-making systems in autonomous vehicles is growing rapidly. As autonomous vehicles operate in dynamic environments, the risk that they can face an unknown observation is relatively high due to insufficient training data, distributional shift, or cyber-security attack. Thus, AI-based algorithms should make dependable decisions to improve their interpretation of the environment, lower the risk of autonomous driving, and avoid catastrophic accidents. This paper proposes an approach named SafeML II, which applies empirical cumulative distribution function (ECDF)-based statistical distance measures in a designed human-in-the-loop procedure to ensure the safety of machine learning-based classifiers in autonomous vehicle software. The approach is model-agnostic and it can cover various machine learning and deep learning classifiers. The German Traffic Sign Recognition Benchmark (GTSRB) is used to illustrate the capabilities of the proposed approach.
This work was supported by the Secure and Safe MultiRobot Systems (SESAME) H2020 Project under Grant Agreement 101017258.
APA, Harvard, Vancouver, ISO, and other styles
3

Todescatt, Daniel 1973. "Influência do sistema pré-crash de segurança veicular em ocupantes de diferentes estaturas : Influence of vehicle pre-crash safety system in occupants of different sizes." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265952.

Full text
Abstract:
Orientador: Antonio Celso Fonseca de Arruda
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-24T20:27:51Z (GMT). No. of bitstreams: 1 Todescatt_Daniel_M.pdf: 4563684 bytes, checksum: 112b516ee4dd9c22aab0bea92df347f4 (MD5) Previous issue date: 2014
Resumo: Esta dissertação visa comparar o desempenho de um sistema convencional de proteção de ocupantes (sistema de retenção) em um veículo de passeio com um sistema pre-crash, considerando ocupantes de três tamanhos diferentes. O termo pre-crash significa que pode ocorrer o disparo do air-bag e pré-tensionador antes do instante de impacto enquanto que no sistema convencional o disparo ocorre sempre após o impacto. Com esta finalidade foi utilizado um modelo de simulação desenvolvido no programa `Madymo¿ combinado ao programa de otimização multidisciplinar `Mode-Frontier¿. Este modelo corresponde à parte do veículo que envolve o motorista e é constituído por parte da carroçaria, assento, coluna de direção e o sistema de retenção. Todo o modelo está sujeito a uma curva de aceleração que representa um impacto frontal contra uma barreira rígida a 50 km/h. São utilizados três tamanhos padronizados de ocupantes representados por bonecos (dummies) que possuem sensores em certas partes do corpo com a finalidade de identificar os índices biomecânicos resultantes do impacto. Estes índices biomecânicos identificam o nível de carga sobre estas partes do corpo e podem ser comparados com critérios estabelecidos em norma. Os três tamanhos de ocupante são definidos da seguinte forma: 5%, 50% e 95%. Onde 5% representa a parcela de 5% da população de menor estatura, 50% representa uma estatura equivalente à média da população e 95% a estatura que é maior que 95% da população. Este padrão é definido de acordo com o tamanho da população americana da época em que estes dummies foram desenvolvidos. O trabalho é dividido em três etapas. Na primeira é utilizado o programa de otimização para dimensionar um sistema de retenção que seja ideal para o 'dummy' tamanho 50%. A partir dos parâmetros determinados para o sistema de retenção são avaliados e comparados os índices biomecânicos dos ocupantes de tamanhos 5% e 95%. O objetivo é demonstrar os riscos a que os ocupantes de dimensões fora do tamanho 50% estão sujeitos. Posteriormente são encontrados, também por meio de algoritmo de otimização, os parâmetros do sistema de retenção que são ideais para os ocupantes 5% e 95%. Novamente é feita uma comparação dos resultados. Por fim é feito um procedimento similar considerando a possibilidade de adiantamento no disparo de dois dispositivos do sistema de retenção: air-bag e pré-tensionador. Novamente é utilizado o algoritmo de otimização para encontrar os parâmetros ideais do sistema de retenção para o ocupante de estatura 50%. Neste caso pode-se verificar se ocorre a melhora dos índices biomecânicos para o ocupante de tamanho 50% comparando-se com os resultados obtidos em um sistema de retenção convencional. Porém, neste caso, o aspecto mais importante deste trabalho é verificar se o adiantamento no tempo de disparo possibilita de redução do risco de ferimentos também para os ocupantes com dimensões 5% e 95% mesmo utilizando-se um sistema de retenção dimensionado para o ocupante de tamanho 50%. Palavras-Chave: segurança veicular, impacto veicular frontal, estatura, simulação, otimização
Abstract: This dissertation aims to compare the performance of a conventional occupants protection system in a passenger vehicle with the performance of a pre-crash system, considering occupants of three different sizes. The term pre-crash means that the firing of the airbag and pretensioner may occur before the instant of impact, while in the conventional system the trigger always occurs after impact. With this purpose a simulation model was developed in the software 'MADYMO' combined with the multidisciplinary optimization software 'Mode-Frontier'. The frontal region of the passengers compartment, the seat, the steering column and the restraint system are modelled. The whole model is subject to an acceleration curve that represents a frontal impact against a rigid barrier at 50 km/h. Three standard occupant sizes represented by dummies are used. They have sensors in certain parts of the body with the purpose of identifying the biomechanical results from an impact. The level of biomechanical loads on parts of the body can be compared with the criteria established in the regulations. The three sizes of occupant are defined as follows: 5%, 50% and 95%. Where 5% is the share of 5% of the population with smaller stature, 50% represents a height equivalent to the average of the population and 95% height that is greater than 95% of the population. The default size is set according to the size of the U.S. population at the time that these dummies were developed. The work is divided into three stages. The first uses an optimization program to obtain a restraint system that is ideal for the dummy size 50%. From the parameters determined for the restraint system the biomechanical indices of occupant sizes 5% and 95% are evaluated and compared. The purpose is to demonstrate the risks to which occupants of dimensions out of size 50% are subject. In the second stage the parameters of the restraint system which are ideal for the sizes 5% and 95% are found, also by means of the numerical optimization algorithm. A comparison of the results for the dummy 5% with parameters for 5 and 50% is made. Also a comparison of the results for the dummy 95% with parameters for 95 and 50% is made. Finally, in the third stage, a similar procedure is done considering the advance in the firing time of two devices from the restraint system: air-bag and pretensioner. Again the optimization algorithm is used to find the optimal parameters for the restraint system considering the occupant height 50%. In this case it is checked whether there are improvements of biomechanical indexes for the occupant size 50%, comparing with the results obtained in a conventional restraint system. Here we reach the most important aspect of this work, which is checking if the advance in firing time results in a reduction of the risk of injury also for occupants with dimensions 5% and 95%, even using a retention system sized for the occupant size 50%. Key Words: vehicle safety, vehicle frontal impact, stature, simulation, optimization
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
4

Hamersma, H. A. (Herman Adendorff). "Longitudinal vehicle dynamics control for improved vehicle safety." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40829.

Full text
Abstract:
An autonomous vehicle is a vehicle that is capable of navigating and driving with no human intervention whatsoever through the utilization of various sensors and positioning systems. The possible applications of autonomous vehicles are widespread, ranging from the aerospace industry to the mining and military sectors where the exposure of human operators to the operating conditions is hazardous to their health and safety. Automobile accidents have become the leading cause of death in certain segments of the world population. Removing the human driver from the decision-making process through automation may result in significantly safer highways. Although full autonomy may be the ultimate goal, there is huge scope for systems that aid the driver in decision making or systems that take over from the driver under conditions where the human driver fails. The aim of the longitudinal control system to be implemented on the Land Rover test vehicle in this study is to improve the vehicle’s safety by controlling the vehicle’s longitudinal behaviour. A common problem with sports-utility-vehicles is the low rollover threshold, due to a high centre of gravity. Rather than modifying the vehicle to increase the rollover threshold, the aim of the control system presented here is to prevent the vehicle from exceeding speeds that would cause the vehicle to reach its rollover threshold. In order to develop a control system that autonomously controls the longitudinal degree of freedom, a model of the test vehicle (a 1997 Land Rover Defender 110 Wagon) was developed in MSC.ADAMS/View and validated experimentally. The model accurately captures the response of the test vehicle to supply forces as generated by the engine and demand forces applied through drag, braking and engine braking. Furthermore, the model has been validated experimentally to provide reliable simulation results for lateral and vertical dynamics. The control system was developed by generating a reference speed that the vehicle must track. This reference speed was formulated by taking into account the vehicle’s limits due to lateral acceleration, combined lateral and longitudinal acceleration and the vehicle’s performance capabilities. The control system generates the desired throttle pedal position, hydraulic pressure in the brake lines, clutch position and gear selection as output. The MSC.ADAMS\View model of the test vehicle was used to evaluate the performance of the control system on various racetracks of which the GPS coordinates were available. The simulation results indicate that the control system performs as expected. Finally, the control system was implemented on the test vehicle and the performance was evaluated by conducting field tests in the form of a severe double lane change manoeuvre. The results of the field tests indicated that the control system limited the acceleration vector of the vehicle’s centre of gravity to prescribed limits, as predicted by the simulation results.
Dissertation (MEng)--University of Pretoria, 2013.
gm2014
Mechanical and Aeronautical Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
5

Dowd, Garrett E. "Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial Vehicles." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574861007798385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guan, Wenyang. "Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42507.

Full text
Abstract:
Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes.
APA, Harvard, Vancouver, ISO, and other styles
7

Adolfsson, Alexander, and Daniel Arrhenius. "Overseeing Intersection System for Autonomous Vehicle Guidance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254219.

Full text
Abstract:
Intersections represents one of the most common accident sites in traffic today. The biggest cause of accidents is obstructed view and subpar communication between vehicles. Since autonomous vehicles rely on sensors that require a direct view intersections are some of the most complex situations. Where the potential for inter vehicular communication exists between modern vehicles, it is absent in the older generation. An overseeing intersection system can fill this function during the transition period to fully autonomous traffic. This project aimed to implement an intersection system to assist autonomous vehicles through a crossroad. The assist system’s objective was to collect and transmit data from cars close to the junction to the autonomous vehicles nearby. The concept was tested in simulations by having models traverse a crossroad to evaluate how it utilised the external information. No persistent conclusion could be made due to insufficient simulation environment and vehicle model control.
APA, Harvard, Vancouver, ISO, and other styles
8

Yevdokymenkova, Kateryna, and Катерина Андріївна Євдокименкова. "Autonomous transport of the future." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50582.

Full text
Abstract:
1. GEAR 2030 and Strategy 2018-2020 – Comparative analysis of the competitive position of the EU automotive industry and the impact of the introduction of autonomous vehicles [Electronic resource] // Publications Office of the EU. – 2020. – Access mode: https://cutt.ly/QcoLTmU. 2. Unmanned multi-purpose vehicles: modern technologies / O. Ya. Nikonov, L. E. Kulakova, T. O. Polosukhina, V. O. Chernyshov. // Automotive and Electronics. Modern technology.. – 2017. – №11. – С. 46–49. Scientific adviser - doctor of Economics, professor Yanchuk M.B.
The idea of autonomous car control has existed for almost a century. However, only now advances in sensors, efficient drives, new materials, and increased computing power led to the realization of this idea
Ідея автономного управління автомобілем існує майже століття. Однак лише зараз досягнення в сенсорах, ефективних приводах, нових матеріалах та збільшеній обчислювальній потужності призвели до її реалізації.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yuan-Fang. "Computer Vision Analysis for Vehicular Safety Applications." International Foundation for Telemetering, 2015. http://hdl.handle.net/10150/596451.

Full text
Abstract:
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV
In this paper, we present our research on using computer-vision analysis for vehicular safety applications. Our research has potential applications for both autonomous vehicles and connected vehicles. In particular, for connected vehicles, we propose three image analysis algorithms that enhance the quality of a vehicle's on-board video before inter-vehicular information exchange takes place. For autonomous vehicles, we are investigating a visual analysis scheme for collision avoidance during back up and an algorithm for automated 3D map building. These algorithms are relevant to the telemetering domain as they involve determining the relative pose between a vehicle and other vehicles on the road, or between a vehicle and its 3D driving environment, or between a vehicle and obstacles surrounding the vehicle.
APA, Harvard, Vancouver, ISO, and other styles
10

Ojdanic, Milos. "SYSTEMATIC LITERATURE REVIEW OF SAFETY-RELATED CHALLENGES FOR AUTONOMOUS SYSTEMS IN SAFETY-CRITICAL APPLICATIONS." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-43980.

Full text
Abstract:
An increased focus on the development of autonomous safety-critical systems requiresmore attention at ensuring safety of humans and the environment. The mainobjective of this thesis is to explore the state of the art and to identify the safetyrelatedchallenges being addressed for using autonomy in safety-critical systems. Inparticular, the thesis explores the nature of these challenges, the different autonomylevels they address and the type of safety measures as proposed solutions. Above all,we focus on the safety measures by a degree of adaptiveness, time of being activeand their ability of decision making. Collection of this information is performedby conducting a Systematic Literature Review of publications from the past 9 years.The results showed an increase in publications addressing challenges related to theuse of autonomy in safety-critical systems. We managed to identify four high-levelclasses of safety challenges. The results also indicate that the focus of research wason finding solutions for challenges related to full autonomous systems as well assolutions that are independent of the level of autonomy. Furthermore, consideringthe amount of publications, results show that non-learning solutions addressing theidentified safety challenges prevail over learning ones, active over passive solutionsand decisive over supportive solutions.
APA, Harvard, Vancouver, ISO, and other styles
11

Munoz, Alex. "Exploring Strategies for Adapting Traditional Vehicle Design Frameworks to Autonomous Vehicle Design." ScholarWorks, 2020. https://scholarworks.waldenu.edu/dissertations/7944.

Full text
Abstract:
Fully autonomous vehicles are expected to revolutionize transportation, reduce the cost of ownership, contribute to a cleaner environment, and prevent the majority of traffic accidents and related fatalities. Even though promising approaches for achieving full autonomy exist, developers and manufacturers have to overcome a multitude of challenged before these systems could find widespread adoption. This multiple case study explored the strategies some IT hardware and software developers of self-driving cars use to adapt traditional vehicle design frameworks to address consumer and regulatory requirements in autonomous vehicle designs. The population consisted of autonomous driving technology software and hardware developers who are currently working on fully autonomous driving technologies from or within the United States, regardless of their specialization. The theory of dynamic capabilities was the conceptual framework used for the study. Interviews from 7 autonomous vehicle hard and software engineers, together with 15 archival documents, provided the data points for the study. A thematic analysis was used to code and group results by themes. When looking at the results through the lens of dynamic capability theory, notable themes included regulatory uncertainty, functional safety, rapid iteration, and achieving a competitive advantage. Based on the findings of the study, implications for social change include the need for better regulatory frameworks to provide certainty, consumer education to manage expectations, and universal development standards that could integrate regulatory and design needs into a single approach.
APA, Harvard, Vancouver, ISO, and other styles
12

Roediger, Micah David. "Exploring human-vehicle communication to balance transportation safety and efficiency: A naturalistic field study of pedestrian-vehicle interactions." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96198.

Full text
Abstract:
While driving behavior is generally governed by the nature and the driving objectives of the driver, there are many situations (typically in crowded traffic conditions) where tacit communication between vehicle drivers and pedestrians govern driving behavior, significantly influencing transportation safety. The study aimed to formalize the tacit communication between vehicle drivers and pedestrians, in order to inform an investigation on effective communication mechanisms between autonomous vehicle and humans. Current autonomous vehicles engage in decision making primarily controlled by on-board or external sensory information, and do not explicitly consider communication with pedestrians. The study was a within subject 2x2x2 factorial experimental design. The three independent variables were driving context (normal driving vs. autonomous vehicle placard), driving route (1 vs. 2), and narration (yes vs. no). The primary outcome variable was driver-yield behavior. Each of the ten drivers completed the factorial design, requiring eight total drives. Data were collected using a data acquisition system (DAS) designed and installed on the experimental vehicle by the Virginia Tech Transportation Institute. The DAS collected video, audio, and kinematic data. Videos were coded using a proprietary software program, Hawkeye, based on an a priori data directory. Recommendations for future autonomous vehicle research and programming are provided.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
13

Gim, Gwanghun. "Vehicle dynamic simulation with a comprehensive model for pneumatic tires." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184478.

Full text
Abstract:
This study presents an analytical approach for the mechanics of the pneumatic tires and the vehicle dynamic simulation. Most of tire dynamic parameters in this study are derived by using the tire geometry rather than experimental data. For the tire dynamic properties, explicit formulations are derived analytically as functions of slip ratio, slip angle, camber angle, and other tire dynamic parameters. These formulations can be efficiently used for the general vehicle simulations of braking/traction and steering maneuvers with a varying camber angle at irregular terrains. For on-highway vehicle simulations, a conceptual sports car is modeled as a twenty-six degrees of freedom multi-body system, while the military 1/4 ton truck M151-A2 is modeled as a fourteen degrees of freedom multi-body system for off-highway vehicle simulations. To study vehicle ride comfort, stability, and maneuverability, numerous vehicle simulations are performed using the comprehensive tire model, steering, braking, traction, nonlinear suspension, and realistic irregular terrains. For these simulations, a general-purpose multi-body dynamic analysis code (named MBOSS) has been developed.
APA, Harvard, Vancouver, ISO, and other styles
14

Eichaker, Lauren R. "Injury Mechanisms and Outcomes in Lead Vehicle Stopped, Near Side, and Lane Change-Related Impacts: Implications for Autonomous Vehicle Behavior Design." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500330466825096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Anistratov, Pavel. "Computation of Autonomous Safety Maneuvers Using Segmentation and Optimization." Licentiate thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162164.

Full text
Abstract:
This thesis studies motion planning for future autonomous vehicles with main focus on passenger cars. By having automatic steering and braking together with information about the environment, such as other participants in the traffic or obstacles, it would be possible to perform autonomous maneuvers while taking limitations of the vehicle and road–tire interaction into account. Motion planning is performed to find such maneuvers that bring the vehicle from the current state to a desired future state, here by formulating the motion-planning problem as an optimal control problem. There are a number of challenges for such an approach to motion planning; some of them are how to formulate the criterion in the motion planning (objective function in the corresponding optimal control problem), and how to make the solution of motion-planning problems efficient to be useful in online applications. These challenges are addressed in this thesis. As a criterion for motion-planning problems of passenger vehicles on doublelane roads, it is investigated to use a lane-deviation penalty function to capture the observation that it is dangerous to drive in the opposing lane, but safe to drive in the original lane after the obstacle. The penalty function is augmented with certain additional terms to address also the recovery behavior of the vehicle. The resulting formulation is shown to provide efficient and steady maneuvers and gives a lower time in the opposing lane compared to other objective functions. Under varying parameters of the scenario formulation, the resulting maneuvers are changing in a way that exhibits structured characteristics. As an approach to improve efficiency of computations for the motion-planning problem, it is investigated to segment motion planning of the full maneuver into several smaller maneuvers. A way to extract segments is considered from a vehicle dynamics point of view, and it is based on extrema of the vehicle orientation and the yaw rate. The segmentation points determined using this approach are observed to allow efficient splitting of the optimal control problem for the full maneuver into subproblems. Having a method to segment maneuvers, this thesis further studies methods to allow parallel computation of these maneuvers. One investigated method is based on Lagrange relaxation and duality decomposition. Smaller subproblems are formulated, which are governed by solving a low-complexity coordination problem. Lagrangian relaxation is performed on a subset of the dynamic constraints at the segmentation points, while the remaining variables are predicted. The prediction is possible because of the observed structured characteristics resulting from the used lane-deviation penalty function. An alternative approach is based on adoption of the alternating augmented Lagrangian method. Augmentation of the Lagrangian allows to apply relaxation for all dynamic constraints at the segmentation points, and the alternating approach makes it possible to decompose the full problem into subproblems and coordinating their solutions by analytically solving an overall coordination problem. The presented decomposition methods allow computation of maneuvers with high correspondence and lower computational times compared to the results obtained for solving the full maneuver in one step.
APA, Harvard, Vancouver, ISO, and other styles
16

Hamren, Rasmus. "APPLYING UAVS TO SUPPORT THE SAFETY IN AUTONOMOUS OPERATED OPEN SURFACE MINES." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-53376.

Full text
Abstract:
Unmanned aerial vehicle (UAV) is an expanding interest in numerous industries for various applications. Increasing development of UAVs is happening worldwide, where various sensor attachments and functions are being added. The multi-function UAV can be used within areas where they have not been managed before. Because of their accessibility, cheap purchase, and easy-to-use, they replace expensive systems such as helicopters- and airplane-surveillance. UAV are also being applied into surveillance, combing object detection to video-surveillance and mobility to finding an object from the air without interfering with vehicles or humans ground. In this thesis, we solve the problem of using UAV on autonomous sites, finding an object and critical situation, support autonomous site operators with an extra safety layer from UAVs camera. After finding an object on such a site, uses GPS-coordinates from the UAV to see and place the detected object on the site onto a gridmap, leaving a coordinate-map to the operator to see where the objects are and see if the critical situation can occur. Directly under the object detection, reporting critical situations can be done because of safety-distance-circle leaving warnings if objects come to close to each other. However, the system itself only supports the operator with extra safety and warnings, leaving the operator with the choice of pressing emergency stop or not. Object detection uses You only look once (YOLO) as main object detection Neural Network (NN), mixed with edge-detection for gaining accuracy during bird-eye-views and motion-detection for supporting finding all object that is moving on-site, even if UAV cannot find all the objects on site. Result proofs that the UAV-surveillance on autonomous site is an excellent way to add extra safety on-site if the operator is out of focus or finding objects on-site before startup since the operator can fly the UAV around the site, leaving an extra-safety-layer of finding humans on-site before startup. Also, moving the UAV to a specific position, where extra safety is needed, informing the operator to limit autonomous vehicles speed around that area because of humans operation on site. The use of single object detection limits the effects but gathered object detection methods lead to a promising result while printing those objects onto a global positions system (GPS) map has proposed a new field to study. It leaves the operator with a viewable interface outside of object detection libraries.
APA, Harvard, Vancouver, ISO, and other styles
17

Lause, Federico Valentin III. "Adapting Crash Modification Factors for the Connected and Autonomous Vehicle Environment." UKnowledge, 2019. https://uknowledge.uky.edu/ce_etds/90.

Full text
Abstract:
The Crash Modification Factor (CMF) clearinghouse can be used to estimate benefits for specific highway safety countermeasures. It assists safety professionals in the allocation of investments. The clearinghouse contains over 7000 entries of which only 446 are categorized as intelligent transportation systems or advanced technology, but none directly address connected or autonomous vehicles (CAVs). Further, the effectiveness of highway safety countermeasures is assumed to remain constant over time, an assumption that is particularly problematic as new technologies are introduced. For example, for the existing fleet of human-driven vehicles, installation of rumble strip can potentially reduce “run-off-road” crashes by 40%. If specific CAV technologies, e.g., lane-tracking, can work without rumble strips, and say, half of all cars are so equipped, only half of the fleet will benefit, reducing the benefits of rumble strips by a commensurate amount. Benefits of the two improvements, e.g., rumble strips and automated vehicles, should not be double-counted. As there will still be human-driven and/or non-connected vehicles in the fleet, conventional countermeasures are still necessary, although returns on conventional safety investments may be significantly overestimated. This is important as safety investments should be optimized and geared to future, not past fleets. Moreover, as CMFs are based on historical events, the types of crashes experienced by human-driven, un-connected cars are likely to be much different in the future. This research presents methods to estimate the safety benefits that autonomous vehicles have to offer and the changes needed in CMFs as a result of their adoption. This will primarily be achieved by modifying and enhancing a tool co-developed by the Fellow that estimates the safety benefits of different levels of autonomy. This tool, ddSAFCAT, estimates CAV safety benefits using real-world data for crashes, market penetration, and effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
18

Rezvani, Arany Roushan. "Gaussian Process Model Predictive Control for Autonomous Driving in Safety-Critical Scenarios." Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-161430.

Full text
Abstract:
This thesis is concerned with model predictive control (MPC) within the field of autonomous driving. MPC requires a model of the system to be controlled. Since a vehicle is expected to handle a wide range of driving conditions, it is crucial that the model of the vehicle dynamics is able to account for this. Differences in road grip caused by snowy, icy or muddy roads change the driving dynamics and relying on a single model, based on ideal conditions, could possibly lead to dangerous behaviour. This work investigates the use of Gaussian processes for learning a model that can account for varying road friction coefficients. This model is incorporated as an extension to a nominal vehicle model. A double lane change scenario is considered and the aim is to learn a GP model of the disturbance based on previous driving experiences with a road friction coefficient of 0.4 and 0.6 performed with a regular MPC controller. The data is then used to train a GP model. The GPMPC controller is then compared with the regular MPC controller in the case of trajectory tracking. The results show that the obtained GP models in most cases correctly predict the model error in one prediction step. For multi-step predictions, the results vary more with some cases showing an improved prediction with a GP model compared to the nominal model. In all cases, the GPMPC controller gives a better trajectory tracking than the MPC controller while using less control input.
APA, Harvard, Vancouver, ISO, and other styles
19

Jonasson, Mats. "Exploiting individual wheel actuators to enhance vehicle dynamics and safety in electric vehicles." Doctoral thesis, KTH, Fordonsdynamik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11005.

Full text
Abstract:
This thesis is focused on individual wheel actuators in road vehicles intended for vehicle motion control. Particular attention is paid to electro-mechanical actuators and how they can contribute to improving vehicle dynamics and safety. The employment of individual wheel actuators at the vehicle's four corner results in a large degree of over-actuation. Over-actuation has a potential of exploiting the vehicle's force constraints at a high level and of controlling the vehicle more freely. One important reason for using over-actuated vehicles is their capability to assist the driver to experience the vehicle as desired. This thesis demonstrates that critical situations close to the limits can be handled more efficiently by over-actuation. To maximise the vehicle performance, all the available actuators are systematically exploited within their force constraints.  Therefore, force constraints for the individually controlled wheel are formulated, along with important restrictions that follow as soon as a reduction in the degrees of freedom of the wheel occurs. Particular focus is directed at non-convex force constraints arising from combined tyre slip characteristics. To evaluate the differently actuated vehicles, constrained control allocation is employed to control the vehicle. The allocation problem is formulated as an optimisation problem, which is solved by non-linear programming. To emulate realistic safety critical scenarios, highly over-actuated vehicles are controlled and evaluated by the use of a driver model and a validated complex strongly non-linear vehicle model. it is shown that, owing to the actuator redundancy, over-actuated vehicles possess an inherent capacity to handle actuator faults, with less need for extra hardware or case-specific fault-handling strategies.
QC 20100722
APA, Harvard, Vancouver, ISO, and other styles
20

Jun, Jungwook. "Potential Crash Measures Based on GPS-Observed Driving Behavior Activity Metrics." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19832.

Full text
Abstract:
Identifying and understanding the relationships between observed driving behavior over long-term periods and corresponding crash involvement rates is paramount to enhancing safety improvement programs and providing useful insights for transportation safety engineers, policy markers, insurance industries, and the public. Unlike previous data collection methods, recent advancement in mobile computing and accuracy of global positioning systems (GPS) allow researchers to monitor driving activities of large fleets of vehicles, for long-time study periods, at great detail. This study investigates the driving patterns of drivers who have and who have not experienced crashes during a 14-month study period using the longitudinally collected GPS data during a six-month Commute Atlanta study. This investigation allows an empirical investigation to assess whether drivers with recent crash experiences exhibit different driving or activity patterns (travel mileage, travel duration, speed, acceleration, speed stability duration, frequency of unfamiliar roadway activities, frequency of turn movement activities, and previous crash location exposures). This study also discusses various techniques of implementing GPS data streams in safety analyses. Finally, this study provides useful guidance for researchers who plan to evaluate the relationships between driver driving behavior and crash risk with large sample data and proposes driving behavior activity exposure metrics of individual drivers for possible safety surrogate measures as well as for driver re-training and education programs.
APA, Harvard, Vancouver, ISO, and other styles
21

Douglas, Matthew Aaron. "Commercial Motor Vehicle Driver Safety: An Application of Ethics Theory." Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc11048/.

Full text
Abstract:
Safety is an important aspect of ethical, socially responsible logistics. Current U.S. motor carrier (MC) safety research topical coverage includes the effects of individual and environmental influences, carrier safety management, and regulatory compliance on carrier safety and driver fatigue/safety performance. Interestingly, little research on the subject of truck drivers' safety attitudes and behaviors exists and the underlying decision-making processes that guide drivers' safety-related behaviors have received little attention. Furthermore, researchers have not provided an integrated framework that explains individual, organizational, and regulatory factors' impact on drivers' safety decision-making and performance. Truck drivers' safety judgments, decisions, and actions must adhere to societal safety norms. To that end, ethical decision-making theory that draws from the deontological and teleological traditions in moral philosophy provides a theoretical foundation and integrated framework necessary to better understand drivers' safety decision-making processes. The current research sought to determine how drivers rely on safety norms and perceived consequences in forming safety judgments and behavioral intentions. Furthermore, the study was designed to explore how various factors (i.e., individual, organizational, and regulatory) influence drivers' safety decision-making processes. Specifically, the study sought to answer the broad question, "How do commercial motor vehicle drivers make safety-related decisions, and how do individual, organizational, and regulatory factors influence drivers' safety decision-making processes?" An experimental two-factor design (2×2) was used to manipulate safety norms (i.e., "deontologically unsafe situation" and "deontologically safe situation") and consequences (i.e., "positive consequences" and "negative consequences"). Multivariate statistical analysis revealed that drivers primarily rely on deontological evaluations in forming safety judgments. Furthermore, drivers primarily relied on safety judgments when forming behavioral intentions. Drivers' attitudes toward unsafe actions and the effectiveness of driver-related safety regulations were also influential to drivers' judgments and intentions, respectively. The empirical findings demonstrate to managers that communication and education of safety norms may be highly effective to improve safety in unique occupational contexts where employees are given high levels of responsibility with little physical supervision, and where judgment errors can have devastating consequences for multiple stakeholders.
APA, Harvard, Vancouver, ISO, and other styles
22

Farley, William Robert. "An Analysis of Bicycle-Vehicle Interactions at Signalized Intersections with Bicycle Boxes." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1618.

Full text
Abstract:
A before-and-after analysis was performed at eleven intersections where a bike box was installed in Portland, Oregon to explore the safety effects of the treatment. Video data were gathered prior to installation at 14 intersections where a bike box installation was planned by the Portland Bureau of Transportation. Cameras were set up to capture three full twenty-four hour days (72 hours) of data for each intersection from Tuesday through Thursday. Of the 14 original selected intersections, 11 intersections actually received the bike box treatment. Video data were again gathered for these intersections after the installation of the bike box for another three full twenty-four hour days (72 hours) between Tuesday and Thursday. One day of data (24 hours) was selected for observation from both the before and after periods in the analysis for each study intersection during midweek. Safety effects were evaluated by three metrics: 1) observed conflicts; 2) observed cyclist behavior for all conflicts as measured by head or shoulder checks; and 3) reported crash data. To develop the conflict data, a log was created of each motor vehicle and bicycle passing through the intersection for approximately 528 hours of video. All conflicts that were observed during the period were further reviewed by an expert panel that scored conflicts by severity. Following this review, a total of 18 conflicts were observed during the before period. The total exposure in the before period was 39,497 motor vehicles in the vehicle lane adjacent to the bike lane (10,454 of which were right-turning) and 7,849 bicycles. A total of 19 conflicts were observed during the after period. Total exposure was 42,381 motor vehicles in the vehicle lane adjacent to the bike lane (11,053 of which were right-turning) and 5,852 bicycles. The sample size of observed conflicts was insufficient to draw statistically significant conclusions for any of the specific intersections that were treated. When taking in account the total amount of conflicts, the limited data suggest a slight increase in the rate of conflicts when normalized against a product of right-turning vehicles and bicycles observed in the intersection. The data also suggest that the installation of a bike box at an intersection reduces the rate of conflicts per hundred motor vehicles and increases the rate of conflicts per hundred bicyclists. Data regarding head-checks from the bicyclist shows an increase in bicyclists observing the possibility of conflicts approaching from behind as they pass through the intersection. A review or crash data at each of the intersections shows an increase at three of the observed intersections and a decrease at the remaining five.
APA, Harvard, Vancouver, ISO, and other styles
23

Vlahija, Chippen, and Ahmed Abdulkader. "Real-time vehicle and pedestrian detection, a data-driven recommendation focusing on safety as a perception to autonomous vehicles." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20089.

Full text
Abstract:
Object detection exists in many countries around the world after a recent growing interest for autonomous vehicles in the last decade. This paper focuses on a vision-based approach focusing on vehicles and pedestrians detection in real-time as a perception for autonomous vehicles, using a convolutional neural network for object detection. A developed YOLOv3-tiny model is trained with the INRIA dataset to detect vehicles and pedestrians, and the model also measures the distance to the detected objects. The machine learning process is leveraged to describe each step of the training process, it also combats overfitting and increases the speed and accuracy. The authors were able to increase the mean average precision; a way to measure accuracy for object detectors; 31.3\% to 62.14\% based on the result of the training that was done. Whilst maintaining a speed of 18 frames per second.
APA, Harvard, Vancouver, ISO, and other styles
24

Kaalen, Stefan. "Semi-Markov processes for calculating the safety of autonomous vehicles." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252331.

Full text
Abstract:
Several manufacturers of road vehicles today are working on developing autonomous vehicles. One subject that is often up for discussion when it comes to integrating autonomous road vehicles into the infrastructure is the safety aspect. There is in the context no common view of how safety should be quantified. As a contribution to this discussion we propose describing each potential hazardous event of a vehicle as a Semi-Markov Process (SMP). A reliability-based method for using the semi-Markov representation to calculate the probability of a hazardous event to occur is presented. The method simplifies the expression for the reliability using the Laplace-Stieltjes transform and calculates the transform of the reliability exactly. Numerical inversion algorithms are then applied to approximate the reliability up to a desired error tolerance. The method is validated using alternative techniques and is thereafter applied to a system for automated steering based on a real example from the industry. A desired evolution of the method is to involve a framework for how to represent each hazardous event as a SMP.
Flertalet tillverkare av vägfordon jobbar idag på att utveckla autonoma fordon. Ett ämne ofta på agendan i diskussionen om att integrera autonoma fordon på vägarna är säkerhet. Det finns i sammanhanget ingen klar bild över hur säkerhet ska kvantifieras. Som ett bidrag till denna diskussion föreslås här att beskriva varje potentiellt farlig situation av ett fordon som en Semi-Markov process (SMP). En metod presenteras för att via beräkning av funktionssäkerheten nyttja semi-Markov representationen för att beräkna sannolikheten för att en farlig situation ska uppstå. Metoden nyttjar Laplace-Stieltjes transformen för att förenkla uttrycket för funktionssäkerheten och beräknar transformen av funktionssäkerheten exakt. Numeriska algoritmer för den inversa transformen appliceras sedan för att beräkna funktionssäkerheten upp till en viss feltolerans. Metoden valideras genom alternativa tekniker och appliceras sedan på ett system för autonom styrning baserat på ett riktigt exempel från industrin. En fördelaktig utveckling av metoden som presenteras här skulle vara att involvera ett ramverk för hur varje potentiellt farlig situation ska representeras som en SMP.
APA, Harvard, Vancouver, ISO, and other styles
25

Chen, Wei. "Formal Modeling and Automatic Generation of Test Cases for the Autonomous Vehicle." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG002.

Full text
Abstract:
Les véhicules autonomes reposent principalement sur un pilote de système intelligent pour réaliser les fonctions de la conduite autonome. Ils combinent une variété de capteurs (caméras, radars, lidars,..) pour percevoir leurs environnements. Les algorithmes de perception des ADSs (Automated Driving Systems) fournissent des observations sur les éléments environnementaux à partir des données fournies par les capteurs, tandis que les algorithmes de décision génèrent les actions à mettre en oeuvre par les véhicules. Les ADSs sont donc des systèmes critiques dont les pannes peuvent avoir des conséquences catastrophiques. Pour assurer la sûreté de fonctionnement de tels systèmes, il est nécessaire de spécifier, valider et sécuriser la fiabilité de l’architecture et de la logique comportementale de ces systèmes pour toutes les situations qui seront rencontrées par le véhicule. Ces situations sont décrites et générées comme différents cas de test.L'objectif de cette thèse est de développer une approche complète permettant la conceptualisation et la caractérisation de contextes d'exécution pour le véhicule autonome, et la modélisation formelle des cas de test dans le contexte de l’autoroute. Enfin, cette approche doit permettre une génération automatique des cas de test qui ont un impact sur les performances et la fiabilité du véhicule.Dans cette thèse, nous proposons une méthodologie de génération de cas de test composée de trois niveaux. Le premier niveau comprend tous les concepts statiques et mobiles de trois ontologies que nous définissons afin de conceptualiser et de caractériser l'environnement d'execution du véhicule autonome: une ontologie de l'autoroute et une ontologie de la météo pour spécifier l'environnement dans lequel évolue le véhicule autonome, et une ontologie du véhicule qui se compose des feux du véhicule et les actions de contrôle. Chaque concept de ces ontologies est défini en termes d'entité, de sous-entités et de propriétés.Le second niveau comprend les interactions entre les entités des ontologies définies. Nous utilisons les équations de la logique du premier ordre pour représenter les relations entre ces entités.Le troisième et dernier niveau est dédié à la génération de cas de test qui est basée sur l'algèbre des processus PEPA (Performance Evaluation Process Algebra). Celle-ci est utilisée pour modéliser les situations décrites par les cas de test.Notre approche permet de générer automatiquement les cas de test et d'identifier les cas critiques. Nous pouvons générer des cas de test à partir de n'importe quelle situation initiale et avec n'importe quel nombre de scènes. Enfin, nous proposons une méthode pour calculer la criticité de chaque cas de test. Nous pouvons évaluer globalement l'importance d'un cas de test par sa criticité et sa probabilité d'occurrence
Autonomous vehicles mainly rely on an intelligent system pilot to achieve the purpose of self-driving. They combine a variety of sensors (cameras, radars, lidars,..) to perceive their surroundings. The perception algorithms of the Automated Driving Systems (ADSs) provide observations on the environmental elements based on the data provided by the sensors, while decision algorithms generate the actions to be implemented by the vehicles. Therefore, ADSs are safety-critical systems whose failures can have catastrophic consequences. To ensure the safety of such systems, it is necessary to specify, validate and secure the dependability of the architecture and the behavioural logic of ADSs running on vehicle for all the situations that will be met by the vehicle. These situations are described and generated as different test cases.The objective of this thesis is to develop a complete approach allowing the conceptualization and the characterization of execution contexts of autonomous vehicle, and the formal modelling of the test cases in the context of the highway. Finally, this approach has to allow an automatic generation of the test cases that have an impact on the performances and the dependability of the vehicle.In this thesis, we propose a three-layer test case generation methodology. The first layer includes all static and mobile concepts of three ontologies we define in order to conceptualize and characterize the driving environment for the construction of test cases: a highway ontology and a weather ontology to specify the environment in which evolves the autonomous vehicle, and a vehicle ontology which consists of the vehicle lights and the control actions. Each concept of these ontologies is defined in terms of entity, sub-entities and properties.The second layer includes the interactions between the entities of the defined ontologies. We use first-order logic equations to represent the relationships between these entities.The third and last layer is dedicated to the test case generation which is based on the process algebra PEPA (Performance Evaluation Process Algebra), which is used to model the situations described by the test cases.Our approach allows us to generate automatically the test cases and to identify the critical ones. We can generate test cases from any initial situation and with any number of scenes. Finally we propose a method to calculate the criticality of each test case. We can comprehensively evaluate the importance of a test case by its criticality and its probability of occurrence
APA, Harvard, Vancouver, ISO, and other styles
26

de, Oliveira Marcelo Gurgel. "An integrated methodology for the evaluation of the safety impacts of in-vehicle driver warning technologies." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ray, Soumitry J. "Intelligent hazard identification: Dynamic visibility measurement of construction equipment operators." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51968.

Full text
Abstract:
Struck-by fatalities involving heavy equipment such as trucks and cranes accounted for 24.6% of the fatalities between 1997-2007 in the construction industry. Limited visibility due to blind spots and travel in reverse direction are the primary causes of these fatalities. Blind spots are spaces surrounding an equipment that are invisible to the equipment operator. Thus, a hazard is posed to the ground personnel working in the blind spaces of an equipment operator. This research presents a novel approach to intelligently identify potential hazards posed to workers operating near an equipment by determining the visible and blind space regions of an equipment operator in real-time. A depth camera is used to estimate the head posture of the equipment operator and continuously track the head location and orientation using Random Forests algorithm. The head posture information is then integrated with point cloud data of the construction equipment to determine both the visible and the blindspots region of the equipment operator using Ray-Casting algorithm. Simulation and field experiments were carried out to validate this approach in controlled and uncontrolled environment respectively. Research findings demonstrate the potential of this approach to enhance safety performance by detecting hazardous proximity situations.
APA, Harvard, Vancouver, ISO, and other styles
28

Iberraken, Dimia. "Safe Trajectories and Sequential Bayesian Decision-Making Architecture for Reliable Autonomous Vehicle Navigation." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC043.

Full text
Abstract:
Les dernières avancées en matière de conduite de véhicules autonomes (VAs) ont fait apparaître toute l'importance de garantir la fiabilité complète des manœuvres que doivent effectuer les VAs, y compris dans des environnements/situations très dynamiques et incertains. Cet objectif devient encore plus ardu en raison du caractère unique de chaque situation/condition de circulation. Pour faire face à toutes ces configurations très contraignantes et complexes, les VAs doivent disposer d'une architecture de contrôle appropriée avec des Stratégies d'Evaluation et de Gestion des Risques (SEGR) fonctionnant en temps-réel et d'une manière fiable. Ces SEGR ciblées doivent conduire à une réduction drastique des risques de conduite. Théoriquement et de maniéré systémique, ces SEGR doivent aboutir à un risque de conduite inférieur à tout comportement de conduite humaine. En conséquent, il est également question de réduire la nécessité d'effectuer des tests très poussés, qui peuvent prendre plusieurs mois/années pour au final ne pas avoir de preuves formelles de la viabilité et de la sûreté complète du système. Ainsi, les travaux présentés dans cette thèse de doctorat ont pour but d'avoir une méthodologie prouvable pour les SGER des VAs.Cette thèse porte sur l'ensemble du processus, en partant de l'évaluation des risques, de la planification de la trajectoire jusqu'à la prise de décision et au contrôle du véhicule autonome. En premier lieu, une architecture multi-contrôleurs probabiliste (Probabilistic Multi-Controller Architecture P-MCA) est conçue pour une conduite autonome sûre en présence d'incertitudes. Cette architecture est composé de plusieurs modules interconnectés qui sont responsables de : l'évaluation du risque de collision avec tous les véhicules observés tout en considérant les prévisions de leurs trajectoires ; la planification des différentes manœuvres de conduite ; la prise de décision sur les actions les plus appropriées à réaliser ; le contrôle du mouvement du véhicule ; l'interruption en toute sécurité de la manœuvre engagée si nécessaire (en raison par exemple d'un changement soudain de l'environnement routier) ; et en dernier recours la planification des actions évasives à défaut d'un autre choix. L'évaluation des risques proposée est basée sur une stratégie à deux étapes. La première étape consiste à analyser la situation actuelle de conduite et à prévoir les éventuelles collisions. Cette étape est réalisée en tenant compte de plusieurs contraintes dynamiques et des conditions de circulation connues au moment de la planification. La deuxième étape est appliquée en temps-réel, durant la réalisation de la manœuvre, où un mécanisme de vérification de la sécurité est activé pour quantifier les risques et la criticité de la situation de conduite sur le temps restant pour réaliser la manœuvre. La stratégie décisionnelle est basée sur un réseau Bayésien de décision à niveaux séquentiels pour la sélection et la vérification des manœuvres (Sequential Decision Networks for Maneuver Selection and Verification SDN-MSV) et constitue un module essentiel de l'architecture P-MCA. Ce module est conçu pour gérer plusieurs manœuvres routières dans un environnement incertain. Il utilise l'évaluation des étapes de sécurité définies pour proposer des actions discrètes qui permettent de : réaliser des manœuvres appropriées dans une situation de trafic donnée, il fournit également une rétrospective de la sécurité, cette dernière actualise en temps-réel les mouvements de l'égo-véhicule en fonction de la dynamique de l'environnement, afin de faire face à toute situation dangereuse et risquée soudaine. (...)
Recent advances in Autonomous Vehicles (AV) driving raised up all the importance to ensure the complete reliability of AV maneuvers even in highly dynamic and uncertain environments/situations. This objective becomes even more challenging due to the uniqueness of every traffic situation/condition. To cope with all these very constrained and complex configurations, AVs must have appropriate control architecture with reliable and real-time Risk Assessment and Management Strategies (RAMS). These targeted RAMS must lead to reduce drastically the navigation risks (theoretically, lower than any human-like driving behavior), with a systemic way. Consequently, the aim is also to reduce the need for too extensive testing (which could take several months and years for each produced RAMS without at the end having absolute prove). Hence the goal in this Ph.D. thesis is to have a provable methodology for AV RAMS. This dissertation addresses the full pipeline from risk assessment, path planning to decision-making and control of autonomous vehicles. In the first place, an overall Probabilistic Multi-Controller Architecture (P-MCA) is designed for safe autonomous driving under uncertainties. The P-MCA is composed of several interconnected modules that are responsible for: assessing the collision risk with all observed vehicles while considering their trajectories' predictions; planning the different driving maneuvers; making the decision on the most suitable actions to achieve; control the vehicle movement; aborting safely the engaged maneuver if necessary (due for instance to a sudden change in the environment); and as last resort planning evasive actions if there is no other choice. The proposed risk assessment is based on a dual-safety stage strategy. The first stage analyzes the actual driving situation and predicts potential collisions. This is performed while taking into consideration several dynamic constraints and traffic conditions that are known at the time of planning. The second stage is applied in real-time, during the maneuver achievement, where a safety verification mechanism is activated to quantify the risks and the criticality of the driving situation beyond the remaining time to achieve the maneuver. The decision-making strategy is based on a Sequential Decision Networks for Maneuver Selection and Verification (SDN-MSV) and corresponds to an important module of the P-MCA. This module is designed to manage several road maneuvers under uncertainties. It utilizes the defined safety stages assessment to propose discrete actions that allow to: derive appropriate maneuvers in a given traffic situation and provide a safety retrospection that updates in real-time the ego-vehicle movements according to the environment dynamic, in order to face any sudden hazardous and risky situation. In the latter case, it is proposed to compute the corresponding low-level control based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) that allows the ego-vehicle to pursue the advised collision-free evasive trajectory to avert an accident and to guarantee safety at any time.The reliability and the flexibility of the overall proposed P-MCA and its elementary components have been intensively validated, first in simulated traffic conditions, with various driving scenarios, and secondly, in real-time with the autonomous vehicles available at Institut Pascal
APA, Harvard, Vancouver, ISO, and other styles
29

Molina, Caroline Bianca Santos Tancredi. "Controle veicular autônomo (CVA): um sistema para prevenir acidentes no contexto de veículos autônomos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-01112018-153824/.

Full text
Abstract:
O desenvolvimento tecnológico e o elevado investimento em tecnologias de veículos \"inteligentes\" vão, provavelmente, transformar veículos autônomos em realidade em alguns anos. A inserção de inteligência em veículos rodoviários visa obter uma redução nos acidentes de trânsito devido à mitigação de erros cometidos por motoristas humanos, graças à sua substituição por máquinas. Além disso, os veículos autônomos devem ser capazes de mitigar os perigos existentes nos sistemas de transporte rodoviário, sem criar novos riscos. Assim, é importante a pesquisa de como garantir a segurança crítica (safety) nesse novo cenário. Algumas pesquisas nesta área já vêm sendo desenvolvidas, porém elas não mostram como projetar um sistema veicular autônomo no qual se possa aplicar métodos já existentes para analisar e garantir níveis de segurança adequados em tais veículos. Frente a isso, este trabalho de mestrado desenvolve uma proposta que visa facilitar o desenvolvimento e a análise dessa nova classe de veículos, além de assegurar níveis de segurança crítica adequados aos veículos autônomos. A proposta é representada por um sistema denominado Controle Veicular Autônomo (CVA), o qual foi desenvolvido sob o conceito de Sistemas de Transporte Inteligentes (STI). O sistema CVA é formado por duas camadas, uma de operação (Operação Veicular Autônoma - OVA), responsável pela condução do veículo e outra de proteção (Proteção Veicular Autônoma - PVA). A ideia principal é que se utilize a camada PVA para a prevenção de acidentes. A camada PVA foi desenvolvida e testada em um ambiente de simulação, considerando um Estudo de Caso. Observou-se que, conforme previsto, o sistema CVA, por possuir uma camada voltada para a proteção veicular, conseguiu evitar diversas situações de colisões entre veículos.
Technological development and the massive investment in \'intelligent\' vehicle technologies are likely to turn autonomous vehicles into reality in a few years. The insertion intelligence in road vehicles aims to obtain a reduction in traffic accidents due to the mitigation of errors committed by human drivers, thanks to their replacement by machines. In addition, autonomous vehicles should be able to mitigate hazards in road transportation systems without creating new risks. Thus, It is important to study how to ensure safety in this new scenario. Some research in this area has already been developed, but they do not show how to design properly an autonomous vehicle system in which existing methods can be applied to analyze and guarantee adequate levels of safety in such vehicles. As a result, this master\'s work develops a proposal that aims to facilitate the development and analysis of this new class of vehicles, in addition to ensuring levels of critical safety appropriate to autonomous vehicles. The proposal is represented by a system called Autonomous Vehicle Control (CVA), which was developed under the concept of Intelligent Transport Systems (STI). The CVA system is formed by two layers, one of operation (Autonomous Vehicle Operation - OVA), responsible for the driving of the vehicle and another one of protection (Autonomous Vehicle Protection - PVA). The main idea is to use the PVA layer for the prevention of accidents. The PVA layer was developed and tested in a simulation environment, considering a Case Study. It was observed that, as predicted, the CVA system, because it has a layer aimed at vehicular protection, was able to avoid several collision situations between vehicles.
APA, Harvard, Vancouver, ISO, and other styles
30

Becze, Joseph. "Volvo VISE." Thesis, Umeå universitet, Designhögskolan vid Umeå universitet, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171730.

Full text
Abstract:
Every year over 1.35 Million lives are lost to road accidents. Trucks are probably the most dangerous vehicles on public roads due to their size and mass. 15% of all accidents involve trucks and the majority of victims are car occupants. Most of these accidents happen outside of urban areas at high speeds. In the dawn of autonomous drive and electromobility the trucking industry has the opportunity to reinvent their products. Volvo Trucks is a company that has Safety in its DNA. Future Volvo trucks could be tailored around Safety to save lives and bring justice to this core value. Autonomy has the potential to make road accidents history in the long run. Before that becomes a reality, society will face a transitioning period where autonomous vehicles will share the space with manually driven vehicles. Communication between human and machine will be more important that ever. Product Designers must account also for situations where an accident is unavoidable. The focus of this project is to explore what safety means for the human eye. How do we perceive safety visually and how do we create trust? Trucks are versatile products built with modularity in mind. Manufacturers are responsible for delivering a capable tractor unit. Trailers and other accessories are built externally. Throughout the process of this project a holistic approach was adopted. The only way to have full control over the product experience is to design a complete product: trailer and tractor unit. Volvo Trucks experts are consulted along the way covering key points of interest such as Passive Safety, User Experience Design and Aerodynamics. Benchmarking of existing concepts sets a starting point. Initial explorations question the architecture of conventional trucks. Different set-ups and layouts are proposed. Each decision is made based on various safety needs of the future semi-autonomous traffic. Analog sketches and digital renderings of design proposals build the way towards a key sketch. The chosen design direction is further developed and built in CAD. The vehicle is designed with an eye on its environment. The link between truck and car, truck and human is the core of this project. This vehicle sheds light on the mystery of how autonomous vehicles will blend with traffic as it is known today. Focusing on long haul highway routs Volvo VISE is designed to execute hub to hub transport services autonomously. Signals used to communicate in road traffic are translated to the digital age. By being able to understand its environment and react to it, Volvo VISE comes to life with a soul of its own. Through various sensors and autonomous technology the vehicle measures each traffic situation and earns the trust of its surroundings through clear communication of intent. With soft and generous shapes the exterior design describes a friendly vehicle that wins over its audience at the first glance. Volvo VISE has a deeper understanding of safety. Beneath the skin and besides its capability to communicate, the vehicle is equipped with several passive safety features, taking control in every situation. Volvo VISE ensures road safety for all.
APA, Harvard, Vancouver, ISO, and other styles
31

Hosseinyalamdary, Saivash Hosseinyalamdary. "Traffic Scene Perception using Multiple Sensors for Vehicular Safety Purposes." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462803166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kumar, Mavoori Arvind. "An activity plan for Indian Road Safety." Thesis, Linköping University, Department of Science and Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2954.

Full text
Abstract:

Road safety is a major issue affecting the road sector. Road accidents remain a serious impediment to sustainable human development in many of the developing member countries (DMCs) of the Asian Development Bank (ADB). Road accidents continue to be an important social and economic problem in developing countries like India. Growth in the number of motor vehicles, poor enforcement of traffic safety regulations, poor quality of roads and vehicles, and inadequate public health infrastructures are some of the road safety problems facing in India.

The object of this Thesis is to present a status report on the nature of the government policy towards the Activity plans implemented till now and which has to be implemented later for the reduction of road fatalities and for the safe roads, and also giving the guidelines for financing of remedial measures, institutional framework, physical characteristics of the road, traffic control and calming measures, road safety education and enforcement issues.

The aim of the Activity plans is to analyze the present situation of road safety in India and to indicate main problems in individual sector of the Activity implemented by comparing and taking the examples of some of the ASEAN Region who are successed in implementing in the individual sectors. The effect of the programme to real safety situation is estimated, and further plans could be corrected if it is necessary. Implementation of the goals for the coming years to reduce the number of accidents at maximum extent and give people, the safe and the steady flow of traffic in India. The vision of a tremendous change next 5 to 10 years is based on a big potential for improvement and a joint effort of all involved groups on all levels of traffic safety, centrally coordinated by the National Road Safety Authorities.

The Action Plan is deliberately divided into 14 key Sectors of activity in broadly the same way as the individual country road safety action plans. The sectors involve many different disciplines and a very wide range of multi sector activities but all are based on applying scientific, methodical approaches to the problem. At the end the thesis gives the recommendations and conclusion for the safe Roads in India

APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Rong. "Driver Behavior in Car Following - The Implications for Forward Collision Avoidance." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/71785.

Full text
Abstract:
Forward Collision Avoidance Systems (FCAS) are a type of active safety system which have great potential for rear-end collision avoidance. These systems use either radar, lidar, or cameras to track objects in front of the vehicle. In the event of an imminent collision, the system will warn the driver, and, in some cases, can autonomously brake to avoid a crash. However, driver acceptance of the systems is paramount to the effectiveness of a FCAS system. Ideally, FCAS should only deliver an alert or intervene at the last possible moment to avoid nuisance alarms, and potentially have drivers disable the system. A better understanding of normal driving behavior can help designers predict when drivers would normally take avoidance action in different situations, and customize the timing of FCAS interventions accordingly. The overall research object of this dissertation was to characterize normal driver behavior in car following events based on naturalistic driving data. The dissertation analyzed normal driver behavior in car-following during both braking and lane change maneuvers. This study was based on the analysis of data collected in the Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study which involved over 100 drivers operating instrumented vehicles in over 43,000 trips and 1.1 million miles of driving. Time to Collision in both braking and lane change were quantified as a function of vehicle speed and driver characteristics. In general, drivers were found to brake and change lanes more cautiously with increasing vehicle speed. Driver age and gender were found to have significant influence on both time to collision and maximum deceleration during braking. Drivers age 31-50 had a mean braking deceleration approximately 0.03 g greater than that of novice drivers (age 18-20), and female drivers had a marginal increase in mean braking deceleration as compared to male drivers. Lane change maneuvers were less frequent than braking maneuvers. Driver-specific models of TTC at braking and lane change were found to be well characterized by the Generalized Extreme Value distribution. Lastly, driver's intent to change lanes can be predicted using a bivariate normal distribution, characterizing the vehicle's distance to lane boundary and the lateral velocity of the vehicle. This dissertation presents the first large scale study of its kind, based on naturalistic driving data to report driver behavior during various car-following events. The overall goal of this dissertation is to provide a better understanding of driver behavior in normal driving conditions, which can benefit automakers who seek to improve FCAS effectiveness, as well as regulatory agencies seeking to improve FCAS vehicle tests.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
34

Lundblad, Oscar. "The autonomous crewmate : A sociotechnical perspective to implementation of autonomous vehicles in sea rescue." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166452.

Full text
Abstract:
The usage of autonomous vehicles is starting to appear in several different domains and the domain of public safety is no exception. Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) has created a research arena for public safety (WARA-PS) to explore experimental features, usages, and implementation of autonomous vehicles within the domain of public safety. Collaborating in the arena are several companies, universities, and researchers. This thesis examines, in collaboration with Combitech, a company partnered in WARA-PS, how the implementation of autonomous vehicles affects the sociotechnical system of a search and rescue operation during a drifting boat with potential castaways. This is done by creating a case together with domain experts, analyzing the sociotechnical system within the case using cognitive work analysis and then complementing the analyses with the unmanned autonomous vehicles of WARA-PS. This thesis has shown how the WARA-PS vehicles can be implemented in the case of a drifting boat with potential castaways and how the implementation affects the sociotechnical system. Based on the analyses and opinions of domain experts’ future guidelines has been derived to further the work with sociotechnical aspects in WARA-PS.
WARA-PS
APA, Harvard, Vancouver, ISO, and other styles
35

Alvarez, Stephanie. "Évaluation des gains de sécurité, sécurisation des essais et analyse des accidents du véhicule autonome : une approche systémique." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM006/document.

Full text
Abstract:
Les constructeurs automobiles fabriquant des systèmes de conduite automatisée ont besoin d’aborder les conséquences que ces systèmes peuvent avoir sur la sécurité routière. Notamment pour l’évaluation des gains de sécurité, la sécurisation des essais et l’analyse des accidents impliquant le véhicule autonome. Cependant, le cadre conceptuel actuel utilisé dans la sécurité routière peut ne pas être adapté pour l’analyse des changements et des nouvelles interactions introduits par l’automatisation du véhicule à travers toutes les échelles du système sociotechnique de transport routier.Le but de la thèse est d’appliquer une approche systémique fondée sur STAMP afin d'étudier les gains attendus du véhicule autonome en termes de sécurité routière, sécuriser les expérimentations et analyser les accidents impliquant ce type de véhicule, à travers toutes les échelles du système sociotechnique de transport routier.Afin de contribuer au calcul des gains du véhicule autonome sur la sécurité routière, la population cible d’un « highway pilot system» a été définie et des questions issue d’une analyse STPA (analyse des risques issue de STAMP) aidant à l’évaluation de l’efficacité du système ont été élaborées.Un cadre de sécurisation des expérimentations couvrant tous les niveaux du système a été mis en place au moyen d’une analyse STPA à deux échelles.Enfin, une méthode d’analyse des accidents impliquant un conducteur automatisé a été créé en intégrant des éléments issus de méthodes d’analyses des accidents de la route existantes et des éléments explicatifs développés spécialement à la méthode CAST (méthode d’analyse des accidents fondée sur STAMP). L’accident impliquant une Tesla en mai 2016 est le cas d’étude de cette nouvelle méthode, CASCAD.En conclusion, ces trois applications ont montré tout le potentiel d’une approche systémique fondée sur STAMP pour offrir un cadre conceptuel adapté à l’évaluation des conséquences sur la sécurité routière de la conduite automatisée
As automakers develop automated driving systems, they must address the implications of such systems on road safety. Notably for the safety benefit assessment, trial safety and accident analysis. However, the existing conceptual framework in road safety may not be adapted to analyze the changes and new interactions introduced by vehicle automation at all the levels of the road transport sociotechnical system.The main objective of this thesis is to apply a systems theoretic approach based on STAMP to examine the safety benefit assessment, trial safety and accident analysis of automated driving across all the levels of the road transport sociotechnical system.This research first contributes to safety benefit assessment by estimating the target population of a highway pilot system and by generating questions derived from an STPA analysis (hazard analysis based on STAMP) to facilitate the evaluation of the influence of the highway pilot system on road safety.Next, this work establishes a framework to ensure trial safety across the macroscopic and microscopic levels of the vehicle trial system by structuring the outputs of two STPA analyses.Finally, this thesis integrates elements from existing crash analysis methods and newly developed guidance elements into CAST (an accident analysis method based on STAMP) to develop a new method for the accident analysis of crashes involving automated driving called CASCAD. The application of CASCAD was illustrated using the available information of the Tesla crash on May 2016.The three applications of this research show the potential of a STAMP-based approach to provide a suitable conceptual framework for the analysis of the implications of road safety on automated driving
APA, Harvard, Vancouver, ISO, and other styles
36

Cuer, Romain. "Démarche de conception sûre de la Supervision de la fonction de Conduite Autonome." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI091/document.

Full text
Abstract:
Le véhicule autonome est un véhicule qui se conduira, à terme, sans aucune intervention du conducteur, quelle que soit la situation de conduite. Ce véhicule comprend une nouvelle fonction, nommée fonction AD, pour Autonomous Driving, en charge de la conduite autonome. Cette fonction peut se trouver dans des états différents (Active, Disponible par exemple) selon l'évolution des conditions environnementales. Le changement de ses états est géré par une fonction de Supervision, nommée Supervision AD. Le principal objet de ces travaux consiste à garantir que la fonction AD se trouve constamment dans un état sûr. Ceci revient à s'assurer que la Supervision AD respecte l'ensemble des exigences fonctionnelles et de sûreté qui spécifient son comportement. Ces deux types d'exigences sont émis par deux métiers distincts : l'Architecte Métier Système (AMS) et le pilote Sûreté de Fonctionnement (SdF). Ces deux disciplines d'ingénierie, bien qu'elles contribuent à la conception d'une même fonction, se distinguent en de nombreux points : objectifs, contraintes, planning, outils... Dans notre cas d'étude, ces différences s'illustrent par les exigences considérées : les exigences fonctionnelles sont allouées à la fonction AD globale, tandis que les exigences de sûreté spécifient le comportement de sous-fonctions locales redondantes assurant une continuité de service en cas de défaillance. La mise en cohérence de ces deux perspectives métier au plus tôt dans le cycle de conception et dans un contexte industriel, est la problématique centrale traitée. Les enjeux de SdF soulevés par le véhicule autonome rendent ce problème primordial pour les constructeurs automobiles. Afin de répondre à ces préoccupations, nous avons proposé une démarche outillée et collaborative de conception sûre de la Supervision AD. Cette démarche est intégrée dans les processus normatifs en vigueur (normes ISO 15288 et ISO 26262) ainsi que dans les processus de conception internes chez Renault. Elle est fondée sur la vérification formelle par model checking, la composition parallèle d'automates finis et l'expertise métier. Cette démarche prône l'utilisation d'un même formalisme (l'automate à états finis) par les deux métiers pour mener à bien des activités partageant un objectif de modélisation commun : la vérification d'exigences de comportement en phase amont de conception. Une méthode pour traduire les exigences en propriétés formelles et construire les modèles d'état a été déployée. Il en résulte une consolidation progressive des exigences traitées, initialement rédigées en langage naturel. Les potentielles ambigüités, incohérences et incomplétudes sont exhibées et traitées
The Autonomous Vehicle is meant to drive itself, without any driver intervention, whatever the driving situation. This vehicle includes a new function, called AD, for Autonomous Driving, function. This function can be in different states (Available, Active for example) according to environmental conditions evolution. This states change is managed by a supervision function, named AD Supervision. The main goal of my works consists in guaranteeing that AD function remains always in a safe state. In other words, the AD Supervision must always respect all the functional and safety requirements that specify its behavior. These two requirements types are produced by two different professions: the System Architect (SA) and the Safety Engineer (SE). These two fields contribute to the design of the same function but distinguish at several aspects: objectives, constraints, planning, tools… In our case study, these differences are illustrated by considered requirements: the functional requirements are allocated to global AD function, while the safety requirements specify the behavior of local redundant sub-functions ensuring a continuous service in case of failure. The consistency of the two perspectives as early as possible in the design phase and in an industrial context, is the central problematic addressed. The safety issues due to Autonomous Vehicle make this topic essential for the automotive manufacturers. To meet these concerns, we proposed a tooled and collaborative approach for safe design of AD Supervision. This approach is integrated in the normative processes (standards ISO 26262 and ISO 15288) as well as in the internal design processes at Renault. It is based on formal verification by model checking, parallel composition of finite sate automata and technical expertise. This approach advocates the utilization of a same formalism (state automata) by the two professions to perform activities sharing a common goal: behavior requirements verification in preliminary design phase. A method to translate requirements into formal properties and to build state models has been deployed. The result is a progressive consolidation of treated requirements, initially expressed in free natural language. The potential ambiguities, inconsistencies and incompleteness are exhibited and treated. Two main contributions are in this way illustrated: highlighting of several formal credible (i.e. validated by expertise) specifications from informal requirements; and precise definition of technical expertise role (milestones, planning). However, this reinforcement – in silos – of the two profession viewpoints does not guarantee that they are mutually consistent. Thus, we proposed a convergence method, relying on expertise and on parallel composition of state automata, for the comparison of local and global views
APA, Harvard, Vancouver, ISO, and other styles
37

Girbés, Juan Vicent. "Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/65072.

Full text
Abstract:
[EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in very structured environments. Apart from industry and consumer electronics, within the automotive field there are some devices that give intelligence to the vehicle, derived in most cases from advances in mobile robotics. In fact, more and more often vehicles incorporate Advanced Driver Assistance Systems (ADAS), such as navigation control with automatic speed regulation, lane change and overtaking assistant, automatic parking or collision warning, among other features. However, despite all the advances there are some problems that remain unresolved and can be improved. Collisions and rollovers stand out among the most common accidents of vehicles with manual or autonomous driving. In fact, it is almost impossible to guarantee driving without accidents in unstructured environments where vehicles share the space with other moving agents, such as other vehicles and pedestrians. That is why searching for techniques to improve safety in intelligent vehicles, either autonomous or manual-assisted driving, is still a trending topic within the robotics community. This thesis focuses on the design of tools and techniques for planning and control of intelligent vehicles in order to improve safety and comfort. The dissertation is divided into two parts, the first one on autonomous driving and the second one on manual-assisted driving. The main link between them is the use of clothoids as mathematical formulation for both trajectory generation and collision detection. Among the problems solved the following stand out: obstacle avoidance, rollover avoidance and advanced driver assistance to avoid collisions with pedestrians.
[ES] En la actualidad se comercializan infinidad de productos de electrónica de consumo que incorporan elementos y características procedentes de avances en el sector de la robótica móvil. Por ejemplo, el conocido robot aspirador Roomba de la empresa iRobot, el cual pertenece al campo de la robótica de servicio, uno de los más activos en el sector. También hay numerosos sistemas robóticos autónomos en almacenes y plantas industriales. Es el caso de los vehículos autoguiados (AGVs), capaces de conducir de forma totalmente autónoma en entornos muy estructurados. Además de en la industria y en electrónica de consumo, dentro del campo de la automoción también existen dispositivos que dotan de cierta inteligencia al vehículo, derivados la mayoría de las veces de avances en robótica móvil. De hecho, cada vez con mayor frecuencia los vehículos incorporan sistemas avanzados de asistencia al conductor (ADAS por sus siglas en inglés), tales como control de navegación con regulación automática de velocidad, asistente de cambio de carril y adelantamiento, aparcamiento automático o aviso de colisión, entre otras prestaciones. No obstante, pese a todos los avances siguen existiendo problemas sin resolver y que pueden mejorarse. La colisión y el vuelco destacan entre los accidentes más comunes en vehículos con conducción tanto manual como autónoma. De hecho, la dificultad de conducir en entornos desestructurados compartiendo el espacio con otros agentes móviles, tales como coches o personas, hace casi imposible garantizar la conducción sin accidentes. Es por ello que la búsqueda de técnicas para mejorar la seguridad en vehículos inteligentes, ya sean de conducción autónoma o manual asistida, es un tema que siempre está en auge en la comunidad robótica. La presente tesis se centra en el diseño de herramientas y técnicas de planificación y control de vehículos inteligentes, para la mejora de la seguridad y el confort. La disertación se ha dividido en dos partes, la primera sobre conducción autónoma y la segunda sobre conducción manual asistida. El principal nexo de unión es el uso de clotoides como elemento de generación de trayectorias y detección de colisiones. Entre los problemas que se resuelven destacan la evitación de obstáculos, la evitación de vuelcos y la asistencia avanzada al conductor para evitar colisiones con peatones.
[CAT] En l'actualitat es comercialitzen infinitat de productes d'electrònica de consum que incorporen elements i característiques procedents d'avanços en el sector de la robòtica mòbil. Per exemple, el conegut robot aspirador Roomba de l'empresa iRobot, el qual pertany al camp de la robòtica de servici, un dels més actius en el sector. També hi ha nombrosos sistemes robòtics autònoms en magatzems i plantes industrials. És el cas dels vehicles autoguiats (AGVs), els quals són capaços de conduir de forma totalment autònoma en entorns molt estructurats. A més de en la indústria i en l'electrònica de consum, dins el camp de l'automoció també existeixen dispositius que doten al vehicle de certa intel·ligència, la majoria de les vegades derivats d'avanços en robòtica mòbil. De fet, cada vegada amb més freqüència els vehicles incorporen sistemes avançats d'assistència al conductor (ADAS per les sigles en anglés), com ara control de navegació amb regulació automàtica de velocitat, assistent de canvi de carril i avançament, aparcament automàtic o avís de col·lisió, entre altres prestacions. No obstant això, malgrat tots els avanços segueixen existint problemes sense resoldre i que poden millorar-se. La col·lisió i la bolcada destaquen entre els accidents més comuns en vehicles amb conducció tant manual com autònoma. De fet, la dificultat de conduir en entorns desestructurats compartint l'espai amb altres agents mòbils, tals com cotxes o persones, fa quasi impossible garantitzar la conducció sense accidents. És per això que la recerca de tècniques per millorar la seguretat en vehicles intel·ligents, ja siguen de conducció autònoma o manual assistida, és un tema que sempre està en auge a la comunitat robòtica. La present tesi es centra en el disseny d'eines i tècniques de planificació i control de vehicles intel·ligents, per a la millora de la seguretat i el confort. La dissertació s'ha dividit en dues parts, la primera sobre conducció autònoma i la segona sobre conducció manual assistida. El principal nexe d'unió és l'ús de clotoides com a element de generació de trajectòries i detecció de col·lisions. Entre els problemes que es resolen destaquen l'evitació d'obstacles, l'evitació de bolcades i l'assistència avançada al conductor per evitar col·lisions amb vianants.
Girbés Juan, V. (2016). Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65072
TESIS
APA, Harvard, Vancouver, ISO, and other styles
38

Ogle, Jennifer Harper. "Quantitative assessment of driver speeding behavior using instrumented vehicles." Diss., Georgia Institute of Technology, 2005. http://etd.gatech.edu/theses/available/etd-04182005-034536/unrestricted/ogle%5Fjennifer%5Fh%5F200505%5Fphd.pdf.

Full text
Abstract:
Thesis (Ph. D.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2005.
Includes bibliographical references (p. 310-316). Also available online via the Georgia Institute of Technology, website (http://etd.gatech.edu/).
APA, Harvard, Vancouver, ISO, and other styles
39

Windridge, David, Michael Felsberg, and Affan Shaukat. "A Framework for Hierarchical Perception–Action Learning Utilizing Fuzzy Reasoning." Linköpings universitet, Datorseende, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85688.

Full text
Abstract:
Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We here set out a very general learning framework for cognitive systems in which online learning of the P-A mapping may be conducted within a symbolic processing context, so that complex contextual reasoning can influence the P-A mapping. In utilizing a variational calculus approach to define a suitable objective function, the P-A mapping can be treated as an online learning problem via gradient descent using partial derivatives. Our central theoretical result is to demonstrate top-down modulation of low-level perceptual confidences via the Jacobian of the higher levels of a subsumptive P-A hierarchy. Thus, the separation of the Jacobian as a multiplying factor between levels within the objective function naturally enables the integration of abstract symbolic manipulation in the form of fuzzy deductive logic into the P-A mapping learning. We experimentally demonstrate that the resulting framework achieves significantly better accuracy than using P-A learning without top-down modulation. We also demonstrate that it permits novel forms of context-dependent multilevel P-A mapping, applying the mechanism in the context of an intelligent driver assistance system.
DIPLECS
GARNICS
CUAS
APA, Harvard, Vancouver, ISO, and other styles
40

Ghasemi, Navid. "Improvement of the driving simulator control and comparison between driver-road-vehicule interaction in real and simulated environment." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2010.

Full text
Abstract:
Les activités de recherche ont été menées en collaboration avec l'Université de Bologne, l'Université Paris-Est et l'Université Gustave Eiffel sous la forme d'un doctorat cotutelle. Les activités sont divisées en deux macro-domaines ; les études de simulation de conduite réalisées à l'Université Gustave Eifel (IFSTTAR) et les expériences sur route organisées par l'Université de Bologne. La première partie de la recherche se concentre sur l'amélioration de la fidélité physique du simulateur de conduite à deux degrés de liberté avec une attention particulière aux signaux de mouvement et au modèle de dynamique du véhicule. Ce dernier a été développé dans MATLAB-Simulink et a la capacité de calculer en temps réel les états du véhicule et de contrôler la plateforme de mouvement. Au cours de cette phase de la recherche, des algorithmes de repères de mouvement ont été développés pour contrôler les mouvements du simulateur et l'effet des signaux de mouvement sur le comportement des conducteurs a été analysé par expérimentation. Les résultats de ces études sont discutés dans les cas d’études I et II. Dans la deuxième partie de la recherche, les performances du conducteur et le comportement visuel ont été étudiés sur la route sous différents scénarios. Le comportement visuel du conducteur a été enregistré à l'aide d'un dispositif de suivi oculaire monté sur la tête, tandis que la trajectoire du véhicule a été enregistrée avec un véhicule instrumenté équipé du système de positionnement mondial. Au cours de cette phase, plusieurs études de cas ont été développées pour surveiller le comportement des conducteurs en milieu naturaliste. La cas d'étude III vise à intégrer l'audit de sécurité routière traditionnel à un système innovant de surveillance du comportement des conducteurs. L’expérimentation sur route avec des conducteurs a été réalisée sur une artère urbaine afin d'évaluer l'approche proposée à travers des techniques innovantes de suivi des conducteurs. Ces mêmes instruments de surveillance de la conduite ont été utilisés pour évaluer l'amélioration d'un passage pour piétons au rond-point dans le cas d'étude IV. Les données de suivi oculaire ont été évaluées dans les deux études afin d'identifier un indicateur d'attention visuelle du conducteur en fonction de la position et de la durée du regard des participants. Une attention particulière est accordée à la sécurité des conducteurs vulnérables dans les zones urbaines lors de l'étude du comportement de conduite naturaliste. Le cas d'étude V a analysé le comportement de conduite du conducteur en phase d'approche d'un passage prioritaire à vélo à l'aide de mesures de sécurité de substitution. Les mesures de performance des conducteurs telles que le temps de réaction de la perception et le comportement du regard ont été utilisées pour évaluer le niveau de sécurité du passage à niveau, équipé de systèmes de signalisation standard et innovants. L’amélioration du comportement cédant du conducteur vers un passage à niveau non signalé pendant la nuit et sa réaction à un système d’alarme d’éclairage intégré ont été évaluées dans le cas d’étude VI. La dernière phase de la thèse est consacrée à l'étude du régulateur de vitesse adaptatif (ACC) avec expérimentation sur route et sur simulateur. L'expérimentation sur route a étudié l'influence du système d'aide à la conduite sur l'adaptation des conducteurs avec une évaluation objective et subjective, dans laquelle un instrument de suivi oculaire et un casque EEG ont été utilisés pour surveiller les conducteurs sur une autoroute. Les résultats sont présentés dans les cas d’études VII et VIII et l’attention visuelle des conducteurs a été réduite en raison de l’adaptation à l’ACC dans le scénario de suivi de véhicule. Les résultats de l'essai sur route ont ensuite été utilisés pour reproduire le même scénario dans le simulateur de conduite et l'adaptation du comportement des conducteurs avec l'utilisation de l'ACC a été confirmée par l'expérimentation
The related research activities were carried out in collaboration with the University of Bologna, Paris-Est University and Gustave Eiffel University (IFSTTAR) in the form of a cotutelle PhD. The activities are divided into two macro areas ; the driving simulation studies conducted in Gustave Eifel University (IFSTTAR) and on-road experiments organized by the University of Bologna. The first part of the research is focused on improving the physical fidelity of the two DOF driving simulator with particular attention to motion cueing and vehicle dynamics model. The vehicle dynamics model has been developed in MATLAB-Simulink and has the ability of real-time calculation of the vehicle states and control the motion platform. During this phase of the research, motion cueing algorithms were developed to control the simulator movements and the effect of the motion cues on drivers’ behaviour was analysed through experimentation. The results of these studies are discussed in the case studies I and II. In the second part of the research, the driver performance and visual behaviour were studied on the road under different scenarios. The driver visual behaviour was recorded with the use of a head mounted eye-tracking device, while the vehicle trajectory was registered with an instrumented vehicle equipped with Global Positioning System (GPS). During this phase, several case studies were developed to monitor drivers’ behaviour in the naturalistic environment. Case study III aims to integrate the traditional road safety auditing with an innovative driver behaviour monitoring system. The real road experiment with drivers was carried out in an urban arterial road in order to evaluate the proposed approach through innovative driver monitoring techniques. These same driving monitoring instruments were used for evaluating the improvement of a pedestrian crossing at the roundabout in case study IV. The eye-tracking data were evaluated in both studies in order to identify a driver visual attention indicator based on the participants gaze position and duration. Significant attention is given to the safety of vulnerable drivers in urban areas during the naturalistic driving behaviour study. Case study V analyzed the driver yielding behaviour in approach phase to a bicycle priority crossing with the use of surrogate safety measures. The drivers’ performance measures such as perception reaction time and gaze behaviour were used to assess the safety level of the crossing equipped with standard and innovative signalling systems. The improvement on the driver’s yielding behaviour towards an un-signalized crossing during night-time and their reaction to an integrated lighting-warning system was evaluated in the case study VI. The last phase of the thesis is dedicated to the study of Adaptive Cruise Control (ACC) with on-road and simulator experimentation. The on-road experimentation investigated the driver assistant system influence on the drivers' adaptation with objective and subjective assessment, in which an eye tracking instrument and EEG helmet were used to monitor the drivers on a highway. The results are presented in Case studies VII and VIII and drivers’s visual attention was reduced due to adaptation to the ACC in the car following scenario. The results of the on-road test were later used to reproduce to the same scenario in the driving simulator and the adaptation of drivers’ behaviour with the use of ACC was confirmed through experimentation
APA, Harvard, Vancouver, ISO, and other styles
41

Chan, Zong-yi, and 詹益宗. "Autonomous safety group behavior of vehicle simulation." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/76891374884840479245.

Full text
Abstract:
碩士
東吳大學
資訊管理學系
99
With enormous help and funding from the governments, industries and institutes around the world, autopilot has become more mature, and soon it will become the future. It can be foreseen that autopilot can be more realistic with the advance techniques, such as Global Positioning System (GPS). Previous researches on autopilot focused on anti-collision and best driving path search, they had few studies on grouped autopilot system. This grouped system can be applied to tourist coaches, family tour, or transporting of aids. This paper aimed to simulate the full unmanned autopilot system, focus on the autonomous safety decision of vehicles behavior. Moreover, we modify the flock algorithm of animal behavior, to attract the group vehicles together without block the others.
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Yuan-hsing, and 李遠星. "Study on safety health corrective measures of vehicle parts and accessories manufacture." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/82cnen.

Full text
Abstract:
碩士
嘉南藥理科技大學
產業安全衛生與防災研究所
97
This research organizes the case study object to the status of occupational safety and health in vehicle parts and accessories manufacturers, affiliated companies, satellite factories and sizable Taiwan public companies and case study cognition Questionnaire to the problem analysis of safety and health on the companies. The research shows: (1) Since the company of the case study has had their own safety and health department and management system, also already passed several items of quality excellent audit by Council of Labor Affairs, but the injuries during the work and defects found by an authorized labor inspector were not decreased and reduced obviously due to meeting with a bottleneck of improvement policy. (2) The survey of safety and health status shows that most of vehicle parts and accessories manufacture and sizable factories (public companies) have conformed to the regulations under the frequent inspection by the authorized labor inspector, yet needs to enhance the performance of safety and health. (3) In the majority of small vehicle parts and accessories manufacturers having employees fewer then 30 members, they have not established the system of safety and health. (4) Because of the assistance and support from the parent company, those small affiliated companies of the case study object have conformed to the request of safety and health regulations. (5) According the safety cognition survey, it is of the above middle grade on the whole. The intersection analysis shows the quality strict controlled departments, male employees, younger staffs and senior staffs are with lower safety cognition. Key words: vehicle parts and accessories manufacture, safety and health.
APA, Harvard, Vancouver, ISO, and other styles
43

Deiss, Jarryd Andre. "Relative influence of high capacity vehicle design parameters." Thesis, 2019. https://hdl.handle.net/10539/29435.

Full text
Abstract:
A dissertation submitted to the Faculty of Engineering and the BuiltEnvironment,University of the Witwatersrand,Johannesburg,in fulfilment of the requirements for the degree of Master of Science in Engineering, 2019
A Performance-based Standards(PBS) framework legislates the dynamic performance and road-width usage of heavy vehicles,allowing the length and mass of a vehicle to exceed prescriptive legislation.The PBS framework defines the safe performance envelope of vehicles but does not optimise their safety and productivity.The design process to achieve the optimal productivity of PBS vehicles is highly iterative.An initial design is evaluated using multi-body dynamic ssimulation.If the required PBS performance is not achieved,design iterationsare made until the required PBS performance is achieved.The process is costly,time-consuming andcomputationallyexpensive.Theobjectiveofthisresearchistoquantifytherelativeeffect ofeachVehicleDesignParameter(VDP)ofamulti-bodyvehicledynamicsmodelonthevehicle safetyasmeasuredwithinthePBSframeworktoassistinthePBSassessmentprocess.To achievethis,threerepresentativebaselinePBSvehiclesweredeveloped(aquadsemi-trailer, trideminterlinkandrigiddrawbarcombination)fromPBSassessmentsconductedinSouth Africa.AsetofrangeswithinwhicheachVDPcouldbevariedwasdevelopedbyconsidering OriginalEquipmentManufacturer(OEM)data,legalrestrictions,physicalconstraintsand SouthAfricanPBSassessments.EachVDPforeachbaselinecombinationwasvariedin isolationtoevaluateitsinfluenceonthevehiclesperformancewithinthePBSframework.A comparative matrix was developed for each baseline vehicle comparing the relative influence of each VDP on each of the PBS performance measures.The matrices yield insight into which VDP shave the most influence on each performance measure for each of the baseline vehicles.Furthermore VDPs that have an egligible influence on the performance of all baseline vehicles can be conservatively estimated in the absence of OEM data while still predicting representative vehicle performance.These insights will guide designers to focus onVDPs with a high influence on vehicle performance,allow PBS assessors to determine which design parameters can be modelled with generic approximate data in the absence of OEMdata,and speedup the process of assessing vehicles with in the PBS framework.
TL (2020)
APA, Harvard, Vancouver, ISO, and other styles
44

Javaid, Wasif. "Design of a vehicle automatic emergency pullover system for automated driving with implementation on a simulator." Thesis, 2017. https://doi.org/10.7912/C2VS9J.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
This thesis addresses a critical issue of automotive safety. As traffic is increasing on the roads day by day, road safety is also a very important concern. Driving simulators can play an extensive role in the development and testing of advanced safety systems in peculiar traffic environments, respectively. Advanced Driver Assist Systems (ADAS) are getting enormous reputation but there is still need for more improvements. This thesis presents a design of an Automatic Emergency Pullover (AEP) strategy using active safety systems for a semi-autonomous vehicle. The idea for this system is that a moving vehicle equipped with an AEP system can automatically pull over on the roadside safely when the driver is considered incapable of driving. Furthermore, AEP supporting features such as; Lane Keeping Assist, Blind Spot Monitoring, Vehicle and Pedestrian Automatic Emergency Braking, Adaptive Cruise Control are also included in this work. The designs for application of each system have been explained along with its algorithms, model development, component architecture, simulation results, vehicular/pedestrian behavior and trajectory precision on software tools provided by Realtime Technologies, Inc. All major variables which influence the performance of vehicle after AEP activation, have been observed and remodeled according to control algorithms. The implementation of AEP system which can control vehicle dynamics has been verified with the help of simulation results.
APA, Harvard, Vancouver, ISO, and other styles
45

Tuss, Halston. "Pedestrian safety at signalized intersections operating the flashing yellow arrow." Thesis, 2012. http://hdl.handle.net/1957/34335.

Full text
Abstract:
At signalized intersections, pedestrians are considered to be amongst the most vulnerable. When in the crosswalk at intersections without protected left-turn phasing, pedestrians are particularly at risk from left-turning vehicles. Until recently, a wide variety of indications were in use across the US to indicate a permissive left-turn condition to the driver. In Oregon, the Flashing Yellow Arrow (FYA) has been used to indicate the permissive left-turn condition for approximately 10 years. With the addition of the FYA in the 2009 MUTCD, it is likely that its use will continue to increase nationally. Though many operational and safety issues have been studied about the FYA indication, this research proposes to fully investigate factors that influence driver behavior in the context of the permissive left-turn conflict with pedestrians. Specifically, the research seeks to study driver glance behavior to identify reasons why drivers are, "looking at but not seeing" pedestrians in or near the crosswalk or not searching for the presence of pedestrians at all.
Graduation date: 2013
APA, Harvard, Vancouver, ISO, and other styles
46

(10716705), Jason King Ching Lo. "Enhancing Safety for Autonomous Systems via Reachability and Control Barrier Functions." Thesis, 2021.

Find full text
Abstract:
In this thesis, we explore different methods to enhance the safety and robustness for autonomous systems. We achieve this goal using concepts and tools from reachability analysis and control barrier functions. We first take on a multi-player reach-avoid game that involves two teams of players with competing objectives, namely the attackers and the defenders. We analyze the problem and solve the game from the attackers' perspectives via a moving horizon approach. The resulting solution provides a safety guarantee that allows attackers to reach their goals while avoiding all defenders.

Next, we approach the problem of target re-association after long-term occlusion using concepts from reachability as well as Bayesian inference. Here, we set out to find the probability identity matrix that associates the identities of targets before and after an occlusion. The solution of this problem can be used in conjunction with existing state-of-the-art trackers to enhance their robustness.

Finally, we turn our attention to a different method for providing safety guarantees, namely control barrier functions. Since the existence of a control barrier function implies the safety of a control system, we propose a framework to learn such function from a given user-specified safety requirement. The learned CBF can be applied on top of an existing nominal controller to provide safety guarantees for systems.
APA, Harvard, Vancouver, ISO, and other styles
47

Hou, Hsiang-Wen, and 侯翔文. "Research on Autonomous Vehicle Localization and Navigation System for Functional Safety Requirements of Electrical/Electronic Systems in Road Vehicles." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/zs6gah.

Full text
Abstract:
碩士
國立臺灣大學
機械工程學研究所
106
This research aims to propose an autonomous vehicle localization and navigation system for functional safety requirements (FSR) of electrical/electronic systems in road vehicles. The main functional safety concept (FSC) includes such as fault detection, fail-safe, and fault tolerance. For the issue, this research uses a real-time multi-sensor fusion localization technique. When one of sensors fails, this method can extend the reliable positioning time for decision system to do the right decision. This approach is based on the map-guided technique and unscented Kalman filter with Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS).However, the sigma points which are calculated from unscented transform might be located in unreasonable place, such as sidewalk. Using the detection data from LiDAR to be the constraint can restricted the sigma points which are out of constraint in the reasonable region. To design the constrained unscented Kalman filter, this research combines the detection data from LiDAR and digital map to determine the range of constraint. This method can not only reduce positioning estimation error, but also detect the positioning state for control system that can reduce danger by wrong information. Finally, this research uses an electric medium-sized bus as a verification platform to prove the localization system can run safe in different scenarios by human driving and autonomous driving.
APA, Harvard, Vancouver, ISO, and other styles
48

(6941321), Sikai Chen. "SAFETY IMPLICATIONS OF ROADWAY DESIGN AND MANAGEMENT: NEW EVIDENCE AND INSIGHTS IN THE TRADITIONAL AND EMERGING (AUTONOMOUS VEHICLE) OPERATING ENVIRONMENTS." Thesis, 2019.

Find full text
Abstract:

In the context of highway safety factors, road geometrics and pavement condition are of particular interest to highway managers as they fall within their direct control and therefore can be addressed through highway projects. In spite of the preponderance of econometric modeling in highway safety research, there still remain areas worthy of further investigation. These include 1) the lack of sufficient feedback to roadway preservation engineers regarding the impacts of road-surface condition on safety; 2) the inadequate feedback to roadway designers on optimal lane and shoulder width allocation; 3) the need for higher predictive capability and reliability of models that analyze roadway operations; and 4) the lack of realistic simulations to facilitate reliable safety impact studies regarding autonomous vehicles (AV). In an attempt to contribute to the existing knowledge in this domain and to throw more light on these issues, this dissertation proposes a novel framework for enhanced prediction of highway safety that incorporates machine learning and econometrics with optimization to evaluate and quantify the impacts of safety factors. In the traditional highway operating environment, the proposed framework is expected to help agencies improve their safety analysis. Using an Indiana crash dataset, this dissertation implements the framework, thereby 1) estimating the safety impacts of the road-surface condition with advanced econometric specifications, 2) optimizing space resource allocations across highway cross-sectional elements, and 3) predicting the fatality status of highway segments using machine learning algorithms. In addition, this dissertation discusses the opportunities and the expected safety impacts and benefits of AV in the emerging operating environment. The dissertation also presents a proposed deep learning-based autonomous driving simulation framework that addresses the limitations of AV testing and evaluation on in-service roads and test tracks.

APA, Harvard, Vancouver, ISO, and other styles
49

Bhatnagar, Shalabh. "Integration of V2V-AEB system with wearable cardiac monitoring system and reduction of V2V-AEB system time constraints." Thesis, 2017. https://doi.org/10.7912/C2VH3H.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
Autonomous Emergency Braking (AEB) system uses vehicle’s on-board sensors such as radar, LIDAR, camera, infrared, etc. to detect the potential collisions, alert the driver and make safety braking decision to avoid a potential collision. Its limitation is that it requires clear line-of-sight to detect what is in front of the vehicle. Whereas, in current V2V (vehicle-to-vehicle communication) systems, vehicles communicate with each other over a wireless network and share information about their states. Thus the safety of a V2V system is limited to the vehicles with communication capabilities. Our idea is to integrate the complementary capabilities of V2V and AEB systems together to overcome the limitations of V2V and AEB systems. In a V2V-AEB system, vehicles exchange data about the objects information detected by their onboard sensors along with their locations, speeds, and movements. The object information detected by a vehicle and the information received through the V2V network is processed by the AEB system of the subject vehicle. If there is an imminent crash, the AEB system alerts the driver or applies the brake automatically in critical conditions to prevent the collision. To make V2V-AEB system advance, we have developed an intelligent heart Monitoring system and integrated it with the V2V-AEB system of the vehicle. The advancement of wearable and implantable sensors enables them to communicate driver’s health conditions with PC’s and handheld devices. Part of this thesis work concentrates on monitoring the driver’s heart status in real time by using fitness tracker. In the case of a critical health condition such as the cardiac arrest of a driver, the system informs the vehicle to take an appropriate operation decision and broadcast emergency messages over the V2V network. Thus making other vehicles and emergency services aware of the emergency condition, which can help a driver to get immediate medical attention and prevent accident casualties. To ensure that the effectiveness of the V2V-AEB system is not reduced by a time delay, it is necessary to study the effect of delay thoroughly and to handle them properly. One common practice to control the delayed vehicle trajectory information is to extrapolate trajectory to the current time. We have put forward a dynamic system that can help to reduce the effect of delay in different environments without extrapolating trajectory of the pedestrian. This method dynamically controls the AEB start braking time according to the estimated delay time in the scenario. This thesis also addresses the problem of communication overload caused by V2V-AEB system. If there are n vehicles in a V2V network and each vehicle detects m objects, the message density in the V2V network will be n*m. Processing these many messages by the receiving vehicle will take considerable computation power and cause a delay in making the braking decision. To prevent flooding of messages in V2V-AEB system, some approaches are suggested to reduce the number of messages in the V2V network that include not sending information of objects that do not cause a potential collision and grouping the object information in messages.
APA, Harvard, Vancouver, ISO, and other styles
50

(11187051), Yury Kuleshov. "The Study of Behavior of Passenger Car-Semi-Autonomous Trailer Connections under Load." Thesis, 2021.

Find full text
Abstract:

A variety of passenger car-trailer connections exist on the market. One specific type of the connections provides a tensile force measurement capability for the purpose of providing feedback for the semi-autonomous trailer’s control system. Semi-autonomous trailer is an innovative technology that can encourage drivers to use smaller vehicles for towing, which will contribute to restoration and improvement of urban infrastructure (NAE Grand Challenges for Engineering, 2020). The vehicle-semi-autonomous trailer connection’s safety concerns depend on multiple factors, but start with either a mechanical, or an electrical failure. The topic of safety of passenger car-semi-autonomous trailer connections is not well present in literature. The connections’ mechanical failures under load are in the focus of this work. The author addressed the following research question and the sub question. How do the existing “passenger car-trailer” connections with tensile force measurement capability compare to one another under load in terms of the possible failure? What is the failure mode of each of the compared connections? The author selected three prototypes from the literature, built three-dimensional (3D) models in SolidWorks 2018 and simulated the tests in the program’s add-on in accordance with the requirements of an industry standard on real-life testing of specific vehicle systems. The author compared the three prototypes by a number of different parameters. The research showed that none of the three existing prototypes are public road-ready in terms of safety. The study can be useful for future designers of passenger-car-semi-autonomous trailer connections.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography