To see the other types of publications on this topic, follow the link: Autonomous robot system.

Dissertations / Theses on the topic 'Autonomous robot system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Autonomous robot system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

McNeal, William B. "Simulation of the autonomous combat systems robot optical detection system." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA342228.

Full text
Abstract:
Thesis (M.S. in Applied Physics) Naval Postgraduate School, December 1997.
"December 1997." Thesis advisor(s): Gordon Schacher, Donald Brutzman. Includes bibliographical references (p. 131). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
2

Kurita, Hiroki. "AUTONOMOUS UNLOADING SYSTEM FOR HEAD-FEEDING COMBINE ROBOT." Kyoto University, 2013. http://hdl.handle.net/2433/180370.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第17832号
農博第2017号
新制||農||1016(附属図書館)
学位論文||H25||N4789(農学部図書室)
30647
京都大学大学院農学研究科地域環境科学専攻
(主査)教授 飯田 訓久, 教授 近藤 直, 教授 清水 浩
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
3

Vaughan, Richard. "Experiments in animal-interactive robotics." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mikhalsky, Maxim. "Efficient biomorphic vision for autonomous mobile robots." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16206/.

Full text
Abstract:
Autonomy is the most enabling and the least developed robot capability. A mobile robot is autonomous if capable of independently attaining its objectives in unpredictable environment. This requires interaction with the environment by sensing, assessing, and responding to events. Such interaction has not been achieved. The core problem consists in limited understanding of robot autonomy and its aspects, and is exacerbated by the limited resources available in a small autonomous mobile robot such as energy, information, and space. This thesis describes an efficient biomorphic visual capability that can provide purposeful interaction with environment for a small autonomous mobile robot. The method used for achieving this capability comprises synthesis of an integral paradigm of a purposeful autonomous mobile robot, formulation of requirements for the visual capability, and development of efficient algorithmic and technological solutions. The paradigm is a product of analysis of fundamental aspects of the problem, and the insights found in inherently autonomous biological organisms. Based on this paradigm, analysis of the biological vision and the available technological basis, and the state-of-the-art in vision algorithms, the requirements were formulated for a biomorphic visual capability that provides the situation awareness capability for a small autonomous mobile robot. The developed visual capability is comprised of a sensory and processing architecture, an integral set of motion vision algorithms, and a method for visual ranging of still objects that is based on them. These vision algorithms provide motion detection, fixation, and tracking functionality with low latency and computational complexity. High temporal resolution of CMOS imagers is exploited for reducing the logical complexity of image analysis, and consequently the computational complexity of the algorithms. The structure of the developed algorithms conforms to the arithmetic and memory resources available in a system on a programmable chip (SoPC), which allows complete confinement of the high-bandwidth datapath within a SoPC device and therefore high-speed operation by design. The algorithms proved to be functional, which validates the developed visual capability. The experiments confirm that high temporal resolution imaging simplifies image motion structure, and ultimately the design of the robot vision system.
APA, Harvard, Vancouver, ISO, and other styles
5

Hughes, Bradley Evan. "A Navigation Subsystem for an Autonomous Robot Lawn Mower." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1312391797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cowling, Michael, and n/a. "Non-Speech Environmental Sound Classification System for Autonomous Surveillance." Griffith University. School of Information Technology, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040428.152425.

Full text
Abstract:
Sound is one of a human beings most important senses. After vision, it is the sense most used to gather information about the environment. Despite this, comparatively little research has been done into the field of sound recognition. The research that has been done mainly centres around the recognition of speech and music. Our auditory environment is made up of many sounds other than speech and music. This sound information can be taped into for the benefit of specific applications such as security systems. Currently, most researchers are ignoring this sound information. This thesis investigates techniques to recognise environmental non-speech sounds and their direction, with the purpose of using these techniques in an autonomous mobile surveillance robot. It also presents advanced methods to improve the accuracy and efficiency of these techniques. Initially, this report presents an extensive literature survey, looking at the few existing techniques for non-speech environmental sound recognition. This survey also, by necessity, investigates existing techniques used for sound recognition in speech and music. It also examines techniques used for direction detection of sounds. The techniques that have been identified are then comprehensively compared to determine the most appropriate techniques for non-speech sound recognition. A comprehensive comparison is performed using non-speech sounds and several runs are performed to ensure accuracy. These techniques are then ranked based on their effectiveness. The best technique is found to be either Continuous Wavelet Transform feature extraction with Dynamic Time Warping or Mel-Frequency Cepstral Coefficients with Dynamic Time Warping. Both of these techniques achieve a 70% recognition rate. Once the best of the existing classification techniques is identified, the problem of uncountable sounds in the environment can be addressed. Unlike speech recognition, non-speech sound recognition requires recognition from a much wider library of sounds. Due to this near-infinite set of example sounds, the characteristics and complexity of non-speech sound recognition techniques increases. To address this problem, a systematic scheme needs to be developed for non-speech sound classification. Several different approaches are examined. Included is a new design for an environmental sound taxonomy based on an environmental sound alphabet. This taxonomy works over three levels and classifies sounds based on their physical characteristics. Its performance is compared with a technique that generates a structured tree automatically. These structured techniques are compared for different data sets and results are analysed. Comparable results are achieved for these techniques with the same data set as previously used. In addition, the results and greater information from these experiments is used to infer some information about the structure of environmental sounds in general. Finally, conclusions are drawn on both sets of techniques and areas of future research stemming from this thesis are explored.
APA, Harvard, Vancouver, ISO, and other styles
7

Hung, David, Cinthya Tang, Coby Allred, Kennon McKeever, James Murphy, and Ricky Herriman. "AUTONOMOUS GROUND RECONNAISSANCE DRONE USING ROBOT OPERATING SYSTEM (ROS)." International Foundation for Telemetering, 2017. http://hdl.handle.net/10150/627005.

Full text
Abstract:
The Arizona Autonomous Club is a student organization at the University of Arizona which designs, builds, and competes with Unmanned Air Systems (UAS). This year, a 25% scale Xtreme Decathlon model aircraft was selected and successfully converted into a fully autonomous UAS for the AUVSI Student Unmanned Aerial Systems (SUAS) 2017 competition. The UAS utilizes a Pixhawk autopilot unit, which is an independent, open-hardware project aiming at providing high-end autopilot hardware at low costs and high availability. The Pixhawk runs an efficient real time operating system (RTOS) and includes sensors such as a GPS unit, IMUs, airspeed, etc. The UAS also includes an onboard imaging system, which is controlled by an onboard computer (OBC). The Pixhawk and OBC are interconnected with two ground control stations (GCS) using the Robot Operating System (ROS) framework, which is capable of extending overall system capabilities to include an expanded telemetry downlink, obstacle avoidance, and manual overrides.
APA, Harvard, Vancouver, ISO, and other styles
8

AL-Buraiki, Omar S. M. "Specialized Agents Task Allocation in Autonomous Multi-Robot Systems." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41504.

Full text
Abstract:
With the promise to shape the future of industry, multi-agent robotic technologies have the potential to change many aspects of daily life. Over the coming decade, they are expected to impact transportation systems, military applications such as reconnaissance and surveillance, search-and-rescue operations, or space missions, as well as provide support to emergency first responders. Motivated by the latest developments in the field of robotics, this thesis contributes to the evolution of the future generation of multi-agent robotic systems as they become smarter, more accurate, and diversified in terms of applications. But in order to achieve these goals, the individual agents forming cooperative robotic systems need to be specialized in what they can accomplish, while ensuring accuracy and preserving the ability to perform diverse tasks. This thesis addresses the problem of task allocation in swarm robotics in the specific context where specialized capabilities of the individual agents are considered. Based on the assumption that each individual agent possesses specialized functional capabilities and that the expected tasks, which are distributed in the surrounding environment, impose specific requirements, the proposed task allocation mechanisms are formulated in two different spaces. First, a rudimentary form of the team members’ specialization is formulated as a cooperative control problem embedded in the agents’ dynamics control space. Second, an advanced formulation of agents’ specialization is defined to estimate the individual agents’ task allocation probabilities in a dedicated specialization space, which represents the core contribution of this thesis to the advancement and practice in the area of swarm robotics. The original task allocation process formulated in the specialization space evolves through four stages of development. First, a task features recognition stage is conceptually introduced to leverage the output of a sensing layer embedded in robotic agents to drive the proposed task allocation scheme. Second, a matching scheme is developed to best match each agent’s specialized capabilities with the corresponding detected tasks. At this stage, a general binary definition of agents’ specialization serves as the basis for task-agent association. Third, the task-agent matching scheme is expanded to an innovative probabilistic specialty-based task-agent allocation framework to generalize the concept and exploit the potential of agents’ specialization consideration. Fourth, the general framework is further refined with a modulated definition of the agents’ specialization based on their mechanical, physical structure, and embedded resources. The original framework is extended and a prioritization layer is also introduced to improve the system’s response to complex tasks that are characterized based on the recognition of multiple classes. Experimental validation of the proposed specialty-based task allocation approach is conducted in simulation and on real-world experiments, and the results are presented and discussed in light of potential applications to demonstrate the effectiveness and efficiency of the proposed framework.
APA, Harvard, Vancouver, ISO, and other styles
9

Paul, André. "Design of an autonomous navigation system for a mobile robot." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99565.

Full text
Abstract:
An autonomous navigational system for a mobile robot was developed based on a Laser-Range-Finder-based path planning and navigational algorithms. The system was enhanced by incorporating collision avoidance algorithms using data from a sonar sensor array, and further improved by establishing two virtual regions in front of the robot for obstacle detection and avoidance. Several virtual detector bands with varying dimensions were also added to the sides of the robot to check for rotational clearance safety and to determine the direction of rotation. The autonomous navigational system was tested extensively under indoor environment. Test results showed that the system performed satisfactorily in navigating the mobile robot in three structured mazes under indoor conditions.
An artificial landmark localization algorithm was also developed to continuously record the positions of the robot whilst it was moving. The algorithm was tested on a grid layout of 6 m x 6 m. The performance of the artificial landmark localization technique was compared with odometric and inertial measurements obtained using a dead-reckoning method and a gyroscope-corrected dead-reckoning method. The artificial landmark localization method resulted in much smaller root mean square error (0.033 m) of position estimates compared to the other two methods (0.175 m and 0.135 m respectively).
APA, Harvard, Vancouver, ISO, and other styles
10

Qiu, Yesiliang. "Autonomous Tick Collection Robot: Platform Development and Driving System Control." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613752543210849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maghsoud, Pegah. "Autonomous and cooperative multi-robot system for multi-object transportation." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50337.

Full text
Abstract:
This thesis investigates multi-robot cooperation in multi-robot systems (MRS) for simultaneous multi-object transportation in unknown, dynamic, and unstructured environments. Two distinct control frameworks are developed for MRS to achieve its global goal while resolving conflicts in the system. An autonomous and distributed algorithm that uses artificial immune system (AIS) is developed for multi-robot cooperation and it is validated using experimental work carried out on a team of real physical robots in the Industrial Automation Laboratory (IAL). Two deadlock handling approaches are considered to avoid shared resource conflicts in the system. One method prevents the system from getting into a deadlock situation and is so-called the prevention-based method. The other method autonomously detects the deadlocks and then recovers system from that situation, and is known as the detection-based method. Two separate deadlock resolution algorithms are developed for MRS; one based on the prevention method and the other based on the detection method. Either of these two deadlock handling algorithms is then combined with the multi-robot cooperation algorithm to generate two integrated task execution algorithms for the control frameworks of MRS. Feasibility and effectiveness of the developed control frameworks are demonstrated and evaluated through simulation of the MRS on the Webots simulation platform. Finally, using the simulation results, a comparative evaluation of the two control frameworks developed in this research is carried out with respect to task completion time, communication overhead, and the number of tasks executed.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
12

Öfjäll, Kristoffer. "Online Learning for Robot Vision." Licentiate thesis, Linköpings universitet, Datorseende, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110892.

Full text
Abstract:
In tele-operated robotics applications, the primary information channel from the robot to its human operator is a video stream. For autonomous robotic systems however, a much larger selection of sensors is employed, although the most relevant information for the operation of the robot is still available in a single video stream. The issue lies in autonomously interpreting the visual data and extracting the relevant information, something humans and animals perform strikingly well. On the other hand, humans have great diculty expressing what they are actually looking for on a low level, suitable for direct implementation on a machine. For instance objects tend to be already detected when the visual information reaches the conscious mind, with almost no clues remaining regarding how the object was identied in the rst place. This became apparent already when Seymour Papert gathered a group of summer workers to solve the computer vision problem 48 years ago [35]. Articial learning systems can overcome this gap between the level of human visual reasoning and low-level machine vision processing. If a human teacher can provide examples of what to be extracted and if the learning system is able to extract the gist of these examples, the gap is bridged. There are however some special demands on a learning system for it to perform successfully in a visual context. First, low level visual input is often of high dimensionality such that the learning system needs to handle large inputs. Second, visual information is often ambiguous such that the learning system needs to be able to handle multi modal outputs, i.e. multiple hypotheses. Typically, the relations to be learned  are non-linear and there is an advantage if data can be processed at video rate, even after presenting many examples to the learning system. In general, there seems to be a lack of such methods. This thesis presents systems for learning perception-action mappings for robotic systems with visual input. A range of problems are discussed, such as vision based autonomous driving, inverse kinematics of a robotic manipulator and controlling a dynamical system. Operational systems demonstrating solutions to these problems are presented. Two dierent approaches for providing training data are explored, learning from demonstration (supervised learning) and explorative learning (self-supervised learning). A novel learning method fullling the stated demands is presented. The method, qHebb, is based on associative Hebbian learning on data in channel representation. Properties of the method are demonstrated on a vision-based autonomously driving vehicle, where the system learns to directly map low-level image features to control signals. After an initial training period, the system seamlessly continues autonomously. In a quantitative evaluation, the proposed online learning method performed comparably with state of the art batch learning methods.
APA, Harvard, Vancouver, ISO, and other styles
13

Dag, Antymos. "Autonomous Indoor Navigation System for Mobile Robots." Thesis, Linköpings universitet, Programvara och system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129419.

Full text
Abstract:
With an increasing need for greater traffic safety, there is an increasing demand for means by which solutions to the traffic safety problem can be studied. The purpose of this thesis is to investigate the feasibility of using an autonomous indoor navigation system as a component in a demonstration system for studying cooperative vehicular scenarios. Our method involves developing and evaluating such a navigation system. Our navigation system uses a pre-existing localization system based on passive RFID, odometry and a particle filter. The localization system is used to estimate the robot pose, which is used to calculate a trajectory to the goal. A control system with a feedback loop is used to control the robot actuators and to drive the robot to the goal.   The results of our evaluation tests show that the system generally fulfills the performance requirements stated for the tests. There is however some uncertainty about the consistency of its performance. Results did not indicate that this was caused by the choice of localization techniques. The conclusion is that an autonomous navigation system using the aforementioned localization techniques is plausible for use in a demonstration system. However, we suggest that the system is further tested and evaluated before it is used with applications where accuracy is prioritized.
APA, Harvard, Vancouver, ISO, and other styles
14

Thomas, Shajan A. "Design of a Teleoperated Rock Sampling System." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/34952.

Full text
Abstract:
Telemanipulators allow a user to interact with a potentially dangerous environment remotely. Deploying a robot arm from a UAV would allow an operator to reach farther and quicker than he or she would with a ground robotics system alone. This thesis will discuss the design and fabrication of a compact, light, 3 degree of freedom robot arm using common off the shelf products and machined components that in combination can pick up half pound samples and has a reach of 260 mm. Also addressed is making the telemanipulator interface easier to use. One of the challenges in using a robot arm with a single camera in a beyond line-of-sight scenario is the difficulty of interacting with the environment because of a loss of depth information. This lack of information can be remedied with additional sensors. Once depth to an object of interest is known, the sampler can automatically pick up objects of interest. The manipulator arm will be used in conjunction with systems developed by the Unmanned Systems Laboratory at Virginia Tech. This group is developing a unmanned ground vehicle to be carried in the payload pod of a unmanned aerial vehicle. The robotâ s ultimate objective is to collect shrapnel and bomb material from potentially dangerous environments.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
15

Hodo, David W. "Development of an autonomous mobile robot-trailer system for UXO detection." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/HODO_DAVID_59.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lind, Henrik, and Jacob Janssen. "The Irrigator : Autonomous watering robot for homes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264479.

Full text
Abstract:
Inspired by the trend of automated homes, this thesis examines the possibility of designing a cheap and autonomous robot that will water plants effectively at home. Many existing solutions are cumbersome and not sufficiently effective, often due to flexibility and risk of over watering. Therefore this thesis examines a wheel based approach. In order to achieve the best possible results, the soil water content was measured, as opposed to a time-based approach where the user sets a timer to decide how often the plants are watered. This thesis also examines the advantages, and disadvantages of a capacitive moisture sensor versus a resistive moisture sensor, as well as effects of depth of penetration for the sensors. Controlled using an Arduino Uno, the robot was programmed to follow a line with IR-sensors, drive using differential steering, and had the ability to drive in reverse. It was able to identify a pot, read the moisture level of the soil, water it, and continue the loop. However, it was not completely autonomous as it is incapable of refilling the water tank – or recharging the batteries. It was stated that the resistive sensor was most suited to be used in the robot due to the relatively reliable results at increased depth. The results at deeper penetration were expected, as the moisture increased with depth when not recently irrigated. The capacitive sensor showed somewhat ambiguous results. The results showed higher water content deeper into the soil, compared to recently irrigated soils.
Inspirerade av trenden om automatiserade hem grundar sig detta arbete i möjligheten att skapa en billig och självgående robot som effektivt vattnar plantor i hemmet. Då många nuvarande lösningar är besvärliga och inte tillräckligt effektiva har detta kandidatarbete undersökt ett tillvägagångssätt som innefattar en robot byggd på en plattform med hjul. För att uppnå en effektiv bevattning grundar sig processen i fuktighetsnivån hos jorden plantorna sitter i, istället för en annars vanlig tidsbaserad bevattningsprocess. Därmed undersöker arbetet även fördelar och nackdelar med resistiva och kapacitiva jordfuktighetssensorer. Rapporten undersöker och redogör hur påverkan av djupet sensorn penetrerar jorden påverkar datan om jordens fuktighet. Kontrollerad av en Arduino Uno följde roboten en utsatt linje med hjälp av IR-sensorer och en motordrivare som implementerade både differentialstyrning och möjligheten att köra motorer i motsatt riktning. Den slutgiltiga roboten kunde med hjälp av ultraljudssensorer upptäcka en kruka, läsa av fuktighetsnivån i jorden, vattna och sedan fortsätta slingan. Däremot var den inte helt självkörande då den saknade förmågan att fylla på vattentanken och ladda sina batterier själv. Det konstaterades att den resistiva sensorn var bäst lämpad, tack vare dess tillförlitliga mätningar vid varierande djup. Den resistiva sensorns utslag vid djupare mätningar var förväntade, då den torra jorden ökade i fuktighet och den nyligen bevattnade jorden visade fortsatt fuktigt. Däremot visade den kapacitiva sensorn något tvetydiga resultat vid djupa mätningar, då de torra krukorna framstod som fuktigare än de nyligen bevattnade.
APA, Harvard, Vancouver, ISO, and other styles
17

Khan, Muhammad Tahir. "Robust and autonomous multi-robot cooperation using an artificial immune system." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/23472.

Full text
Abstract:
This thesis investigates autonomous and fault-tolerant cooperative operation and intelligent control of multi-robot systems in a dynamic, unstructured, and unknown environment. It makes significant original contributions pertaining to autonomous robot cooperation, dynamic task allocation, system robustness, and real-time performance. The thesis develops a fully autonomous and fault tolerant distributed control system framework based on an artificial immune system for cooperative multi-robot systems. The multi-robot system consists of a team of heterogeneous mobile robots which cooperate with each other to achieve a global goal while resolving conflicts and accommodating full and partial failures in the robots. In this framework, the system autonomously chooses the appropriate number of robots required for carrying out the task in an unknown and unpredictable environment. An artificial immune system (AIS) approach is incorporated into the multi-robot system framework, which will provide robust performance, self-deterministic cooperation, and coping with an inhospitable environment. Based on the structure of the human immune system, immune response, immune network theory, and the mechanisms of interaction among antibody molecules, the robots in the team make independent decisions, coordinate, and if required cooperate with each other to accomplish a common goal. As needed for application in cooperative object transportation by mobile robots, the thesis develops a new method of object pose estimation. In this method, a CCD camera, optical encoders, and a laser range finder are the sensors used by the robots to estimate the pose of the detected object. The thesis also develops a market-based algorithm for autonomous multi-robot cooperation, which is then used for comparative evaluation of the performance of the developed AIS-based system framework. In order to validate the developed techniques, a Java-based simulation system and a physical multi-robot experimental system are developed. This practical system is intended to transport multiple objects of interest to a goal location in a dynamic and unknown environment with complex static and dynamic obstacle distributions. The approaches developed in this thesis are implemented in the prototype system in our laboratory and rigorously tested and validated through both computer simulation and physical experimentation.
APA, Harvard, Vancouver, ISO, and other styles
18

Michiue, Masakuni. "Research on the sonar hardware system on an autonomous mobile robot/." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA284141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kisor, John Carl. "Integration of an image hardware/software system into an autonomous robot." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA294480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Allwright, Michael [Verfasser]. "An autonomous multi-robot system for stigmergy-based construction / Michael Allwright." Paderborn : Universitätsbibliothek, 2017. http://d-nb.info/1142232492/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Remias, Leonard V. "A real-time image understanding system for an autonomous mobile robot." Thesis, Monterey, California. Naval Postgraduate School, 1996. http://hdl.handle.net/10945/8887.

Full text
Abstract:
Approved for public release, distribution is unlimited
Yamabico-11 is an autonomous mobile robot used as a research platform with one area in image understanding. Previous work focused on edge detection analysis on a Silicon Graphics Iris (SGI) workstation with no method for implementation on the robot. Yamabico-11 does not have an on-board image processing capability to detect straight edges in a grayscale image and a method for allowing the user to analyze the data. The approach taken for system development is partly based on edge extraction and line fitting algorithms of (PET92) with a 3-D geometric model of the robot's world (STE92). Image grabbing routines of (KIS95) were used to capture images with the robot's digital output camera and processed using image understanding routines developed for a SGI workstation. The routines were modified and ported onto the robot. The new method of edge extraction produces less ambient noise and more continuous vertical line segments in the gradient image which enhances pattern matching analysis of the image. Yamabico-11's computer system can capture an image with a resolution of 739 x 484 active picture elements. Edge detection analysis is performed on the robot which generates a list structure of edges and stored in the robot's memory for user analysis.
APA, Harvard, Vancouver, ISO, and other styles
22

Khalil, Azher Othamn K. "Fuzzy logic control and navigation of mobile vehicles." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hosking, Matthew R. "Testability of a swarm robot using a system of systems approach and discrete event simulation /." Online version of thesis, 2009. http://hdl.handle.net/1850/11215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Norén, Karl. "Obstacle Avoidance for an Autonomous Robot Car using Deep Learning." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160551.

Full text
Abstract:
The focus of this study was deep learning. A small, autonomous robot car was used for obstacle avoidance experiments. The robot car used a camera for taking images of its surroundings. A convolutional neural network used the images for obstacle detection. The available dataset of 31 022 images was trained with the Xception model. We compared two different implementations for making the robot car avoid obstacles. Mapping image classes to steering commands was used as a reference implementation. The main implementation of this study was to separate obstacle detection and steering logic in different modules. The former reached an obstacle avoidance ratio of 80 %, the latter reached 88 %. Different hyperparameters were looked at during training. We found that frozen layers and number of epochs were important to optimize. Weights were loaded from ImageNet before training. Frozen layers decided how many layers that were trainable after that. Training all layers (no frozen layers) was proven to work best. Number of epochs decided how many epochs a model trained. We found that it was important to train between 10-25 epochs. The best model used no frozen layers and trained for 21 epochs. It reached a test accuracy of 85.2 %.
APA, Harvard, Vancouver, ISO, and other styles
25

Haberbusch, Matthew Gavin. "Autonomous Skills for Remote Robotic Assembly." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1588112797847939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hoffmann, David. "Navigace mobilního robotu B2 ve venkovním prostředí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399412.

Full text
Abstract:
This master’s thesis deals with the navigation of a mobile robot that uses the ROS framework. The aim is to improve the ability of the existing B2 robot to move autonomously outdoors. The theoretical part contains a description of the navigation core, which consists of the move_base library and the packages used for planning. The practical part describe the aws of the existing solution, the design and implementation of changes and the results of subsequent testing in the urban park environment.
APA, Harvard, Vancouver, ISO, and other styles
27

Lochner, Jane Thayer. "Analysis and improvement of an ultrasonic sonar system on an autonomous mobile robot." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA300358.

Full text
Abstract:
Thesis (M.S. in Applied Physics and M.S. in Computer Science) Naval Postgraduate School, December 1994.
"December 1994." Thesis advisor(s): Yutaka Kanayama, Donald L. Waters. Includes bibliographic references (p. 105). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
28

Fish, Robert W. "An expert system for high level motion control for an autonomous mobile robot." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/27046.

Full text
Abstract:
The Computer Science Department at the Naval Postgraduate School in Monterey, California performs research on the control and operation of autonomous mobile robots. One such robot, Yamabico-11, is an excellent test platform for the study of path planning and obstacle avoidance. The ability to operate in an area where unforeseen obstacles are present, and still attain the specified goal, is a highly desirable behavior in an autonomous mobile robot. This thesis takes a step in that direction by proposing and implementing an expert system for high level motion control of the robot. The expert system combines basic path planning routines and advanced obstacle avoidance techniques to direct the robot as it performs the mission
APA, Harvard, Vancouver, ISO, and other styles
29

Durdu, Akif. "Robotic System Design For Reshaping Estimated Human Intention In Human-robot Interactions." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615150/index.pdf.

Full text
Abstract:
This thesis outlines the methodology and experiments associated with the reshaping of human intention via based on the robot movements in Human-Robot Interactions (HRI). Although works on estimating human intentions are quite well known research areas in the literature, reshaping intentions through interactions is a new significant branching in the field of human-robot interaction. In this thesis, we analyze how previously estimated human intentions change based on his/her actions by cooperating with mobile robots in a real human-robot environment. Our approach uses the Observable Operator Models (OOMs) and Hidden Markov Models (HMMs) designed for the intelligent mobile robotic systems, which consists of two levels: the low-level tracks the human while the high-level guides the mobile robots into moves that aim to change intentions of individuals in the environment. In the low level, postures and locations of the human are monitored by applying image processing methods. The high level uses an algorithm which includes learned OOM models or HMM models to estimate human intention and decision making system to reshape the previously estimated human intention. Through this thesis, OOMs are started to be used at the human-robot interaction applications for first time. This two-level system is tested on video frames taken from a real human-robot environment. The results obtained using the proposed approaches are compared according to performance towards the degree of reshaping the detected intentions.
APA, Harvard, Vancouver, ISO, and other styles
30

Hickle, Jason, and Steven Halle. "The design and implementation of a semi-autonomous surf-zone robot using advanced sensors and a common robot operating system." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5690.

Full text
Abstract:
Approved for public release; distribution is unlimited.
A semi-autonomous vehicle, MONTe, was designed, modeled and tested for deployment and operation in a surf-zone coastal environment. The MONTe platform was designed to use unique land based locomotion that incorporates wheel-legs(WhegsTM) and a tail. Semi-autonomy was realized with data from onboard sensors and implemented through open source Robot Operating System (ROS), hosted on an Ubuntu Linux based processor. Communications via IEEE 802.11 protocols proved successful for data telemetry in line of site operations. Basic mobility and tail control of the platform was modeled in Working Model 2D. Field tests were successfully conducted to demonstrate mobility and semi-autonomous waypoint navigation. Future developments will look to improve the overall design and test water borne mobility, navigation, and communication.
APA, Harvard, Vancouver, ISO, and other styles
31

Huang, Henry. "Bearing-only SLAM : a vision-based navigation system for autonomous robots." Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.

Full text
Abstract:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
APA, Harvard, Vancouver, ISO, and other styles
32

Osut, Demet. "A Behavior Based Robot Control System Using Neuro-fuzzy Approach." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/109765/index.pdf.

Full text
Abstract:
In autonomous navigation of mobile robots the dynamic environment is a source of problems. Because it is not possible to model all the possible conditions, the key point in the robot control is to design a system that is adaptable to different conditions and robust in dynamic environments. This study presents a reactive control system for a Khepera robot with the ability to navigate in a dynamic environment for reaching goal objects. The main motivation of this research is to design a robot control, which is robust to sensor errors and sudden changes and adaptable to different environments and conditions. Behavior based approach is used with taking the advantage of fuzzy reasoning in design. Experiments are made on Webots, which is a simulation environment for Khepera robot.
APA, Harvard, Vancouver, ISO, and other styles
33

Kontitsis, Michail. "Design and implementation of an integrated dynamic vision system for autonomous systems operating in uncertain domains." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Andersson, Olov. "Methods for Scalable and Safe Robot Learning." Licentiate thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138398.

Full text
Abstract:
Robots are increasingly expected to go beyond controlled environments in laboratories and factories, to enter real-world public spaces and homes. However, robot behavior is still usually engineered for narrowly defined scenarios. To manually encode robot behavior that works within complex real world environments, such as busy work places or cluttered homes, can be a daunting task. In addition, such robots may require a high degree of autonomy to be practical, which imposes stringent requirements on safety and robustness. \setlength{\parindent}{2em}\setlength{\parskip}{0em}The aim of this thesis is to examine methods for automatically learning safe robot behavior, lowering the costs of synthesizing behavior for complex real-world situations. To avoid task-specific assumptions, we approach this from a data-driven machine learning perspective. The strength of machine learning is its generality, given sufficient data it can learn to approximate any task. However, being embodied agents in the real-world, robots pose a number of difficulties for machine learning. These include real-time requirements with limited computational resources, the cost and effort of operating and collecting data with real robots, as well as safety issues for both the robot and human bystanders.While machine learning is general by nature, overcoming the difficulties with real-world robots outlined above remains a challenge. In this thesis we look for a middle ground on robot learning, leveraging the strengths of both data-driven machine learning, as well as engineering techniques from robotics and control. This includes combing data-driven world models with fast techniques for planning motions under safety constraints, using machine learning to generalize such techniques to problems with high uncertainty, as well as using machine learning to find computationally efficient approximations for use on small embedded systems.We demonstrate such behavior synthesis techniques with real robots, solving a class of difficult dynamic collision avoidance problems under uncertainty, such as induced by the presence of humans without prior coordination. Initially using online planning offloaded to a desktop CPU, and ultimately as a deep neural network policy embedded on board a 7 quadcopter.
APA, Harvard, Vancouver, ISO, and other styles
35

Mahdoui, Chedly Nesrine. "Communicating multi-UAV system for cooperative SLAM-based exploration." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2447/document.

Full text
Abstract:
Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multirobot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès technologiques, tels que de meilleures capacités de traitement à bord des robots et des performances de communication plus élevées, et ii) les résultats prometteurs du déploiement de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Vehicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de suite. De telles applications nécessitent que les robots identifient leur environnement et se localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration. Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement inconnu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un système multi-robot où le but est de choisir des régions spécifiques de l’environnement à explorer et à cartographier simultanément par chaque robot de manière optimisée, afin de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Simultaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les points frontières situés entre les zones libres et les zones inconnues – sont assignées aux robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontières de cette carte, ce qui permet d’économiser la bande passante de communication. L’un des points les plus difficiles du SMR est la communication inter-robot. Nous étudions cette partie sous les aspects topologiques et typologiques. Nous proposons également des stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations basées sur des simulations étendues et des bancs d’essai sont présentées
In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented
APA, Harvard, Vancouver, ISO, and other styles
36

Ericsson, John-Eric, and Daniel Eriksson. "Indoor Positioning and Localisation System with Sensor Fusion : AN IMPLEMENTATION ON AN INDOOR AUTONOMOUS ROBOT AT ÅF." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168841.

Full text
Abstract:
This thesis will present guidelines of how to select sensors and algorithms for indoor positioning and localisation systems with sensor fusion. These guidelines are based on an extensive theory and state of the art research. Different scenarios are presented to give some examples of proposed sensors and algorithms for certain applications. There are of course no right or wrong sensor combinations, but some factors are good to bear in mind when a system is designed. To give an example of the proposed guidelines a Simultaneous Localisation and Mapping (SLAM) system as well as an Indoor Positioning System (IPS) has been designed and implemented on an embedded robot platform. The implemented SLAM system was based on a FastSLAM2 algorithm with ultrasonic range sensors and the implemented IPS was based on a WiFi RSS profiling method using aWeibull-distribution. The methods, sensors and infrastructure have been chosen based on requirements derived from wishes from the stakeholder as well as knowledge from the theory and state of the art research. A combination of SLAM and IPS is proposed, chosen to be called WiFiSLAM, in order to reduce errors from both of the methods. Unfortunately, due to unexpected issues with the platform, no combination has been implemented and tested. The systems were simulated independently before implemented on the embedded platform. Results from these simulations indicated that the requirements were able to be fulfilled as well as an indication of the minimum set-up needed for the implementation. Both the implemented systems were proven to have the expected accuracies during testing and with more time, better tuning could have been performed and probably also better results. From the results, a conclusion could be drawn that a combined WiFi SLAM solution would have improved the result in a larger testing area than what was used. IPS would have increased its precision and SLAM would have got an increased robustness. The thesis has shown that there is no exact way of finding a perfect sensor and method solution. Most important is, however, the weight between time, cost and quality. Other important factors are to decide in which environment a system will perform its tasks and if it is a safety critical system. It has also been shown that fused sensor data will outperform the result of just one sensor and that there is no max limit in fused sensors. However, that requires the sensor fusion algorithm to be well tuned, otherwise the opposite might happen.
Examensjobbet presenterar riktlinjer för hur sensorer och algoritmer för inomhuspositionering och lokaliseringssystem med sensorfusion bör väljas. Riktlinjerna är baserade på en omfattande teori och state of the art undersökning. Olika scenarion presenteras för att ge exempel på metoder för att välja sensorer och algoritmer för applikationer. Självklart finns det inga kombinationer som är rätt eller fel, men vissa faktorer är bra att komma ihåg när ett system designas. För att ge exempel på de föreslagna riktlinjerna har ett “Simultaneous Localisation and Mapping” (SLAM) system samt ett Inomhus Positioneringssystem (IPS) designats och implementerats på en inbyggd robotplattform. Det implementerade SLAM systemet baserades på en FastSLAM2algoritm med ultraljudssensorer och det implementerade IPS baserades på en Wifi RSS profileringsmetod som använder en Weibullfördelning. Metoderna, sensorerna och infrastrukturenhar valts utifrån krav som framställts från önskningar av intressenten samt utifrån kunskap från teori och state of the art undersökningen. En kombination av SLAM och IPS har föreslagits och valts att kallas WiFi SLAM för att reducera osäkerheter från de båda metoderna. Tyvärr har ingen kombination implementerats och testats på grund av oväntade problem med plattformen. Systemen simulerades individuellt före implementationen på den inbyggda plattformen. Resultat från dessa simuleringar tydde på att kraven skulle kunna uppfyllas samt gav en indikation av den minsta “set-upen” som behövdes för implementering. Båda de implementerade systemen visade sig ha de förväntade noggrannheterna under testning och med mer tid kunde bättre kalibrering ha skett, vilket förmodligen skulle resulterat i bättre resultat. Från resultaten kunde slutsatsen dras att en kombinerad WiFi SLAM lösning skulle förbättrat resultatet i en större testyta än den som användes. IPS skulle ha ökat sin precision medan SLAM skulle ha ökat sin robusthet. Examensjobbet har visat att det inte finns något exakt sätt att hitta en perfekt sensor och metodlösning. Viktigast är dock viktningen mellan tid, kostnad och kvalitet. Andra viktigafaktorer är att bestämma miljön systemet skall operera i och om systemet är säkerhetskritiskt. Det visade sig även att fusionerad sensordata kommer överträffa resultatet från endast en sensor och att det inte finns någon maxgräns för antalet fusionerade sensorer. Det kräver dock att sensorfusionsalgoritmen är väl kalibrerad, annars kan det motsatta inträffa.
APA, Harvard, Vancouver, ISO, and other styles
37

Fredriksson, Scott. "Design, Development and Control of a Quadruped Robot." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86897.

Full text
Abstract:
This thesis shows the development of a quadruped platform inspired by existing quadrupled robot designs. A robot by the name of Mjukost was designed, built, and tested. Mjukost uses 12 Dynamixel AX-12a smart servos and can extend its legs up to 19 cm with an operating height of 16 cm. All the custom parts in Mjukost are ether 3d printable or easy to manufacture, and the total estimated cost of Mjukost is around 900$. Mjukost has a simple control system that can position its body freely in 6 DOF using an inverse kinematic model and walk on flat ground using an open-loop walking algorithm. The performance experiments show that its slow control loopcauses difficulties for the robot to follow precise trajectories, but its still consistent in its motions.
APA, Harvard, Vancouver, ISO, and other styles
38

Mouaddib, El Mustapha. "Programmation, génération de trajectoires et recalages pour le Robot Mobile Autonome SARAH." Amiens, 1991. http://www.theses.fr/1991AMIES003.

Full text
Abstract:
Nous présentons dans cette thèse les résultats des travaux ayant été effectués dans le cadre du programme de recherche pour l'étude et la réalisation d'un système robotique complet et cohérent. Ce système est constitué d'un poste de travail et du robot mobile autonome SARAH. Le premier réalise les fonctionnalités de: cartographie, programmation des missions à confier au robot, calcul des virages, simulation. Le second est un support ayant permis la validation des algorithmes de calcul de trajectoires et de recalages. Le robot a également été équipé d'un contrôleur d'exécution minimal lui permettant la gestion de ses ressources et de veiller à la bonne exécution des missions. Cette autonomie lui assure la capacité de travailler dans des univers multiples et différents
APA, Harvard, Vancouver, ISO, and other styles
39

Růžička, Michal. "Návrh a realizace navigačního systému pro autonomní mobilní robot." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230240.

Full text
Abstract:
This thesis deals with design of navigation system for autonomous mobile robots, which is based on the infrared light. The system is based on measuring the relavive angles using landmarks in the enviroment that make the robot can orient and recognize its absolute position in an environment in which it operates.
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Xuerui, and Li Zhao. "Navigation and Automatic Ground Mapping by Rover Robot." Thesis, Högskolan i Halmstad, Halmstad Embedded and Intelligent Systems Research (EIS), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-6185.

Full text
Abstract:
This project is mainly based on mosaicing of images and similarity measurements with different methods. The map of a floor is created from a database of small-images that have been captured by a camera-mounted robot scanning the wooden floor of a living room. We call this ground mapping. After the ground mapping, the robot can achieve self-positioning on the map by using novel small images it captures as it displaces on the ground. Similarity measurements based on the Schwartz inequality have been used to achieve the ground mapping, as well as to position the robot once the ground map is available. Because the natural light affects the gray value of images, this effect must be accounted for in the envisaged similarity measurements. A new approach to mosaicing is suggested. It uses the local texture orientation, instead of the original gray values, in ground mapping as well as in positioning. Additionally, we report on ground mapping results using other features, gray-values as features. The robot can find its position with few pixel errors by using the novel approach and similarity measurements based on the Schwartz inequality.
APA, Harvard, Vancouver, ISO, and other styles
41

Rajasingh, Joshua. "Lane Detection and Obstacle Avoidance in Mobile Robots." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1288980793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hayakawa, Tomohiro. "Adaptation of a group to various environments through local interactions between individuals based on estimated global information." Kyoto University, 2020. http://hdl.handle.net/2433/259039.

Full text
Abstract:
付記する学位プログラム名: グローバル生存学大学院連携プログラム
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第22771号
工博第4770号
新制||工||1746(附属図書館)
京都大学大学院工学研究科機械理工学専攻
(主査)教授 松野 文俊, 教授 椹木 哲夫, 教授 泉田 啓
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
43

Wortham, Robert H. "Using other minds : transparency as a fundamental design consideration for artificial intelligent systems." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760960.

Full text
Abstract:
The human cognitive biases that result in anthropomorphism, the moral confusion surrounding the status of robots, and wider societal concerns related to the deployment of artificial intelligence at scale all motivate the study of robot transparency --- the design of robots such that they may be fully understood by humans. Based on the hypothesis that robot transparency leads to better (in the sense of more accurate) mental models of robots, I investigate how humans perceive and understand a robot when they encounter it, both in online video and direct physical encounter. I also use Amazon Mechanical Turk as a platform to facilitate online experiments with larger population samples. To improve transparency I use a visual real-time transparency tool providing a graphical representation of the internal processing and state of a robot. I also describe and deploy a vocalisation algorithm for transparency. Finally, I modify the form of the robot with a simple bee-like cover, to investigate the effect of appearance on transparency. I find that the addition of a visual or vocalised representation of the internal processing and state of a robot significantly improves the ability of a naive observer to form an accurate model of a robot's capabilities, intentions and purpose. This is a significant result across a diverse, international population sample and provides a robust result about humans in general, rather than one geographic, ethnic or socio-economic group in particular. However, all the experiments were unable to achieve a Mental Model Accuracy (MMA) of more than 59%, indicating that despite improved transparency of the internal state and processing, naive observers' models remain inaccurate, and there is scope for further work. A vocalising, or 'talking', robot greatly increases the confidence of naive observers to report that they understand a robot's behaviour when observed on video. Perhaps we might be more easily deceived by talking robots than silent ones. A zoomorphic robot is perceived as more intelligent and more likeable than a very similar mechanomorphic robot, even when the robots exhibit almost identical behaviour. A zoomorphic form may attract closer visual attention, and whilst this results in an improved MMA, it also diverts attention away from transparency measures, reducing their efficacy to further increase MMA. The trivial embellishment of a robot to alter its form has significant effects on our understanding and attitude towards it. Based on the concerns that motivate this work, together with the results of the robot transparency experiments, I argue that we have a moral responsibility to make robots transparent, so as to reveal their true machine nature. I recommend the inclusion of transparency as a fundamental design consideration for intelligent systems, particularly for autonomous robots. This research also includes the design and development of the 'Instinct' reactive planner, developed as a controller for a mobile robot of my own design. Instinct provides facilities to generate a real-time 'transparency feed'--- a real-time trace of internal processing and state. Instinct also controls agents within a simulation environment, the 'Instinct Robot World'. Finally, I show how two instances of Instinct can be used to achieve a second order control architecture.
APA, Harvard, Vancouver, ISO, and other styles
44

Baity, Sean Marshall. "Development of a Next-generation Experimental Robotic Vehicle (NERV) that Supports Intelligent and Autonomous Systems Research." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/36102.

Full text
Abstract:
Recent advances in technology have enabled the development of truly autonomous ground vehicles capable of performing complex navigation tasks. As a result, the demand for practical unmanned ground vehicle (UGV) systems has increased dramatically in recent years. Central to these developments is maturation of emerging mobile robotic intelligent and autonomous capability. While the progress UGV technology has been substantial, there are many challenges that still face unmanned vehicle system developers. Foremost is the improvement of perception hardware and intelligent software that supports the evolution of UGV capability. The development of a Next-generation Experimentation Robotic Vehicle (NERV) serves to provide a small UGV baseline platform supporting experimentation focused on progression of the state-of-the-art in unmanned systems. Supporting research and user feedback highlight the needs that provide justification for an advanced small UGV research platform. Primarily, such a vehicle must be based upon open and technology independent system architecture while exhibiting improved mobility over relatively structured terrain. To this end, a theoretical kinematic model is presented for a novel two-body multi degree-of-freedom, four-wheel drive, small UGV platform. The efficacy of the theoretical kinematic model was validated through computer simulation and experimentation on a full-scale proof-of-concept mobile robotic platform. The kinematic model provides the foundation for autonomous multi-body control. Further, a modular system level design based upon the concepts of the Joint Architecture for Unmanned Systems (JAUS) is offered as an open architecture model providing a scalable system integration solution. Together these elements provide a blueprint for the development of a small UGV capable of supporting the needs of a wide range of leading-edge intelligent system research initiatives.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
45

Strineholm, Philippe. "Exploring Human-Robot Interaction Through Explainable AI Poetry Generation." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54606.

Full text
Abstract:
As the field of Artificial Intelligence continues to evolve into a tool of societal impact, a need of breaking its initial boundaries as a computer science discipline arises to also include different humanistic fields. The work presented in this thesis revolves around the role that explainable artificial intelligence has in human-robot interaction through the study of poetry generators. To better understand the scope of the project, a poetry generators study presents the steps involved in the development process and the evaluation methods. In the algorithmic development of poetry generators, the shift from traditional disciplines to transdisciplinarity is identified. In collaboration with researchers from the Research Institutes of Sweden, state-of-the-art generators are tested to showcase the power of artificially enhanced artifacts. A development plateau is discovered and with the inclusion of Design Thinking methods potential future human-robot interaction development is identified. A physical prototype capable of verbal interaction on top of a poetry generator is created with the new feature of changing the corpora to any given audio input. Lastly, the strengths of transdisciplinarity are connected with the open-sourced community in regards to creativity and self-expression, producing an online tool to address future work improvements and introduce nonexperts to the steps required to self-build an intelligent robotic companion, thus also encouraging public technological literacy. Explainable AI is shown to help with user involvement in the process of creation, alteration and deployment of AI enhanced applications.
APA, Harvard, Vancouver, ISO, and other styles
46

Roehr, Thomas [Verfasser], Frank [Akademischer Betreuer] Kirchner, Frank [Gutachter] Kirchner, and Joachim [Gutachter] Hertzberg. "Autonomous Operation of a Reconfigurable Multi-Robot System for Planetary Space Missions / Thomas Roehr ; Gutachter: Frank Kirchner, Joachim Hertzberg ; Betreuer: Frank Kirchner." Bremen : Staats- und Universitätsbibliothek Bremen, 2019. http://d-nb.info/1199003581/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Koudache, Abdellah. "Contribution à la reconnaissance vocale en vue de la commande de machine : application au robot marcheur EMA4." Valenciennes, 1993. https://ged.uphf.fr/nuxeo/site/esupversions/121368bf-ebaa-4f19-9a9a-ae9f0c6a7da5.

Full text
Abstract:
L'objectif de l'étude menée dans ce mémoire est de contribuer à l'intégration d'une composante vocale dans un système de communication homme-machine et plus particulièrement entre un opérateur et un robot. Après une présentation générale de la problématique des interfaces orales homme-machine, le travail présenté dans ce mémoire consiste à: 1) d'abord, contribuer à l'amélioration des performances des systèmes de reconnaissance vocale de type DTW, c'est-à-dire, fondés essentiellement sur le principe de programmation dynamique, en sollicitant des connaissances spécifiques au signal de parole dans un processus de reconnaissance hybride; ce dernier fait intervenir une hiérarchie de décisions partielles assez variées (indices acoustiques, traits phonétiques, critère de divergence, DTW) ainsi qu'une décision finale, basée sur la mesure de plausibilité, de type facteur de confiance; 2) ensuite, en guise d'application, présenter les stratégies mises en œuvre dans un système de commande vocale d'un engin marcheur autonome à quatre pattes, son fonctionnement et les connaissances (statiques ou dynamiques) nécessaires a l'interprétation des ordres vocaux en vue de leur exécution par le robot. Enfin, sont proposés des critères de choix du langage de commande (aspect lexical et syntaxique) pour augmenter la fiabilité de la reconnaissance et assurer la spontanéité de la commande, ainsi que des recommandations pour renforcer la sécurité des tâches à exécuter.
APA, Harvard, Vancouver, ISO, and other styles
48

Wikander, Gustav. "Three dimensional object recognition for robot conveyor picking." Thesis, Linköping University, Department of Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18373.

Full text
Abstract:

Shape-based matching (SBM) is a method for matching objects in greyscale images. It extracts edges from search images and matches them to a model using a similarity measure. In this thesis we extend SBM to find the tilt and height position of the object in addition to the z-plane rotation and x-y-position. The search is conducted using a scale pyramid to improve the search speed. A 3D matching can be done for small tilt angles by using SBM on height data and extending it with additional steps to calculate the tilt of the object. The full pose is useful for picking objects with an industrial robot.

The tilt of the object is calculated using a RANSAC plane estimator. After the 2D search the differences in height between all corresponding points of the model and the live image are calculated. By estimating a plane to this difference the tilt of the object can be calculated. Using the tilt the model edges are tilted in order to improve the matching at the next scale level.

The problems that arise with occlusion and missing data have been studied. Missing data and erroneous data have been thresholded manually after conducting tests where automatic filling of missing data did not noticeably improve the matching. The automatic filling could introduce new false edges and remove true ones, thus lowering the score.

Experiments have been conducted where objects have been placed at increasing tilt angles. The results show that the matching algorithm is object dependent and correct matches are almost always found for tilt angles less than 10 degrees. This is very similar to the original 2D SBM because the model edges does not change much for such small angels. For tilt angles up to about 25 degrees most objects can be matched and for nice objects correct matches can be done at large tilt angles of up to 40 degrees.

APA, Harvard, Vancouver, ISO, and other styles
49

Chu, Hoang-Nam. "Test et évaluation de la robustesse de la couche fonctionnelle d'un robot autonome." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0054/document.

Full text
Abstract:
La mise en oeuvre de systèmes autonomes nécessite le développement et l'utilisation d'architectures logicielles multi-couches qui soient adaptées. Typiquement, une couche fonctionnelle renferme des modules en charge de commander les éléments matériels du système et de fournir des services élémentaires. Pour être robuste, la couche fonctionnelle doit être dotée de mécanismes de protection vis-à-vis de requêtes erronées ou inopportunes issues de la couche supérieure. Nous présentons une méthodologie pour tester la robustesse de ces mécanismes. Nous définissons un cadre général pour évaluer la robustesse d'une couche fonctionnelle par la caractérisation de son comportement vis-à-vis de requêtes inopportunes. Nous proposons également un environnement de validation basé sur l'injection de fautes dans le logiciel de commande d'un robot simulé. Un grand nombre de cas de tests est généré automatiquement par la mutation d'une séquence de requêtes valides. Les statistiques descriptives des comportements en présence de requêtes inopportunes sont analysées afin d'évaluer la robustesse du système sous test
The implementation of autonomous systems requires the development and the using of multi-layer software architecture. Typically, a functional layer contains several modules that control the material of the system and provide elementary services. To be robust, the functional layer must be implemented with protection mechanisms with respect to erroneous or inopportune requests sent from the superior layer. We present a methodology for robustness testing these mechanisms. We define a general framework to evaluate the robustness of a functional layer by characterizing its behavior with respect to inappropriate requests. We also propose an validation environment based on fault injection in the control software of a simulated robot. A great number of test cases is generated automatically by the mutation of a sequence of valid requests. The descriptive statistics of the behaviors in the presence of inappropriate requests are analyzed in order to evaluate the robustness of the system under test
APA, Harvard, Vancouver, ISO, and other styles
50

Hallberg, Lyggemark Hillevi. "Designing for an autonomous future : How to support and maintain trust through PSS design with an emphasis on heavy construction equipment worksites." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13471.

Full text
Abstract:
Vad som har gjort dagens autonoma teknologi möjlig och som lagt grunden till dess hastiga framsteg har varit den tekniska utvecklingen i datorhårdvara. I takt med att datorer har ökat i både prestanda och hastighet och samtidigt minskat i pris har autonoma lösningar ökat extremt mycket i nästan alla scenarios av vårt vardagsliv där människa-maskinsystem finns. Automation har också spridit sig till fordonsutvecklingen; förarlösa bilar kan redan ses på gatorna och i gruvindustrin används redan autonoma dumpers i viss utsträckning. Det är bara en tidsfråga innan fullt autonoma tyngre maskiner entrar scenen med målet att fortsatt öka produktiviteten i samhället. Men då den autonoma teknologin blir mer och mer komplex så finns det en del som verkar bli viktigare; tillit. Tillit behövs i alla situationer där det inte är möjligt att förstå alla inblandade faktorer. Tillit fungerar som en guide i beslutsfattning och är en förutsättning som är nödvändig för att automation överhuvudtaget ska användas. Men är tilliten för hög eller för låg kan det resultera i att automationen används felaktigt med eventuellt farliga sitationer som påföljd. I den här rapporten definieras autonomi och tillit för att sedan få en djup förstående för de båda för att kunna se sambanden emellan dem. Resultatet i denna rapporten är ett set klart definierade kritiska faktorer som behövs på en arbetsplats där både tunga maskiner och människor vistas. Detta för att skapa och upprätthålla tillit. Dessa kritiska faktorer är sedan satta i en begreppsmässig modell för byggande av tillit och senare exemplifierade in ett system som är utvecklat i ett större sammanhang. Det finns också rekommendationer för hur dessa kritiska faktorer kan få stöd genom product- och tjänstesystems innovation. Den här rapporten visar att det inte är en exakt vetenskap att designa för automation eftersom det finns många avgränsningar att ta hänsyn till som t.ex. kulturella och individuella skillnader hos individen som kan påverka vid interaktionen av autonom teknologi. När man designar för lämplig tillit i autonom teknologi behövs hela systemet tas i åtanke med både människor, maskiner och miljön de vistas i.
What has made the autonomy of today possible and what laid the foundation of its rapid advancement has been the technical development in computer hardware. As computers have increased in power and speed and at the same time decreased in price, autonomous solutions has increased enormously in nearly all scenarios of life where human-machine systems can be found. Automation has also started to spread into vehicle technology; driverless cars can be seen roaming the streets and the mining industry, autonomous haulers are already in use to some extent. It is just a matter of time before fully automated heavy machinery enters the scene with the goal further increase the productivity in our society. But when autonomy gets more and more complex, there is one thing that seems so get more important; trust. Trust is needed in situations where a total understanding of all factors involved is hard to grasp. It will act as a guide in decision-making and is a prerequisite that needs to exist if the automation is to be used. Although, if the trust is too high or low the result could be that automation is used inappropriately with possible dangerous situations as an outcome. In this thesis autonomy and trust gets defined and understood and then intertwined to get an understanding of how they are related. The outcome from this thesis is a set of clearly defined crucial factors that is needed on a worksite with heavy equipment machinery and humans to create and maintain trust. These crucial factors are put in a conceptual model of trust building and later exemplified in a system solution created in a larger context. There are also recommendations on how to support these crucial factors through PSS design. This thesis shows that designing for automation is not an exact science, since there is much delimitation to take into account such as cultural and individual differences in the human being that is subject to the autonomy. When designing for appropriate trust in automated technology it needs to be done by taking the whole system into account with humans, machines and the environment they are in.
ME310 Design Innovation at Stanford University
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography