Dissertations / Theses on the topic 'Autonomous robot system; Robots; Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Autonomous robot system; Robots; Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vaughan, Richard. "Experiments in animal-interactive robotics." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325617.
Full textHosking, Matthew R. "Testability of a swarm robot using a system of systems approach and discrete event simulation /." Online version of thesis, 2009. http://hdl.handle.net/1850/11215.
Full textMcNeal, William B. "Simulation of the autonomous combat systems robot optical detection system." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA342228.
Full text"December 1997." Thesis advisor(s): Gordon Schacher, Donald Brutzman. Includes bibliographical references (p. 131). Also available online.
Kancir, Pierre. "Méthodologie de conception de système multi-robots : de la simulation à la démonstration." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS519/document.
Full textMulti-robot System Design Methodology : from Simulation to Demonstration Multi-robot systems are complex but promising systems in many fields, the number of academic works in this field underlines the importance they will have in the future. However, while these promises are real, they have not yet been realized, as evidenced by the small number of multi-robot systems used in the industry. However, solutions exist to enable industrialists and academics to work together on this issue. We propose a state of the art and challenges associated with the design of multi-robot systems from an academic and industrial point of view. We then present three contributions for the design of these systems: a realization of a heterogeneous swarm as a practical case study in order to highlight the design obstacles. The modification of an autopilot and a simulator to make them compatible with the development of multi-robot systems. Demonstration of an evaluation tool based on the two previous contributions. Finally, we conclude on the scope of this work and future perspectives based on open source
Bhat, Sriharsha. "Hydrobatics: Efficient and Agile Underwater Robots." Licentiate thesis, KTH, Farkostteknik och Solidmekanik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286062.
Full textTermen hydrobatik avser förmåga att utföra avancerade manövrer med undervattensfarkoster. Syftet är att, med bibehållen fart och räckvidd, utvigda den operationella förmågan i manövrering, vilket möjliggör helt nya användningsområden för maximering av kostnadseffektivitet. I denna avhandling undersöks fördelar och tekniska utmaningar relaterade till hydrobatik som tillämpas på undervattensrobotar, vanligen kallade autonoma undervattensfarkoster (AUV). Avhandlingen bidrar till ny kunskap i simulering, reglering samt tillämpning i experiment av dessa robotar genom en strukturerad metod för att realisera hydrobatisk förmåga i realistiska scenarier. Tre nyttoområden beaktas - miljöövervakning, havsproduktion och säkerhet. Inom dessa nyttoområden har ett antal scenarios identifierats där en kombination av smidighet i manövrerbarhet samt effektivitet i prestanda är avgörande för robotens förmåga att utföra sin uppgift. För att åstadkomma detta måste två viktiga tekniska utmaningar lösas. För det första har dessa AUVer färre styrytor/trustrar än frihetsgrader, vilket leder till utmaningen med underaktuering. Utmaningen beskrivs i detalj och lösningsstrategier som använder optimal kontroll och modellprediktiv kontroll belyses. För det andra är flödet runt en AUV som genomför hydrobatiska manövrar komplext med övergång från laminär till stark turbulent flöde vid höga anfallsvinklar. Detta gör flygdynamikmodellering svår. En full 0-360 graders flygdynamikmodell härleds därför, vilken kombinerar en multi-tillförlitlighets hydrodynamisk databas med en generaliserad strategi för komponentvis-superpositionering av laster. Detta möjliggör prediktering av hydrobatiska manövrar som t.ex. utförande av looping, roll, spiraler och väldigt snäva svängradier i realtids- eller nära realtids-simuleringar. I nästa steg presenteras ett cyber-fysikaliskt system (CPS) – där funktionalitet som härrör från simuleringar kan överföras till de verkliga användningsområdena på ett effektivt och säkert sätt. Simulatormiljön är nära integrerad i robot-miljön, vilket möjliggör förvalidering av reglerstrategier och mjukvara innan hårdvaruimplementering. En egenutvecklad hydrobatisk AUV (SAM) används som testplattform. CPS-konceptet valideras med hjälp av SAM i ett realistiskt sceanrio genom att utföra ett sökuppdrag av ett nedsänkt föremål under fältförhållanden. Resultaten av arbetet i denna licentiatavhandling kommer att användas i den fortsatta forskningen som fokuserar på att ytterligare undersöka och utveckla ny metodik för reglering av underaktuerade AUVer. Detta inkluderar utveckling av realtidskapabla ickelinjära MPC-implementeringar som körs ombord, samt AI-baserade reglerstrategier genom ruttplaneringsåterkoppling, autonom systemidentifiering och förstärkningsinlärning. Sådan utveckling kommer att tillämpas för att visa nya möjligheter inom de tre nyttoområdena.
SMaRC
Sotiropoulos, Thierry. "Test aléatoire de la navigation de robots dans des mondes virtuels." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30097/document.
Full textOne of the major challenges for the deployment of autonomous systems in diverse, unstructured and human shared environments, is the trust that can be placed in those systems. Indeed, internal faults in those systems, uncertainties on the perception, or even unforeseen situations, threat this confidence. Our work focus in autonomous robots, which are part of autonomous systems. The validation of the navigation software embedded in robots typically involves test campaigns in the field, which are expensive and potentially risky for the robot itself or its environment. These tests are able to test the system only in a small subset of situations. An alternative is to perform simulation-based testing, by immersing the software in virtual worlds. The aim of this thesis is to study the possibilities and limits offered by simulation-based testing of embedded software in autonomous systems. Our work deals particularly with simulation-based testing of the navigation layer of autonomous mobile robots. The first chapter introduce the contexts of dependability, autonomous systems and their testing, simulation and procedural generation of worlds. We identify and discuss the issues related to autonomous systems simulation-based testing, such as the definition and generation of inputs as well as the oracle. The procedural generation of worlds used in video games is retained as a way to answer the problem of the generation of test inputs (worlds and missions). A first contribution is presented in the second chapter, which is based on the definition and implementation of a first experimental simulation-based testing framework with a mobile robot. The navigation software used is integrated into the Genom framework and tested with the MORSE simulator. Through this experiment, first conclusions are drawn on the relevance of the procedural generation of worlds, and on the oracle to be considered. Measures such as tortuousness or indeterminism of navigation are defined. This first work also leads to propose an approach to define levels of difficulty of worlds. The purpose of the third chapter is to identify whether faults known and corrected in a academic navigation software could have been detected through simulation-based testing. Nearly 10 years of commits of the navigation software (including the P3D module which is an academic version of a trajectory planner used by NASA) were thus analyzed. Each fault detected is studied to determine the oracle necessary to detect it whether it could be activated in simulation. Many recommendations are extracted from this study, especially on the properties of the oracle to set up for this type of system. In the fourth chapter, lessons learned from the previous two chapters are implemented for the case of an industrial robot. The considered system, provided by our industrial partner Naïo is the agricultural robot Oz. The conclusions of the preceding chapters regarding the world generation and the oracles are validated by an intensive test campaign in simulation
Mikhalsky, Maxim. "Efficient biomorphic vision for autonomous mobile robots." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16206/.
Full textPaul, André. "Design of an autonomous navigation system for a mobile robot." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99565.
Full textAn artificial landmark localization algorithm was also developed to continuously record the positions of the robot whilst it was moving. The algorithm was tested on a grid layout of 6 m x 6 m. The performance of the artificial landmark localization technique was compared with odometric and inertial measurements obtained using a dead-reckoning method and a gyroscope-corrected dead-reckoning method. The artificial landmark localization method resulted in much smaller root mean square error (0.033 m) of position estimates compared to the other two methods (0.175 m and 0.135 m respectively).
Salvaro, Mattia. "Virtual sensing technology applied to a swarm of autonomous robots." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8508/.
Full textDag, Antymos. "Autonomous Indoor Navigation System for Mobile Robots." Thesis, Linköpings universitet, Programvara och system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-129419.
Full textHodo, David W. "Development of an autonomous mobile robot-trailer system for UXO detection." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/HODO_DAVID_59.pdf.
Full textKaplan, Frédéric. "L'émergence d'un lexique dans une population d'agents autonomes." Paris 6, 2000. http://www.theses.fr/2000PA066240.
Full textAltuntaş, Berrin. "A behavior based robot control system architecture for navigation environments with randomly allocated walls." Ankara : METU, 2003. http://etd.lib.metu.edu.tr/upload/1097054/index.pdf.
Full textAL-Buraiki, Omar S. M. "Specialized Agents Task Allocation in Autonomous Multi-Robot Systems." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41504.
Full textAzarnasab, Ehsan. "Robot-in-the-loop simulation to support multi-robot system development a dynamic team formation example /." unrestricted, 2006. http://etd.gsu.edu/theses/available/etd-04012007-142947/.
Full textTitle from file title page. Xiaolin Hu, committee chair; Michael Weeks, Yanqing Zhang, committee members. Electronic text (108 p. : ill. (some col.)) : digital, PDF file. Description based on contents viewed May 20, 2008. Includes bibliographical references (p. 103-108).
Huang, Henry. "Bearing-only SLAM : a vision-based navigation system for autonomous robots." Queensland University of Technology, 2008. http://eprints.qut.edu.au/28599/.
Full textCowling, Michael, and n/a. "Non-Speech Environmental Sound Classification System for Autonomous Surveillance." Griffith University. School of Information Technology, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040428.152425.
Full textHughes, Bradley Evan. "A Navigation Subsystem for an Autonomous Robot Lawn Mower." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1312391797.
Full textDurdu, Akif. "Robotic System Design For Reshaping Estimated Human Intention In Human-robot Interactions." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615150/index.pdf.
Full textRajasingh, Joshua. "Lane Detection and Obstacle Avoidance in Mobile Robots." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1288980793.
Full textAzarnasab, Ehsan. "Robot-In-The-Loop Simulation to Support Multi-Robot System Development: A Dynamic Team Formation Example." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/cs_theses/39.
Full textShkurti, Thomas E. "SIMULATION AND CONTROL ENHANCEMENTS FOR THE DA VINCI SURGICAL ROBOT™." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1548248373927953.
Full textHaberbusch, Matthew Gavin. "Autonomous Skills for Remote Robotic Assembly." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1588112797847939.
Full textBurtin, Gabriel Louis. "Stratégie de navigation sûre dans un environnement industriel partiellement connu en présence d’activité humaine." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLV029.
Full textIn this work, we propose a safe system for robot navigation in an indoor and structured environment. The main idea is the use of two combined sensors (lidar and monocular camera) to ensure fast computation and robustness. The choice of these sensors is based on the physic principles behind their measures. They are less likely to go blind with the same disturbance. The localization algorithm is fast and efficient while keeping in mind the possibility of a downgraded mode in case of the failure of one sensor. To reach this objective, we optimized the data processing at different levels. We applied a polygonal approximation to the 2D lidar data and a vertical contour detection to the colour image. The fusion of these data in an extended Kalman filter provides a reliable localization system. In case of a lidar failure, the Kalman filter still works, in case of a camera failure the robot can rely upon a lidar scan matching. Data provided by these sensors can also deserve other purposes. The lidar provides us the localization of doors, potential location for encounter with humans. The camera can help to detect and track humans. This work has been done and validated using an advanced robotic simulator (4DV-Sim), then confirmed with real experiments. This methodology allowed us to both develop our ideas and confirm the usefulness of this robotic tool
Mouad, Mehdi. "Architecture de COntrôle/COmmande dédiée aux systèmes Distribués Autonomes (ACO²DA) : application à une plate-forme multi-véhicules." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22437/document.
Full textThe difficulty of coordinating a group of mobile robots is adressed in this thesis by investigating control architectures which aim to break task complexity. In fact, multi-robot navigation may become rapidly inextricable, specifically if it is made in hazardous and dynamical environment requiring precise and secure cooperation. The considered task is the navigation of a group of mobile robots in unknown environments in presence of (static and dynamic) obstacles. To overcome its complexity, it is proposed to divide the overall task into a set of basic behaviors/controllers (obstacle avoidance, attraction to a dynamical target, planning, etc.). Applied control is chosen among these controllers according to sensors information (camera, local sensors, etc.). The specificity of the theoretical approach is to combine the benefits of multi-controller control architectures to those of multi-agent organizational models to provide a high level of coordination between mobile agents-robots systems. The group of mobile robots is then coordinated according to different norms and specifications of the organizational model. Thus, activating a basic behavior in favor of another is done in accordance with the structural constraints of the robots in order to ensure maximum safety and precision of the coordinated movements between robots. Cooperation takes place through a supervisor agent (centralized) to reach the desired destination faster ; unexpected events are individually managed by the mobile agents/robots in a distributed way. To guarantee performance criteria of the control architecture, hybrid systems tolerating the control of continuous systems in presence of discrete events are explored. In fact, this control allows coordinating (by discrete part) the different behaviors (continuous part) of the architecture. The development of ROBOTOPIA simulator allowed us to illustrate each contribution by many results of simulations
Mouaddib, El Mustapha. "Programmation, génération de trajectoires et recalages pour le Robot Mobile Autonome SARAH." Amiens, 1991. http://www.theses.fr/1991AMIES003.
Full textMahdoui, Chedly Nesrine. "Communicating multi-UAV system for cooperative SLAM-based exploration." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2447/document.
Full textIn the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) appeared in the last years. This is thanks to i) the technological advances, such as better onboard processing capabilities and higher communication performances, and ii) the promising results of MRS deployment, such as increased area coverage in minimum time. The development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale applications, that demand such System of Systems (SoS) features in areas like security, disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection, and so on. Such applications require the robots to identify their environment and localize themselves. These fundamental tasks can be ensured by the exploration mission. In this context, this thesis addresses the cooperative exploration of an unknown environment sensed by a team of UAVs with embedded vision. We propose a multi-robot framework where the key problem is to cooperatively choose specific regions of the environment to be simultaneously explored and mapped by each robot in an optimized manner in order to reduce exploration time and, consequently, energy consumption. Each UAV is able to performSimultaneous Localization And Mapping (SLAM) with a visual sensor as the main input sensor. To explore the unknown regions, the targets – selected from the computed frontier points lying between free and unknown areas – are assigned to robots by considering a trade-off between fast exploration and getting detailed grid maps. For the sake of decision making, UAVs usually exchange a copy of their local map; however, the novelty in this work is to exchange map frontier points instead, which allow to save communication bandwidth. One of the most challenging points in MRS is the inter-robot communication. We study this part in both topological and typological aspects. We also propose some strategies to cope with communication drop-out or failure. Validations based on extensive simulations and testbeds are presented
Pehrsson, Andreas. "Industry 4.0 : Impact on Manufacturing Strategies and Performance." Thesis, Linnéuniversitetet, Institutionen för informatik (IK), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-97129.
Full textJin, Zhe Kun. "Système multi-agents appliqué à la navigation d'un robot mobile dans un environnement inconnu." Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0008.
Full textBen-Tzvi, Pinhas. "Hybrid Mobile Robot System: Interchanging Locomotion and Manipulation." Thesis, 2008. http://hdl.handle.net/1807/11181.
Full textLakkad, Shailesh Hollis Patrick. "Modeling and simulation of steering systems for autonomous vehicles." 2004. http://etd.lib.fsu.edu/theses/available/etd-04112004-101215.
Full textAdvisor: Dr. Patrick Hollis, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed June 18, 2004). Includes bibliographical references.
"Coordinated Navigation and Localization of an Autonomous Underwater Vehicle Using an Autonomous Surface Vehicle in the OpenUAV Simulation Framework." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.62789.
Full textDissertation/Thesis
Masters Thesis Computer Science 2020
Jen, Hui-Chiao. "The Application of discrete-event simulation for demining strategy evaluation." 2008. http://hdl.handle.net/10106/920.
Full textHur, Jaeho 1965. "Multi-robot system control using artificial immune system." Thesis, 2007. http://hdl.handle.net/2152/3574.
Full textSheng, Xiang. "Mechanical design and simulation studies of a quadruped robot motion control system." Thesis, 2018. https://dspace.library.uvic.ca//handle/1828/9178.
Full textGraduate
2019-03-07
Agunbiade, Olusanya Yinka. "Road region detection system using filters and concurrency technique." 2014. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001932.
Full textAutonomous robots are extensively used equipment in industries and in our daily lives; they assist in manufacturing and production but are used for exploration in dangerous or unknown environments. However for a successful exploration, manufacturing and production, navigation plays an important role. Road detection is a vital factor that assists autonomous robots in perfect navigation. Different methods using camera-vision technique have been developed by various researchers with outstanding results, but their systems are still vulnerable to environmental risks. The frequent weather change in various countries such as South Africa, Nigeria and Zimbabwe where shadow, light intensity and other environmental noises occur on daily basis, can cause autonomous robot to encounter failure in navigation. Therefore, the main research question is: How to enhance the road region detection system to enable an effective and efficient maneuvering of the robot in any weather condition.
Yesmunt, Garrett Scot. "Design, analysis, and simulation of a humanoid robotic arm applied to catching." Thesis, 2014. http://hdl.handle.net/1805/5610.
Full textThere have been many endeavors to design humanoid robots that have human characteristics such as dexterity, autonomy and intelligence. Humanoid robots are intended to cooperate with humans and perform useful work that humans can perform. The main advantage of humanoid robots over other machines is that they are flexible and multi-purpose. In this thesis, a human-like robotic arm is designed and used in a task which is typically performed by humans, namely, catching a ball. The robotic arm was designed to closely resemble a human arm, based on anthropometric studies. A rigid multibody dynamics software was used to create a virtual model of the robotic arm, perform experiments, and collect data. The inverse kinematics of the robotic arm was solved using a Newton-Raphson numerical method with a numerically calculated Jacobian. The system was validated by testing its ability to find a kinematic solution for the catch position and successfully catch the ball within the robot's workspace. The tests were conducted by throwing the ball such that its path intersects different target points within the robot's workspace. The method used for determining the catch location consists of finding the intersection of the ball's trajectory with a virtual catch plane. The hand orientation was set so that the normal vector to the palm of the hand is parallel to the trajectory of the ball at the intersection point and a vector perpendicular to this normal vector remains in a constant orientation during the catch. It was found that this catch orientation approach was reliable within a 0.35 x 0.4 meter window in the robot's workspace. For all tests within this window, the robotic arm successfully caught and dropped the ball in a bin. Also, for the tests within this window, the maximum position and orientation (Euler angle) tracking errors were 13.6 mm and 4.3 degrees, respectively. The average position and orientation tracking errors were 3.5 mm and 0.3 degrees, respectively. The work presented in this study can be applied to humanoid robots in industrial assembly lines and hazardous environment recovery tasks, amongst other applications.